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Abstract
Let 𝑉 (𝑝)

(𝑟 ,𝑛,�̃�𝑛 ,𝑘)
and 𝑊 (𝑝)

(𝑟 ,𝑛,�̃�𝑛 ,𝑘)
be the 𝑝-spacings of generalized order statistics based on absolutely continuous

distribution functions 𝐹 and 𝐺, respectively. Imposing some conditions on 𝐹 and 𝐺 and assuming that 𝑚1 =
· · · = 𝑚𝑛−1, Hu and Zhuang (2006. Stochastic orderings between p-spacings of generalized order statistics from
two samples. Probability in the Engineering and Informational Sciences 20: 475) established 𝑉

(𝑝)
(𝑟 ,𝑛,�̃�𝑛 ,𝑘)

≤hr

𝑊
(𝑝)
(𝑟 ,𝑛,�̃�𝑛 ,𝑘)

for 𝑝 = 1 and left the case 𝑝 ≥ 2 as an open problem. In this article, we not only resolve it but also give
the result for unequal 𝑚𝑖’s. It is worth mentioning that this problem has not been proved even for ordinary order
statistics so far.

1. Introduction

In the last two decades, a great attention has been put on stochastic orderings of order statistics and other
ordered random variables. In another direction, such random variables can be embedded in the concept
of generalized order statistics (GOS), introduced by Kamps [16], as a general framework for models of
ordered random variables. Since then, the researchers attempt to obtain their results for ordered data
into the model of GOS.

Let 𝑋 and 𝑌 be two nonnegative variables with absolutely continuous cumulative distribution func-
tions (cdfs) 𝐹 and𝐺, survival functions (sfs) �̄� = 1−𝐹 and �̄� = 1−𝐺, and probability density functions
(pdfs) 𝑓 and 𝑔, respectively, in which 𝐹−1(0) = 𝐺−1(0) (𝐹−1 is the right continuous inverse of 𝐹). Let
ℎ𝑋 = 𝑓 /�̄� and ℎ𝑌 = 𝑔/�̄� denote the hazard rate functions of 𝑋 and 𝑌 , respectively.

The random variables 𝑋(𝑟 ,𝑛,�̃�𝑛 ,𝑘) , 𝑟 = 1, 2, . . . , 𝑛, arising from independent and identically distributed
random variables, are referred to as GOS if their joint density function is given by

f (𝑥1, . . . , 𝑥𝑛) = 𝑘

(
𝑛−1∏
𝑗=1

𝛾( 𝑗 ,𝑛,�̃�𝑛 ,𝑘)

) (
𝑛−1∏
𝑖=1

[�̄� (𝑥𝑖)]
𝑚𝑖 𝑓 (𝑥𝑖)

)
[�̄� (𝑥𝑛)]

𝑘−1 𝑓 (𝑥𝑛),

for all 𝐹−1(0) < 𝑥1 ≤ 𝑥2 ≤ · · · ≤ 𝑥𝑛 < 𝐹−1(1−), where 𝑛 ∈ N, 𝑘 > 0, and 𝑚1, . . . , 𝑚𝑛−1 ∈ R are such
that 𝛾(𝑖,𝑛,�̃�𝑛 ,𝑘) = 𝑘 + 𝑛 − 𝑖 +

∑𝑛−1
𝑗=𝑖 𝑚 𝑗 ≥ 1 for all 𝑖 ∈ {1, . . . , 𝑛 − 1}, and �̃�𝑛 = (𝑚1, . . . , 𝑚𝑛−1) if 𝑛 ≥ 2

(�̃�𝑛 ∈ R is arbitrary if 𝑛 = 1). Indeed, special choices of parameters 𝑘 and 𝑚𝑖 correspond to some
well-known submodels such as order statistics, record values, and sequential order statistics. We refer
the readers to Table 1 of Kamps [17] for complete information on various submodels.

Throughout this paper, we shall use the word increasing (decreasing) for nondecreasing (nonincreas-
ing). Furthermore, ratios are supposed to be well defined whenever they are used. We say that 𝑋 is
smaller than 𝑌 in the
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• likelihood ratio order (denoted by 𝑋 ≤lr 𝑌 ) if 𝑔(𝑥)/ 𝑓 (𝑥) is increasing in 𝑥;
• hazard rate order (denoted by 𝑋 ≤hr 𝑌 ) if �̄� (𝑥)/�̄� (𝑥) is increasing in 𝑥 or, equivalently,
ℎ𝑌 (𝑥) ≤ ℎ𝑋 (𝑥).

It is well-known that 𝑋 ≤lr 𝑌 ⇒ 𝑋 ≤hr 𝑌 (cf. [23]). We say that 𝑋 is DFR (decreasing failure rate) if �̄� is
logconvex in 𝑥 ∈ R+ or, equivalently, �̄� (𝑥 + 𝜖)/�̄� (𝑥) is an increasing function of 𝑥 for each fixed 𝜖 > 0.

