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Spatially averaged, vegetated, oscillatory
boundary and shear layers
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Oscillatory boundary layers over flat and rippled seabeds are well described in the
literature. However, the presence of protruding vegetation stems has received no
theoretical or experimental attention. The present work establishes an analytical constant
viscosity model akin to the Stokes oscillatory boundary layer solution and a nonlinear
varying-viscosity numerical model with a turbulence closure. The two models are used to
describe the importance of vegetation and free stream velocity characteristics on spatially
averaged oscillatory boundary layers: their friction factors, thickness and phase leads over
the free-stream velocity. The models are periodic in time and resolve boundary and shear
layers over the vertical, contrary to past efforts applying two-layer models. The models
are extended to investigate the importance of finite wavelengths with steady streaming
stresses and their associated mean velocity profile. Steady streaming is quantified both
for the near-bottom streaming within the canopy and for the streaming in the shear
layer above the canopy. Finally, akin to theoretical and experimental works on mean
flows over unvegetated and flat seabeds due to oscillatory and nonlinear free-stream
velocities, the numerical model investigates varying degree of nonlinearity for velocity-
and acceleration-skewed velocity signals, and it is identified that the presence of vegetation
stems gives rise to an additional contribution to the horizontal momentum balance which
is not present for unvegetated conditions. Finally, it is discussed how the presence of a free
surface, contrary to purely oscillatory conditions, alters the horizontal momentum balance
within and above the canopy.

Key words: coastal engineering

1. Introduction

Large-scale coastal morphology is a consequence of the sediment transport fields and
associated erosion and deposition. In the classical application of morphological models,
without the presence of vegetation, the long-term migration of the coastline is typically
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associated with the long-shore sediment transport, while short-term coastline oscillations
are associated with the cross-shore sediment transport (Fredsøe & Deigaard 1992; Komar
1998). In both cases, the layman’s description is that processes in the wave boundary layer
stir up the sediment, while a mean current advects the sediment. This understanding of
sediment stirring and advection mechanisms has been condensed into engineering models
for large-scale morphological models (Lesser et al. 2004; van Rijn 2007; van der A et al.
2013).

The practical engineering models have their applicability limited to sandy coastal
environments (with and without bedforms), so their applicability for vegetated habitats is
questionable irrespective of the considerable academic and practical engineering interest
in computing their short- and long-term morphodynamic processes (The World Bank 2017;
Bridges et al. 2018; EcoShape 2020; Morris et al. 2021). Efforts with large-scale pilot
studies, field and laboratory experiments have provided valuable information, but there are
still several outstanding questions that need to be researched before practical engineering
models describing morphodynamics in vegetated habitats reach the same maturity as those
for unvegetated regions.

The advective mean flow field in vegetated habitats is qualitatively different from
unvegetated regions, where the latter consists of a strong undertow within the surf zone
with and without breaker bars (Dyhr-Nielsen & Sørensen 1970; Deigaard & Fredsøe 1989;
Ting & Kirby 1994; Jacobsen & Fredsøe 2014; Fernandez-Mora et al. 2016; Van der
Zanden et al. 2017). The main differences arising from a canopy are (i) weak in-canopy
mean velocities, (ii) a strong mean streaming velocity on top of the canopy, positive in
the wave propagation direction and (iii) a return flow between the top of the canopy and
the still water level (Luhar et al. 2010; Abdolahpour, Hambleton & Ghisalberti 2017),
which means that strong advection of sediment near the bed by an undertow, as known
from sandy beaches, is suppressed by the vegetation, and this impacts the mean sediment
transport patterns. On the other hand, it has recently been documented that the in-canopy
turbulence results in earlier initiation of sediment transport than for an unvegetated seabed
(Tinoco & Coco 2014, 2018).

Finally, focusing on the bottom boundary layer dynamics, the literature has a
wealth of documentation on the oscillatory and wave boundary layers where friction
factors, laminar-to-turbulent transition and hydraulically smooth and rough conditions are
extensively studied (Bagnold 1946; Grant & Madsen 1979; Sleath 1987; Jensen, Sumer
& Fredsøe 1989; van der A, Scandura & O’Donoghue 2018; Dunbar et al. 2023a,b).
Furthermore, the mean streaming processes due to finite wavelengths and nonlinear
oscillatory free stream conditions are also well understood over a horizontal seabed
(Longuet-Higgins 1957; Trowbridge & Madsen 1984; Brøker 1985). The works, however,
are limited to flat surfaces with possibly a shallow layer of protruding roughness elements
(rocks and ripples). On the other hand, the author has found no works related to the
oscillatory bottom boundary layer in the presence of vertically protruding vegetation stems
and how these affect friction factors, boundary layer thickness, phase leads and mean
wave-induced flow due to either finite wavelengths or nonlinear free-stream velocities.