Let 𝑌(𝑟 ,𝑛,�̃�𝑛 ,𝑘) , 𝑟 = 1, . . . , 𝑛, be GOS based on 𝐺. We denote the 𝑝-spacings of GOS from 𝐹 and
𝐺 by 𝑉 (𝑝)

(𝑟 ,𝑛,�̃�𝑛 ,𝑘)
= 𝑋(𝑟+𝑝−1,𝑛,�̃�𝑛 ,𝑘) − 𝑋(𝑟−1,𝑛,�̃�𝑛 ,𝑘) and 𝑊 (𝑝)

(𝑟 ,𝑛,�̃�𝑛 ,𝑘)
= 𝑌(𝑟+𝑝−1,𝑛,�̃�𝑛 ,𝑘) − 𝑌(𝑟−1,𝑛,�̃�𝑛 ,𝑘) , for

2 ≤ 𝑟 ≤ 𝑛 − 𝑝 + 1 and 𝑝 ≥ 1, respectively.
For one-sample problem of 𝑝-spacings, some stochastic properties of order statistics and GOS have

been studied by several authors such as Misra and van der Meulen [21], Hu and Zhuang [13,14],
Xie and Hu [25], and Alimohammadi et al. [4]. For two-sample problem of 𝑝-spacings, a study of
stochastic comparisons was initiated by Kochar [20]. He investigated the usual stochastic, hazard rate,
and likelihood ratio orderings of order statistics for 𝑝 = 1. Franco et al. [12] studied the usual stochastic,
hazard rate, and dispersive orderings of GOS under the condition 𝑚1 = 𝑚2 = · · · = 𝑚𝑛−1. Then,
without this condition, Belzunce et al. [7] gave the usual stochastic and likelihood ratio orderings of
GOS for 𝑝 = 1. Finally, in an interesting article, Hu and Zhuang [15] established the likelihood ratio
ordering of GOS for any 𝑝 ≥ 1 and the hazard rate ordering of GOS for 𝑝 = 1 under the condition
𝑚1 = 𝑚2 = · · · = 𝑚𝑛−1 and left the case 𝑝 ≥ 2 as an open problem. In particular, they proved

𝑉 (1)
(𝑟 ,𝑛,�̃�𝑛 ,𝑘)

≤hr 𝑊
(1)
(𝑟 ,𝑛,�̃�𝑛 ,𝑘)

provided that any one of the following conditions is satisfied:

i. 𝑚𝑖 ≥ 0 ∀𝑖, 𝑋 ≤lr 𝑌 , and 𝑋 or 𝑌 is DFR;
ii. −1 ≤ 𝑚𝑖 < 0 ∀𝑖, 𝑋 ≤hr 𝑌 , ℎ𝑌 (𝑥)/ℎ𝑋 (𝑥) is increasing in 𝑥, and 𝑋 or 𝑌 is DFR;

and said that whether this ordering holds for 𝑝 ≥ 2 under the same assumptions as those of above. In
this article, we first answer to this open problem in the affirmative without the condition 𝑚1 = 𝑚2 =
· · · = 𝑚𝑛−1. Finally, the applications of this result are demonstrated for sequential systems, progressive
Type-II censored order statistics with arbitrary censoring schemes and record values.

2. Preliminaries

There exist several representations for the marginal density functions of GOS (see, e.g., [10,16]). Cramer
et al. [11] obtained the expression

𝑓𝑋(𝑟,𝑛,�̃�𝑛 ,𝑘)
(𝑥) = 𝑐𝑟−1 [�̄� (𝑥)]

𝛾𝑟−1𝜉𝑟 (𝐹 (𝑥)) 𝑓 (𝑥), 𝑥 ∈ R, (1)

where 𝑐𝑟−1 =
∏𝑟

𝑖=1 𝛾𝑖 , 𝑟 = 1, . . . , 𝑛, 𝛾𝑛 = 𝑘 , and 𝜉𝑟 is a particular Meĳer’s 𝐺-function. For the joint pdf
of 𝑋(𝑟 ,𝑛,�̃�𝑛 ,𝑘) and 𝑋(𝑠,𝑛,�̃�𝑛 ,𝑘) , 1 ≤ 𝑟 < 𝑠 ≤ 𝑛, Tavangar and Asadi [24] established the expression

𝑓𝑋(𝑟,𝑛,�̃�𝑛 ,𝑘) ,𝑋(𝑠,𝑛,�̃�𝑛 ,𝑘)
(𝑥1, 𝑥2) = 𝑐𝑠−1 [�̄� (𝑥1)]

𝛾𝑟−𝛾𝑠−1𝜉𝑟 (𝐹 (𝑥1))

× [�̄� (𝑥2)]
𝛾𝑠−1𝜓𝑠−𝑟−1

(
�̄� (𝑥2)

�̄� (𝑥1)

)
𝑓 (𝑥1) 𝑓 (𝑥2), 𝑥1 < 𝑥2, (2)

(zero elsewhere), where 𝜓0(𝑡) = 1, 𝜓1(𝑡) = 𝛿𝑚𝑟+1 (1 − 𝑡),

𝜓𝛼 (𝑡) =
∫ 1

𝑡

∫ 1

𝑢𝛼−1

. . .

∫ 1

𝑢2

𝛿𝑚𝑟+1 (1 − 𝑢1)

𝛼−1∏
𝑖=1

𝑢𝑖
𝑚𝑟+𝑖+1 𝑑𝑢1 . . . 𝑑𝑢𝛼−2 𝑑𝑢𝛼−1, 0 ≤ 𝑡 ≤ 1, 𝛼 = 2, 3, . . . ,
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and

𝛿𝑚 (𝑡) =

⎧⎪⎪⎨⎪⎪⎩
1

𝑚 + 1
(1 − (1 − 𝑡)𝑚+1), 𝑚 ≠ −1

−ln(1 − 𝑡), 𝑚 = −1
, 𝑡 ∈ (0, 1).

According to Lemmas 2.1 and 3.1 of Alimohammadi and Alamatsaz [1], we have the following
recursive formulas:

𝜉1(𝑡) = 1, 𝜉𝑟 (𝑡) =
∫ 𝑡

0
𝜉𝑟−1(𝑢) [1 − 𝑢]𝑚𝑟−1 𝑑𝑢, 0 ≤ 𝑡 ≤ 1, 𝑟 = 2, . . . , 𝑛, (3)

and

𝜓0(𝑡) = 1, 𝜓𝛼 (𝑡) =
∫ 1

𝑡

𝜓𝛼−1(𝑢)𝑢
𝑚𝑟+𝛼 𝑑𝑢, 0 ≤ 𝑡 ≤ 1, 𝛼 = 1, 2, . . . . (4)

Some convexity properties of the function 𝜉𝑟 and GOS have been studied by Cramer et al. [11] and
Alimohammadi et al. [2,3].

Now, substituting 𝑟 with 𝑟−1 and 𝑠with 𝑟+𝑝−1 in (2) and after some calculations, for 2 ≤ 𝑟 ≤ 𝑛−𝑝+1,
we obtain

𝑓𝑉 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥) = 𝑐𝑟+𝑝−2

∫ +∞

0
[�̄� (𝑥 + 𝑢)]𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
�̄� (𝑥 + 𝑢)

�̄� (𝑢)

)
𝑓 (𝑥 + 𝑢)

× [�̄� (𝑢)]𝛾𝑟−1−𝛾𝑟+𝑝−1−1𝜉𝑟−1(𝐹 (𝑢)) 𝑓 (𝑢) 𝑑𝑢, 𝑥 ≥ 0, (5)

where, according to (4) for 𝑟 − 1,

𝜓𝑝−1

(
�̄� (𝑥 + 𝑢)

�̄� (𝑢)

)
=

∫ 1

�̄� (𝑥+𝑢)/�̄� (𝑢)

𝜓𝑝−2(𝑢)𝑢
𝑚𝑟+𝑝−2 𝑑𝑢, 2 ≤ 𝑝 ≤ 𝑛 − 𝑟 + 1, (6)

with 𝜓0(𝑡) = 1 and, for 𝑟 = 1, we have 𝑓𝑉 (𝑝)
(1,𝑛,�̃�𝑛 ,𝑘)

(𝑥) = 𝑓𝑋(𝑟+𝑝−1,𝑛,�̃�𝑛 ,𝑘)
(𝑥). Also, for 2 ≤ 𝑟 ≤ 𝑛 − 𝑝 + 1,

from (5) we arrive at

�̄�𝑉 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥) = 𝑐𝑟+𝑝−2

∫ +∞

0
[�̄� (𝑥 + 𝑢)]𝛾𝑟+𝑝−1

[∫ 1

0
𝑧𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
𝑧 ·

(
�̄� (𝑥 + 𝑢)

�̄� (𝑢)

))
𝑑𝑧

]
× [�̄� (𝑢)]𝛾𝑟−1−𝛾𝑟+𝑝−1−1𝜉𝑟−1(𝐹 (𝑢)) 𝑓 (𝑢) 𝑑𝑢, 𝑥 ≥ 0. (7)

Now, we recall the following definition about the very useful concept of total positivity (cf. [19]).

Definition 2.1. Let X and Y be subsets of the real line R. A function 𝜆 : X × Y → R is said to be
totally positive of order 2 (𝑇𝑃2) (reverse regular of order 2 (𝑅𝑅2)) if

𝜆(𝑥1, 𝑦1)𝜆(𝑥2, 𝑦2) − 𝜆(𝑥1, 𝑦2)𝜆(𝑥2, 𝑦1) ≥ (≤)0, (8)

for all 𝑥1 ≤ 𝑥2 in X and all 𝑦1 ≤ 𝑦2 in Y.