Neshamar et al. (2023) presented a description of the in-canopy bulk oscillatory velocity
and showed that the phase lead of the in-canopy bulk velocity over the free stream velocity
is significant. They applied a two-layer model approach to evaluate the bulk in-canopy
velocity and free-stream velocity, where the former is defined as the average over the height
of the stems. Given the averaging over the stems, their model captures neither details of
the bottom boundary layer and shear layer dimensions nor the associated friction factors.
Knowing that the bottom shear stress typically leads over the near-bed velocity above
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Vegetated oscillatory boundary layers

the boundary layer (Jensen et al. 1989; Fredsøe et al. 2003) suggests that a significant
phase lead of the bottom shear stress to the free-stream velocity shall be expected by the
introduction of vegetation. This increase in phase lead will subsequently affect sediment
transport and its ability to escape from the canopy through vertical diffusion. Regarding
the bottom boundary layer, Jacobsen, Van Gent & Fredsøe (2017, their Appendix A) made
the qualitative observation that oscillatory boundary layers of constant viscosity – for the
same near-bed velocity – are thinner within a filter layer of crushed rocks compared with
a case without the filter layer. The case without a porous layer on top of the seabed will
be referred to as the unvegetated boundary layer throughout. The qualitative observation
by Jacobsen et al. (2017) effectively means that the friction factor based on the near-bed
velocity will be larger in a crushed rock layer or any other drag-dominated structure such
as vegetation stems, ultimately meaning that present-day friction factor diagrams are not
applicable for the determination of loading on the sedimentary seabed.

The present work offers a theoretical description of vegetated oscillatory boundary
layers based on (i) a linearised analytical solution akin to the Stokes oscillatory wave
boundary layer and (ii) a turbulent one-dimensional numerical solution periodic in time.
The work extends the solution to the nonlinear, oscillatory bulk in-canopy flow by
Neshamar et al. (2023) from their two-layer model approach to a vertically resolved
solution including viscous effects in the bottom boundary layer and in the shear layer
on top of the canopy. This allows for the presentation of novel results with respect to
friction factors within canopies (and their deviation from the unvegetated counterparts),
boundary and shear layer thicknesses and the phase lags between shear stresses and the
in-canopy bulk velocity. The mathematical models and their verification are presented
in § 2. Subsequently, the bottom boundary layer characteristics such as friction factors,
boundary layer thickness and phase leads over the free-stream velocity are investigated
(§§ 3.1 and 3.2). The mean velocity profile due to finite wavelength effects (§ 3.3) and
nonlinear free stream velocities (§ 3.4) are also investigated. The work is concluded with a
discussion and conclusions.

2. Mathematical model

The mathematical model describes the viscous oscillatory flow in the presence of rigid
stems (see figure 1). The treatment as oscillatory means that ∂φ/∂x = ∂φ/∂y = 0 on any
quantity φ within and above the canopy (x and y are horizontal Cartesian coordinates)
when φ is averaged over a sufficiently large horizontal area. Here, ‘sufficiently large’ refers
to several stem spacings along both x and y in order to absorb local stem processes (flow
amplification, vortex shedding, etc.) in the averaged φ; however, it is not necessary to
average over larger areas scaled by, for instance, the wavelength since the external forcing
is purely oscillatory. The oscillatory flow in and above a canopy is then described by the
following dimensional form of the horizontal momentum equation (Neshamar et al. 2023,
combination of their equations (2)–(4)):

(
1 + CmN̂

d̂2π

4

)
∂

∂ t̂
û
n

= ∂ û0

∂ t̂
+ 1

n
∂

∂ ẑ

[(
ν̂ + ν̂t

) ∂ û
∂ ẑ

]
− 1

2
CDn−2d̂N̂|û|û. (2.1)

Here, û(ẑ, t̂) is the dimensional horizontal filter velocity, û0(t̂) is the dimensional
free-stream velocity (far above the canopy), t̂ is the dimensional time, ν̂ is the dimensional
kinematic molecular viscosity, ν̂t is the dimensional turbulent eddy viscosity and ẑ is the
dimensional vertical coordinate. Further, n = 1 − N̂d̂2π/4 is the porosity of the canopy,
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u0(t)