Note that the 𝑇𝑃2 (𝑅𝑅2) property is equivalent to 𝜆(𝑥2, 𝑦)/𝜆(𝑥1, 𝑦) is increasing (decreasing) in 𝑦
when 𝑥1 ≤ 𝑥2, whenever this ratio exists. Also, note that the product of two 𝑇𝑃2 (𝑅𝑅2) functions is 𝑇𝑃2
(𝑅𝑅2). Moreover, if 𝜆(𝑥, 𝑦) is 𝑇𝑃2 (𝑅𝑅2) in (𝑥, 𝑦), then 𝜆1(𝑥)𝜆(𝑥, 𝑦)𝜆2(𝑦) is 𝑇𝑃2 (𝑅𝑅2) in (𝑥, 𝑦) when
𝜆1 and 𝜆2 are two nonnegative functions (cf. [19]).

The lemma below, due to Misra and van der Meulen [21], is often used in establishing the monotonicity
of a fraction in which the numerator and denominator are integrals or summations.
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Lemma 2.2. Assume that Θ is a subset of the real line R, and let U be a nonnegative random variable
having a cdf belonging to the family P = {Ξ(· | 𝜃), 𝜃 ∈ Θ} which satisfies that, for 𝜃1, 𝜃2 ∈ Θ,

Ξ(· | 𝜃1) ≤st (≥st)Ξ(· | 𝜃2), whenever 𝜃1 ≤ 𝜃2.

Let 𝜙(𝑢, 𝜃) be a real-valued function defined on R × Θ, which is measurable in u for each 𝜃 such that
𝐸𝜃 [𝜙(𝑈, 𝜃)] exists. Then, 𝐸𝜃 [𝜙(𝑈, 𝜃)] is

(i) increasing in 𝜃, if 𝜙(𝑢, 𝜃) is increasing in 𝜃 and increasing (decreasing) in 𝑢;
(ii) decreasing in 𝜃, if 𝜙(𝑢, 𝜃) is decreasing in 𝜃 and decreasing (increasing) in 𝑢.

3. Main result

Now, we are ready to resolve the mentioned problem.

Theorem 3.1. Let 𝑋(𝑟 ,𝑛,�̃�𝑛 ,𝑘) and 𝑌(𝑟 ,𝑛,�̃�𝑛 ,𝑘) , 𝑟 = 1, . . . , 𝑛, be GOSs based on absolutely continuous
cdfs 𝐹 and 𝐺, respectively. Then, for all 2 ≤ 𝑟 ≤ 𝑛 − 𝑝 + 1 and all 𝑝 ≥ 1,

𝑉 (𝑝)
(𝑟 ,𝑛,�̃�𝑛 ,𝑘)

≤hr 𝑊
(𝑝)
(𝑟 ,𝑛,�̃�𝑛 ,𝑘)

provided that any one of the following conditions is satisfied:

(i) 𝑚𝑖 ≥ 0 ∀𝑖, 𝑋 ≤lr 𝑌 , and 𝑋 or 𝑌 is DFR;
(ii) −1 ≤ 𝑚𝑖 < 0 ∀𝑖, 𝑋 ≤hr 𝑌 , ℎ𝑌 (𝑥)/ℎ𝑋 (𝑥) is increasing in 𝑥, and 𝑋 or 𝑌 is DFR.

Proof. First note that by changing variable 𝑧 = �̄� (𝑡)/�̄� (𝑥 + 𝑢) in (7), we have

�̄�𝑉 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥) = 𝑐𝑟+𝑝−2

∫ +∞

0

[∫ +∞

𝑥+𝑢

[�̄� (𝑡)]𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝑓 (𝑡) 𝑑𝑡

]
× [�̄� (𝑢)]𝛾𝑟−1−𝛾𝑟+𝑝−1−1𝜉𝑟−1(𝐹 (𝑢)) 𝑓 (𝑢) 𝑑𝑢. (9)

We give the proof for the case 𝑝 ≥ 2 while the case 𝑝 = 1 can be proved in an analogous and simpler
manner (because some terms will be vanished for 𝑝 = 1). Assume that 𝑋 is DFR. Let’s define

𝜙2(𝑡, 𝑥, 𝑢) =

[
�̄� (𝑢)

�̄� (𝑢)

]𝛾𝑟+𝑝−1−1 𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

) 𝑔(𝑢)
𝑓 (𝑢)

.

From (9), we have

�̄�𝑊 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥)

�̄�𝑉 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥)
= 𝐸 [𝜙1(𝑈, 𝑥)],

where

𝜙1(𝑢, 𝑥) = 𝐸 [𝜙2(𝑇, 𝑥, 𝑢)]

[
�̄� (𝑢)

�̄� (𝑢)

]𝛾𝑟−1−𝛾𝑟+𝑝−1−1
𝜉𝑟−1(𝐺 (𝑢))

𝜉𝑟−1(𝐹 (𝑢))

𝑔(𝑢)

𝑓 (𝑢)

=

( [
�̄� (𝑢)

�̄� (𝑢)

]𝑚𝑟−1 𝑔(𝑢)

𝑓 (𝑢)

) (
𝜉𝑟−1(𝐺 (𝑢))

𝜉𝑟−1(𝐹 (𝑢))

) ���𝐸 [𝜙2(𝑇, 𝑥, 𝑢)] ·

[
�̄� (𝑢)

�̄� (𝑢)

]∑𝑟+𝑝−2
𝑗=𝑟 (𝑚 𝑗+1)��� (10)
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=

([
�̄� (𝑢)

�̄� (𝑢)

]𝑚𝑟−1+1
ℎ𝑌 (𝑢)

ℎ𝑋 (𝑢)

) (
𝜉𝑟−1(𝐺 (𝑢))

𝜉𝑟−1(𝐹 (𝑢))

) ���𝐸 [𝜙2(𝑇, 𝑥, 𝑢)] ·

[
�̄� (𝑢)

�̄� (𝑢)

]∑𝑟+𝑝−2
𝑗=𝑟 (𝑚 𝑗+1)��� , (11)

𝑈 and 𝑇 are nonnegative random variables having the respective cdfs belonging to the families P1 =
{U(· | 𝑥), 𝑥 ∈ R+} and P2 = {T (· | 𝑥, 𝑢), 𝑥, 𝑢 ∈ R+} with the respective pdfs

𝑙1(𝑢 | 𝑥) = 𝑐1(𝑥)𝐼{0≤𝑢 }

[∫ +∞

𝑥+𝑢

[�̄� (𝑡)]𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝑓 (𝑡) 𝑑𝑡

]
× [�̄� (𝑢)]𝛾𝑟−1−𝛾𝑟+𝑝−1−1𝜉𝑟−1(𝐹 (𝑢)) 𝑓 (𝑢)

and

𝑙2 (𝑡 | 𝑥, 𝑢) = 𝑐2(𝑥, 𝑢)𝐼{𝑥+𝑢≤𝑡 } [�̄� (𝑡)]
𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝑓 (𝑡),

in which

𝑐1(𝑥) =

[∫ +∞

0

[∫ +∞

𝑥+𝑢

[�̄� (𝑡)]𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝑓 (𝑡) 𝑑𝑡

]
[�̄� (𝑢)]𝛾𝑟−1−𝛾𝑟+𝑝−1−1𝜉𝑟−1(𝐹 (𝑢)) 𝑓 (𝑢) 𝑑𝑢

]−1

and

𝑐2(𝑥, 𝑢) =

[∫ +∞

𝑥+𝑢

[�̄� (𝑡)]𝛾𝑟+𝑝−1−1𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝑓 (𝑡) 𝑑𝑡

]−1

are the normalizing constants and 𝐼𝐴 is the indicator function.
Now, we show that 𝜙1(𝑢, 𝑥) is increasing in 𝑢 and 𝑥 in either (10) and (11).
The first parentheses is increasing in 𝑢: It is obvious according to the conditions (i) and (ii) of theorem.
The second parentheses is increasing in 𝑢: We prove it by induction on 𝑟 . It is clearly valid for 𝑟 = 2.

For 𝑟 ≥ 3, let us assume that 𝜉 𝑗−1(𝐺 (𝑢))/𝜉 𝑗−1(𝐹 (𝑢)) is increasing in 𝑢 for 𝑗 = 3, . . . , 𝑟 − 1. According
to (3), we then have

𝑑

𝑑𝑢

(
𝜉𝑟−1(𝐺 (𝑢))

𝜉𝑟−1(𝐹 (𝑢))

)
≥ 0

⇐⇒ 𝑔(𝑢)𝜉𝑟−2(𝐺 (𝑢))(�̄� (𝑢))𝑚𝑟−2 · 𝜉𝑟−1(𝐹 (𝑢)) ≥ 𝑓 (𝑢)𝜉𝑟−2(𝐹 (𝑢))(�̄� (𝑢))
𝑚𝑟−2 · 𝜉𝑟−1(𝐺 (𝑢))

⇐⇒
𝑔(𝑢)

𝑓 (𝑢)

𝜉𝑟−2(𝐺 (𝑢))

𝜉𝑟−2(𝐹 (𝑢))

(
�̄� (𝑢)

�̄� (𝑢)

)𝑚𝑟−2

≥
𝜉𝑟−1(𝐺 (𝑢))

𝜉𝑟−1(𝐹 (𝑢))
. (12)

Let us define

𝜈1(𝑢) =
∫ 1

𝑢

𝜉𝑟−2(𝐺 (𝑧))(�̄� (𝑧))𝑚𝑟−2𝑔(𝑧) 𝑑𝑧, 𝜈2(𝑢) =
∫ 1

𝑢

𝜉𝑟−2(𝐹 (𝑧))(�̄� (𝑧))
𝑚𝑟−2 𝑓 (𝑧) 𝑑𝑧.