δw

Min/max of present
Instantaneous of present
Min/max of Neshamar et al. (2023)

hv

z

x

(a) (b)

Figure 1. Sketch of the oscillatory flow in a rigid canopy. Present viscous model is shown in blue, while the
two-layer model by Neshamar et al. (2023) is shown dashed red for comparison. (a) Model domain including
shear layer on top of the canopy. (b) Indication of the ‘infinite’ vegetation scenario with the oscillatory bottom
boundary layer.

N̂ is the number of stems per unit area, d̂ is the diameter of the circular stems, Cm is the
inertia coefficient and CD is the drag coefficient.

The dimensional quantities (marked by ˆ ) are made non-dimensional by the first
harmonic velocity amplitude, û1, and the cyclic frequency for the first harmonic, σ̂1 =
2π/T̂; T̂ is the regular wave period: u = û/û1, z = ẑ/â1 = σ̂1ẑ/û1, t = t̂σ̂1 and â1 = û1/σ̂1
is the wave orbital amplitude. The non-dimensional momentum equation then reads

ΓI
∂u
∂t

= ∂u0

∂t
+ ∂

∂z

[
1

Ren

(
1 + ν̂t

ν̂

)]
∂u
∂z

− ΓD|u|u, (2.2)

with the non-dimensional parameters in (2.2) defined as

ΓI = 1
n

(
1 + CmN̂

d̂2π

4

)
, ΓD = 1

2
CDn−2d̂N̂â1, Ren = nâ1û1

ν̂
= nâ2

1σ̂1

ν̂
. (2.3a–c)

Here, ΓI describes the effective oscillating mass, ΓD describes the importance of drag
and Ren is the Reynolds number based on the free-stream velocity. In the present work,
N̂ = N̂(z), which is used to model canopies with finite height. Neshamar et al. (2023)
reduced the complexity of (2.2) by vertical integration, thereby removing the z-dependency
of the velocity solution, while the novelty of the present work is to retain the z-dependency,
whereby viscous effects in the bottom boundary and shear layers are included.

It was shown in Neshamar et al. (2023) that the horizontal oscillatory pressure gradient
in the momentum equation can be substituted by the temporal derivative of the free-stream
velocity (∂u0/∂t in (2.2)) both within and above the canopy. This substitution allows for
modelling of both canopies of finite height (N̂ = N̂(z)) and flow close to the bottom
boundary layer within the canopy for which the top of the canopy has no effect on the
results (N̂ /= N̂(z)), i.e. the free stream does not have to be explicitly modelled. The latter
scenario is referred to as ‘infinite canopy height’ throughout the remainder of this work
(see figure 1).

First, a summary of the solution to the bulk canopy velocity by Neshamar et al. (2023)
is presented in § 2.1. The bulk canopy solution is applied in the derivation of the analytical
solution to the deficit velocity within a canopy of infinite height (§ 2.2), which is followed
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Vegetated oscillatory boundary layers

by the solution for turbulent oscillatory flow in a canopy of finite height (§ 2.3). Validation
of the numerical model is presented in § 2.4.

2.1. Two-layer solution

Neshamar et al. (2023) integrated (2.2) over the canopy height hv = ĥv/â1 and obtained
a momentum equation for the bulk in-canopy velocity U(t). They validated the model
against laboratory measurements with free-stream velocity amplitudes up to 1.0 m s−1

and an oscillating period of 6.0 s. They showed that friction at the top of the canopy is
important for the quantification of the phase of the in-canopy flow, but it has no influence
on the in-canopy velocity magnitude. Hence, the present work neglects the effect of
friction at the top of the canopy and the height-averaged momentum equation reads

ΓI
∂U
∂t

= ∂u0

∂t
− ΓD|U|U. (2.4)

Here, U(t) is the average of u over hv , and U(t) is independent of z

U(t) = 1
hv

∫ hv

0
u(z, t) dz, (2.5)

where U(t) and u(z, t) are illustrated as dashed red and full blue lines in figure 1. Neshamar
et al. (2023) solved (2.4) in the frequency domain with free-stream and in-canopy
velocities defined as

u0 = 1
2

M∑
m=1

[umeimt + c.c.], U = 1
2

M∑
m=1

[Umeimt + c.c.], (2.6a,b)

where i = √−1 is the imaginary unit, um and Um are non-dimensional amplitudes for
the mth harmonic, M is the number of included harmonics and c.c. means its complex
conjugate. Neshamar et al. (2023) determined U for (i) a linearised drag formulation and
M = 1 as well as for (ii) the full nonlinear system; however, only the sinusoidal version
with M = 1 is applied in § 2.2.

The definition of U in (2.6a,b) allows for definition of the quantity Ren|U1|2, which can
be used to compare solutions between canopies with different free-stream conditions (e.g.
û1) and different canopy characteristics (ΓD and ΓI), since Ren|U1|2 states the in-canopy
Reynolds number

Ren|U1|2 = nû2
1/σ̂1

ν̂

|Û1|2
û2

1
= n|Û1|2/σ̂1

ν̂
(2.7)

as based on the in-canopy first harmonic velocity amplitude Û1 rather than the first
harmonic free-stream velocity amplitude û1.

2.2. Analytical solution
The near-bottom oscillatory boundary layer is first described analytically, where the
solution is derived under the following assumptions: (i) the viscosity is constant, i.e.
ν̂t/ν̂ ≡ 0, and the viscosity is only included through the magnitude of Ren containing
ν̂. (ii) The bottom boundary layer thickness is much smaller than hv , so the canopy can
be assumed infinitely tall (see figure 1b). The solution is found by considering the deficit
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in-canopy velocity ud = u − U that fulfils the following momentum equation which is
found by subtracting (2.4) from (2.2):

ΓI
∂ud

∂t
= ∂

∂z

[
1

Ren

(
1 + νt

ν

)]
∂ud

∂z
− ΓD (|u|ud − �uU) . (2.8)

Here, �u = |U| − |u| and ∂U/∂z = 0; U is treated as known from the solution to (2.4)
and (2.6a,b) with M = 1 (see Neshamar et al. 2023, for details). The drag term in (2.8)
is reordered in terms proportional to ud and U, respectively, since the former contributes
to the homogeneous solution and the latter to the particular solution after appropriate
linearisation.

An analytical sinusoidal solution to (2.8) of the form

ud(z) = 1
2 [ud,1(z)eit + c.c.] (2.9)

is sought. The nonlinear terms |u|ud and �uU must be linearised to obtain an analytical
solution. It is identified that �u ≡ 0 for z → ∞, since the deficit velocity per definition
vanishes for z → ∞. On the other hand, �u is finite close to the bed due to viscous effects.
Therefore, the z-axis is divided into two zones (0 ≤ z < zI and z ≥ zI), and |u| and �u
are linearised separately for each of these two zones, whereby the linearised |u| and �u
become discontinuous at z = zI . At the upper zone,

�u = 0, for z ≥ zI, (2.10)

is the correct form because |U| = |u| for z → ∞. This form also prevents the drag from
the bulk flow on the stems being included more than once in the upper zone (z ≥ zI) in
(2.4) and (2.8). Since u = U = (U1 exp[it] + c.c.)/2 for z → ∞, it is proposed to adopt
the root-mean-square value of u in the upper zone for |u|

|u| =
√

2
2

|U1|, for z ≥ zI . (2.11)

The approach of using the root-mean-square velocity (time and space invariant) for the
absolute velocity is regularly applied in the linearisation of quadratic friction or drag terms
(e.g. Madsen, Poon & Graber 1988; Chen & Zhao 2012).

In the lower zone, both |u| and �u are finite, and it is assumed that they both have a
triangular shape over z and still scale with |U1|. Consequently, averaging the triangular
shape over z ∈ [0, zI] and applying the root-mean-square approach results in the following
linearisation:

|u| = �u =
√

2
4

|U1|, for 0 ≤ z < zI . (2.12)

The interface level, zI , is naturally within the boundary layer, so it is defined as O(1/|λ−|),
where λ− is the shape coefficient characterising the velocity profile for 0 ≤ z < zI ,
and λ− is defined below in (2.16). The interface level, however, does not have any
other physical meaning besides a handy separation of the stem drag from the deficit
velocity into two regions within and above the viscous boundary layer. The exact value
of zI will be specified throughout the manuscript, but it is expected to take a value
of the order of δw, where δw is the bottom boundary layer thickness, as indicated in
figure 1.
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Vegetated oscillatory boundary layers