Then, we have the right-hand side of (12) to be

𝜉𝑟−1(𝐺 (𝑢))

𝜉𝑟−1(𝐹 (𝑢))
=

∫ 1
𝐹−1 (0) 𝜉𝑟−2(𝐺 (𝑧))(�̄� (𝑧))𝑚𝑟−2𝑔(𝑧) 𝑑𝑧 −

∫ 1
𝑢
𝜉𝑟−2(𝐺 (𝑧))(�̄� (𝑧))𝑚𝑟−2𝑔(𝑧) 𝑑𝑧∫ 1

𝐹−1 (0) 𝜉𝑟−2(𝐹 (𝑧))(�̄� (𝑧))𝑚𝑟−2 𝑓 (𝑧) 𝑑𝑧 −
∫ 1
𝑢
𝜉𝑟−2(𝐹 (𝑧))(�̄� (𝑧))𝑚𝑟−2 𝑓 (𝑧) 𝑑𝑧

=
𝜈1(𝑢) − 𝜈1(𝐹

−1(0))
𝜈2(𝑢) − 𝜈2(𝐹−1(0))

.

Because of the integral form of 𝜈1 (𝑥) and 𝜈2 (𝑥), they are continuous on 𝑥 ∈ [𝐹−1(0), 𝑢] and differentiable
on 𝑥 ∈ (𝐹−1(0), 𝑢). Also, we have 𝜈′2(𝑥) ≠ 0 for all 𝑥 ∈ (𝐹−1(0), 𝑢). Because we consider the pdfs on
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their support and if 𝑋 is DFR, then its support is (𝐹−1 (0),∞) with finite 𝐹−1(0) (cf. [8]) and, thus,
we have (𝐹−1(0), 𝑢) ⊂ (𝐹−1(0),∞). So, according to Cauchy’s mean value theorem, there exists some
𝜃 ∈ (𝐹−1 (0), 𝑢) such that

𝜈1(𝑢) − 𝜈1(𝐹
−1(0))

𝜈2(𝑢) − 𝜈2(𝐹−1(0))
=
𝜈′1(𝜃)

𝜈′2(𝜃)
.

Also, we have

𝜈′1(𝜃)

𝜈′2(𝜃)
=
𝑔(𝜃)

𝑓 (𝜃)

𝜉𝑟−2(𝐺 (𝜃))

𝜉𝑟−2(𝐹 (𝜃))

(
�̄� (𝜃)

�̄� (𝜃)

)𝑚𝑟−2

=
ℎ𝑌 (𝜃)

ℎ𝑋 (𝜃)

𝜉𝑟−2(𝐺 (𝜃))

𝜉𝑟−2(𝐹 (𝜃))

(
�̄� (𝜃)

�̄� (𝜃)

)𝑚𝑟−2+1

.

Now, as 𝜃 ≤ 𝑢 and according to the conditions (i) and (ii) of theorem, respectively
(𝑔(𝑢)/ 𝑓 (𝑢))(𝑐�̄� (𝑢)/�̄� (𝑢))𝑚𝑟−2 and (ℎ𝑌 (𝑢)/ℎ𝑋 (𝑢))(�̄� (𝑢)/�̄� (𝑢))𝑚𝑟−2+1 is increasing in 𝑢, the right-hand
side of (12) becomes less than or equal to the left-hand side by induction.

The third parentheses is increasing in 𝑢: We first prove that

𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

) ·

[
�̄� (𝑢)

�̄� (𝑢)

]∑𝑟+𝑝−2
𝑗=𝑟 (𝑚 𝑗+1)

(13)

is increasing in 𝑢 by induction on 𝑝. For 𝑝 = 2, from (6) we have

𝜓1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝜓1

(
�̄� (𝑡)

�̄� (𝑢)

) ·

[
�̄� (𝑢)

�̄� (𝑢)

]𝑚𝑟+1

=

∫ 𝑡

𝑢
(�̄� (𝑧))𝑚𝑟 𝑔(𝑧) 𝑑𝑧∫ 𝑡

𝑢
(�̄� (𝑧))𝑚𝑟 𝑓 (𝑧) 𝑑𝑧

= 𝐸 [𝜙3(𝑍, 𝑡, 𝑢)],

where

𝜙3(𝑧, 𝑡, 𝑢) =

[
�̄� (𝑧)

�̄� (𝑧)

]𝑚𝑟 𝑔(𝑧)

𝑓 (𝑧)

=

[
�̄� (𝑧)

�̄� (𝑧)