In the following, solutions for 0 ≤ z < zI will be marked by a superscript −, and
solutions for z ≥ zI will be marked by a superscript +. Inserting (2.6a,b), (2.9) and
(2.10)–(2.12) in (2.8) results in the following ordinary differential equations in u±

d,1(z):

iΓIu−
d,1 = 1

Ren

∂2u−
d,1

∂z2 − ΓD

√
2

4
|U1|(u−

d,1 − U1), for 0 ≤ z < zI, (2.13)

and

iΓIu+
d,1 = 1

Ren

∂2u+
d,1

∂z2 − ΓD

√
2

2
|U1|u+

d,1, for z ≥ zI, (2.14)

with solutions of the form

u±
d,1 = c±

0 + c±
1 exp[−λ±z] + c±

2 exp[λ±z], (2.15)

and the shape coefficients λ±

λ± =
√

Ren

(
iΓI +

√
2

β± ΓD|U1|
)

, with Re[λ] > 0, β− = 4, β+ = 2. (2.16)

The coefficients c±
n for n = 0, 1, 2 are found by fulfilling the no-slip viscous bottom

boundary condition, matching interface conditions at z = zI and a vanishing deficit
velocity, as z → ∞; see Appendix A for their derivation. For the case of unvegetated
oscillatory boundary layers (ΓD = 0 and ΓI = 1), the dimensional shape coefficient reads

λ̂± = λ
±

â1

N̂=0=
√

σ̂1

ν̂
i, (2.17)

where the last term is recognised as the inverse of the Stokes constant for an unvegetated
laminar oscillatory boundary layer (Jensen et al. 1989).

The spatially averaged bed shear stress based on the spatially averaged in-canopy
velocity now reads

τb

ρ
= 1

Ren

∂ud

∂z
= λ

−

Ren

(
c−

2 − c−
1
)

exp[it], (2.18)

for which two friction factors are defined based on the first harmonic velocity amplitudes
for the free-stream and in-canopy solutions, respectively,

fw = 2 max |τb/ρ|
|u1|2 , Fw = 2 max |τb/ρ|

|U1|2 . (2.19a,b)

For a constant Ren and increasing N̂, it is clearly identified from (2.3a–c) that both ΓI
and ΓD increase, and that ΓD will increase faster than ΓI . Neshamar et al. (2023) provided
a predictive formulation for |U1| as a function of ΓD and ΓI , and it provides the information
that ΓD|U1| increases with increasing ΓD, i.e. the in-canopy velocity reduces slower than
the drag resistance increases (everything else the same). This means that the real part
of λ± grows with increasing N̂ (Ren constant) and arg λ± goes towards zero. The latter
means that the phase lag between the in-canopy flow and the shear stress tends to zero for
increasing ΓD, and since U has an increasing phase lead over u0 with increasing ΓD (see
Neshamar et al. 2023, and figure 7), this means that τb will lead over u0 by more than 45◦
for all ΓD and ΓI .
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The increase in the real part of λ±, on the other hand, effectively means that the
oscillatory boundary layer is squeezed in size, since u±

d,1(z) has λ± within the exponential.
The thinning means increasing Fw, since the same magnitude of U1 of the in-canopy
velocity will lead to an increase in the spatially averaged bottom shear stress for increasing
N̂. The thinning is a consequence of the local momentum balance, where acceleration is
either balanced by shear or drag, so a steeper velocity gradient is required to outweigh the
drag on the stems at any position z within the boundary layer. A steeper gradient means a
decreasing boundary layer thickness.

The observations in the preceding paragraphs were based on a direct interpretation of
the analytical solution, observations which will be quantified in § 3.1.

2.3. Numerical model
The numerical solution is found on a computational grid discretised along z and being
periodic in time as the second dimension. The nonlinear and turbulent numerical solution
uses ν̂t/ν̂ = ν̂t(z, t)/ν̂, the evaluation of which is described in § 2.3.1. The numerical
procedure for the eddy viscosity and momentum equation are described in § 2.3.2.

2.3.1. Eddy viscosity model
The spatially averaged eddy viscosity, ν̂t/ν̂, is assumed to be sufficiently accurately
captured by the k − ω turbulence model with a free-stream stabilisation term for ω (Wilcox
2006; Fuhrman, Schløer & Sterner 2013) and production terms due to the presence of
a porous medium (Zhai & Christensen 2022; Zhai, Furhman & Christensen 2024). The
non-dimensional k-equation (k̂ = ku2

1) then reads

∂k
∂t

= 1
Ren

ν̂t

ν̂

(
∂u
∂z

)2

+ ∂

∂z

([
n

Ren
+ σ ∗ k

ω

]
∂k
∂z

)
+ β∗(k∞ω∞ − kω), (2.20)

and the non-dimensional ω-equation (ω̂ = ωσ1) reads

∂ω

∂t
= α

Ren

ω

k
ν̂t

ν̂

(
∂u
∂z

)2

+ σd

ω

∂k
∂z

∂ω

∂z
+ ∂

∂z

([
n

Ren
+ σ

k
ω

]
∂ω

∂z

)
+ β(ω2

∞ − ω2). (2.21)

The local processes with individual vortices being shed from the stems are consequently
omitted in the present spatially averaged approach, however, it is considered a sufficiently
accurate method for this first description of the effect of rigid stems on the oscillatory
boundary layers over wide ranges of free-stream conditions and canopy characteristics
(height and density).

Zhai & Christensen (2022) and Zhai et al. (2024) derived (2.20) and (2.21) for the case
of flow in loose rock layers with the production terms k∞ and ω∞

k∞ = αk
1 − n√

n
|u|2 and ω∞ = αω

d̂/â1

(1 − n)1.5
√

n
|u|. (2.22a,b)

Here, the present work introduces the coefficients αk = αk(n) and αω = αω(n), which are
calibrated against experimental data sets in § 2.4.2, since it is unlikely that k∞ and ω∞ are
identical for loose rock layers (low porosity) and rigid stems (high porosity).
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Vegetated oscillatory boundary layers

The non-dimensional eddy viscosity becomes (Wilcox 2006; Fuhrman et al. 2013)

ν̂t

ν̂
= Ren

n
k
ω̃

with ω̃ = max
(

ω,
Clim√

β∗

∣∣∣∣∂u
∂z

∣∣∣∣
)

. (2.23)

In (2.21), σd = σd0 if 0 < ∂k/∂z∂ω/∂z, otherwise σd = 0. The remaining closure
coefficients are α = 13/25, β0 = 0.0708, β∗ = 0.09, σ = 1/2, σ ∗ = 3/5, σd0 = 1/8,
Clim = 7/8.

Following Fuhrman, Dixen & Jacobsen (2010); Fuhrman et al. (2013), ∂k/∂z = 0 is
applied at both the bottom and the top of the computational domain, and ∂ω/∂z = 0 at
the top in the case of unvegetated boundaries, which is applied here as well. A Dirichlet
boundary condition for ω is used at the bed

ω = Ren

n
u2

f SR, for z = 0, (2.24)

with the roughness function of the form

SR =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
200
k+

N

)2

, for k+
N ≤ 5,

KR

k+
N

+
[(

200
k+

N

)2

− KR

k+
N

]
exp[5 − k+

N ], for 5 < k+
N .

(2.25)

Here, KR = 180. Equations (2.24) and (2.25) allow for solutions to hydraulically
smooth, transitional and rough boundaries. The quantity k+

N is the surface roughness
in wall coordinates. The two-equation turbulence model, however, does not allow for
laminar-to-turbulent transition, where additional equations are required (Williams &
Fuhrman 2016). The present work only investigates the hydraulically smooth oscillatory
boundary layers.

2.3.2. Numerical procedure
The momentum equation and turbulence closure ((2.2), (2.20) and (2.21)) are solved on
a computational domain that is periodic in time (φ(z, t) = φ(z, t + Td)), where φ is any
of the quantities u, k and ω. Here, Td is the repetition time, which for regular waves is
Td = 2π. The gradient and Laplacian operators along z are discretised with a 3-point
central difference stencil on a non-equidistant grid. The combined matrix systems are
solved in a segregated fashion with the use of under-relaxation (Ferziger & Peric 2002)
until convergence is reached for u, k, ω and τb. The numerical procedure is custom
built in Matlab� for the present study. The near-bed resolution, �z, is chosen such that
�z+ = �z

√
max |τb/ρ|Ren ≤ 1, where �z+ is given in near-wall coordinates.