]𝑚𝑟+1
ℎ𝑌 (𝑧)

ℎ𝑋 (𝑧)
,

and 𝑍 is a nonnegative random variable having the cdf belonging to the family P3 = {Z(· | 𝑡, 𝑢), 𝑡, 𝑢 ∈

R+} with the pdf
𝑙3(𝑧 | 𝑡, 𝑢) = 𝑐3(𝑡, 𝑢)𝐼{𝑢≤𝑧≤𝑡 } [�̄� (𝑧)]

𝑚𝑟 𝑓 (𝑧),

in which 𝑐3 (𝑡, 𝑢) is the normalizing constant. According to the conditions (i) and (ii) of theorem,
𝜙3(𝑧, 𝑡, 𝑢) is increasing in 𝑧. Also, it is constant with respect to 𝑢. Since, 𝐼{𝑢≤𝑧≤𝑡 } is 𝑇𝑃2 in (𝑧, 𝑢), we
have Z(· | 𝑡, 𝑢1) ≤lr Z(· | 𝑡, 𝑢2) for 𝑢1 ≤ 𝑢2. Now, part (i) of Lemma 2.2 implies that 𝐸 [𝜙3(𝑍, 𝑡, 𝑢)] is
increasing in 𝑢. By the same manner and according to

𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

)
𝜓𝑝−1

(
�̄� (𝑡)

�̄� (𝑢)

) ·

[
�̄� (𝑢)

�̄� (𝑢)

]∑𝑟+𝑝−2
𝑗=𝑟 (𝑚 𝑗+1)

=

∫ 𝑡

𝑢
𝜓𝑝−2

(
�̄� (𝑧)

�̄� (𝑢)

)
(�̄� (𝑢))

∑𝑟+𝑝−3
𝑗=𝑟 (𝑚 𝑗+1) (�̄� (𝑧))𝑚𝑟+𝑝−2𝑔(𝑧) 𝑑𝑧∫ 𝑡

𝑢
𝜓𝑝−2

(
�̄� (𝑧)

�̄� (𝑢)

)
(�̄� (𝑢))

∑𝑟+𝑝−3
𝑗=𝑟 (𝑚 𝑗+1) (�̄� (𝑧))𝑚𝑟+𝑝−2 𝑓 (𝑧) 𝑑𝑧

,

the term in (13) is increasing in 𝑢 by induction.
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Then, since 𝑋 is DFR and 𝐼{𝑥+𝑢≤𝑡 } is 𝑇𝑃2 in (𝑡, 𝑢), one can similarly see that T (· | 𝑥, 𝑢1) ≤lr
T (· | 𝑥, 𝑢2) for 𝑢1 ≤ 𝑢2. Thus, part (i) of Lemma 2.2 implies that the third parentheses is increasing in 𝑢.

The third parentheses is increasing in 𝑥: Similar to the previous step, we can show that
𝜓𝑝−1 (�̄� (𝑡)/�̄� (𝑢))/𝜓𝑝−1(�̄� (𝑡)/�̄� (𝑢)) is increasing in 𝑡 and T (· | 𝑥1, 𝑢) ≤lr T (· | 𝑥2, 𝑢) for 𝑥1 ≤ 𝑥2.
Again, part (i) of Lemma 2.2 implies that 𝐸 [𝜙2(𝑇, 𝑥, 𝑢)] is increasing in 𝑥.

Finally, since U(· | 𝑥1) ≤lr U(· | 𝑥2) for 𝑥1 ≤ 𝑥2, part (i) of Lemma 2.2 implies that 𝐸 [𝜙1(𝑈, 𝑥)] is
increasing in 𝑥.

For the case that 𝑌 is DFR, analogously one can see that �̄�𝑉 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥)/�̄�𝑊 (𝑝)
(𝑟,𝑛,�̃�𝑛 ,𝑘)

(𝑥) is decreasing
in 𝑥 by part (ii) of Lemma 2.2. Therefore, the proof is completed. � �

It is worthwhile mentioning that there are two crucial points in resolving this problem. The first one
is the choosing an appropriate change of variable in the structure of �̄�𝑉 (𝑝)

(𝑟,𝑛,�̃�𝑛 ,𝑘)
(𝑥). The second one is the

noting that 𝜓𝑝−1(�̄� (𝑡)/�̄� (𝑢))/𝜓𝑝−1 (�̄� (𝑡)/�̄� (𝑢)) is not increasing in 𝑢 on its own (while it is increasing
in 𝑡), and thus, it is needed to borrow some increasing terms from the other parts to make it increasing.

Remark 3.2. By a similar approach, one can see that all results and all corollaries of Hu and Zhuang
[15] are now valid for any 𝑝 ≥ 1 and for unequal 𝑚𝑖’s.

4. Applications in submodels

The hazard rate of spacings is an important measure for studying lifetime random variables in reliability
theory and survival analysis. According to the previous findings, one could compare the simple spacings
of ordered random variables in terms of the hazard rate ordering. But, now, one can do that for 𝑝-
spacings. Here, we present the applications for three useful submodels and the other ones can be
considered similarly.

4.1. Sequential (𝒏 − 𝒓 + 1)-out-of-𝒏 systems

In this system (in which contains the ordinary (𝑛 − 𝑟 + 1)-out-of-𝑛 systems), successive failure times of
components are observed which are called sequential order statistics (SOS). The system collapses after
the 𝑟th failure so that the 𝑟th SOS describes the system lifetime. After the failure of the 𝑖th component,
the distribution of the lifetimes of the remaining components in the system is adjusted by a parameter
𝛼𝑖 (cf. [9]). This reflects both a damage caused by the previous failures and a higher load imposed on
the remaining components leading possibly to shorter residual life. SOS under proportional hazard rates
are included in GOS (cf. [16,17]). Indeed, the specific choice of distribution functions

𝐹𝑖 (𝑥) = 1 − (1 − 𝐹 (𝑥))𝛼𝑖 , 𝑖 = 1, . . . , 𝑛,

with a cdf 𝐹 and positive real numbers 𝛼1, . . . , 𝛼𝑛 leads to the model of GOS with parameters 𝑘 = 𝛼𝑛,
𝑚𝑖 = (𝑛 − 𝑖 + 1)𝛼𝑖 − (𝑛 − 𝑖)𝛼𝑖+1 − 1, 𝑖 = 1, . . . , 𝑛 − 1, and hence, 𝛾𝑖 = (𝑛 − 𝑖 + 1)𝛼𝑖 , 𝑖 = 1, . . . , 𝑛,
(𝛼1 = · · · = 𝛼𝑛 = 1 leads to the ordinary (𝑛 − 𝑟 + 1)-out-of-𝑛 systems). The main result of the paper
enables us to compare the 𝑝-spacings of failures of components in two different sequential systems in
hazard ratio orders. Let 𝑉SOS

(𝑟 ,𝑛, �̃�)
and 𝑊SOS

(𝑟 ,𝑛, �̃�)
represent the 𝑝-spacings of two sequential systems when

the components have the lifetime distributions 𝐹 and 𝐺, respectively. Then, we have

𝑉SOS
(𝑟 ,𝑛, �̃�) ≤hr 𝑊

SOS
(𝑟 ,𝑛, �̃�)

provided that the corresponding conditions in Theorem 3.1 are satisfied.
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4.2. Progressive Type-II censored order statistics

A progressively censored life test involves 𝑁 items with i.i.d. lifetimes placed simultaneously on test.
At the time of the 𝑖th failure (𝑖 = 1, . . . , 𝑛), 𝑅𝑖 surviving units are randomly withdrawn from the
test. Progressively Type-II censored order statistics (PCOS) arising from such a reliability experiment
correspond to GOS with parameters 𝑚𝑖 = 𝑅𝑖 ∈ N0, 𝑖 = 1, . . . , 𝑛 − 1, and 𝑘 = 𝑅𝑛 + 1. The vector
�̃� = (𝑅1, . . . , 𝑅𝑛) is called censoring plan (cf. [5], Section 3.2). Our result can be applied to compare
the hazard rate of 𝑝-spacings of failures in two life tests when the components have different lifetime
distributions. Let𝑉PCOS

(𝑟 ,𝑛,�̃�)
and𝑊PCOS

(𝑟 ,𝑛,�̃�)
represent the 𝑝-spacings of PCOS with item lifetime distributions

𝐹 and 𝐺, respectively. If the conditions in part (i) of Theorem 3.1 are satisfied, we then have

𝑉PCOS
(𝑟 ,𝑛,�̃�)

≤hr 𝑊
PCOS
(𝑟 ,𝑛,�̃�)

.

4.3. Record values

Record values are defined as a model of successive extremes in a sequence of i.i.d. random variables.
Pellerey et al. [22] and Belzunce et al. [6] investigated the inter-epoch intervals of nonhomogeneous
Poisson processes, which can be regarded as spacings of record values. Choosing𝑚1 = · · · = 𝑚𝑛−1 = −1,
GOS can be viewed as record values (cf. [16,17]). Now, one can compare the 𝑝-spacings of record values
arising from different distributions in hazard ratio orders. Let𝑉∗

(1) , 𝑉
∗
(2) , . . . and𝑊∗

(1) , 𝑊
∗
(2) , . . . represent

the 𝑝-spacings of record values based on 𝐹 and 𝐺, respectively. If the conditions in part (ii) of Theorem
3.1 are satisfied, we then have

𝑉∗
(𝑟 ) ≤hr 𝑊

∗
(𝑟 ) .

Acknowledgment. The author is grateful to the reviewers for several constructive comments which lead to an improved version
of the manuscript.
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