The free-stream velocity u0 will be described by the velocity- and acceleration-skewed
near-bed velocity following Abreu et al. (2010)

u0 = uw

√
1 − r2 sin ωt + r sin φ/(1 + √

1 − r2)

1 − r cos(ωt + φ)
, (2.26)

where 0 ≤ r ≤ 0.75 gives the degree of velocity asymmetry for φ = 0 and acceleration
skewed for φ = −π/2 and uw = (max u0 − min u0)/2. Sinusoidal free-stream conditions
are achieved for r = 0. For r > 0, uw /= u1, so uw is specified such that the resulting u1
from the decomposition of u0 by (2.6a,b) yields the target Ren.
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Figure 2. (a) Comparison between the friction factor for unvegetated, smooth turbulent oscillatory boundary
layers from experiments and the present numerical model. (b) Comparison between theoretical, experimental
and numerical predictions of the phase lead ϕb. The limits of laminar and fully turbulent oscillatory boundary
layers at Ren = 1.5 × 105 and Ren = 106, respectively, are taken from Jensen et al. (1989).

2.4. Validation of the numerical model

2.4.1. Validation – smooth oscillatory boundary layer
The numerical model is first validated against experimental data for unvegetated wave
friction factors over hydraulically smooth beds; see figure 2(a). The experimental data
sources are Kamphuis (1975), Hino et al. (1983), Sleath (1987), Jensen et al. (1989) and
Sumer, Laursen & Fredsøe (1993). In the numerical simulations, a constant wave period
of T̂ = 10 s is used, and a1 is changed to achieve the required Ren with n = 1. It is seen
that the numerical predictions match the experimental data perfectly for the turbulent
oscillatory boundary regime (Ren > 106). The k − ω model also predicts the laminar
regime up to Ren < 1.5 × 105 with acceptable accuracy, while the laminar–turbulent
transition is not captured (Ren ∈ [1.5 × 105, 106]). The reduced accuracy in the transition
from laminar to turbulence oscillatory boundary layers is expected, because additional
closure terms or equations are required in the turbulence closure (Wilcox 2006; Williams
& Fuhrman 2016). The omission of the additional closure terms or equations is justified by
the lack of experimental data required to tune the spatially averaged laminar-to-turbulent
transition in rigid canopies. As will be seen below, experimental data were required to
propose the solution coefficients k∞ and ω∞.

A comparison between the experimental data by Jensen et al. (1989), the theoretical
model by Fredsøe (1984) and numerical results for the phase lead ϕb of τb over U is
depicted in figure 2(b). The model captures the pure laminar and the fully turbulent
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Case N̂ T̂ |û1| |û2| |û3| Cm CD Ren
(m−2) (s) (m s−1) (m s−1) (m s−1) (−) (−) (×103)

S1 579 6.0 0.166 0.003 0.008 1.00 1.30 25.5
S2 579 6.0 0.366 0.006 0.012 1.00 1.30 124.2
S3 579 6.0 0.509 0.006 0.015 1.00 1.30 239.7
S4 579 6.0 0.730 0.008 0.017 1.00 1.30 492.4
S5 579 6.0 0.952 0.010 0.019 1.00 1.30 838.9
D1 1736 6.0 0.166 0.003 0.008 1.00 2.30 23.9
D2 1736 6.0 0.366 0.005 0.015 1.00 2.30 116.1
D3 1736 6.0 0.508 0.007 0.018 1.00 2.30 223.7
D4 1736 6.0 0.726 0.009 0.023 1.00 2.30 456.6
D5 1736 6.0 0.960 0.009 0.034 1.00 2.30 796.9

Table 1. The characteristics of the ten validation cases based on Neshamar (2021) and Neshamar et al.
(2023). In all cases, ĥv = 0.13 m and d̂ = 8.3 mm.

cases, however, the transition to turbulence occurs at too low values of Ren. This is again
explained by the lack of modified closure terms in the turbulence closure to correctly
describe laminar-to-turbulent transition.

2.4.2. Validation – vertical velocity profile
An experimental data set containing spatially averaged in-canopy velocity profiles from the
Aberdeen Oscillating Flow Tunnel (Neshamar 2021; Neshamar et al. 2023) was applied
for the validation of the numerical model. The experimental data set consists of five
free-stream velocity amplitudes and two stem densities, giving a total of ten data sets
(see table 1). The velocity profiles were measured over the vertical from 10 mm from the
bottom through the shear layer on top of the canopy. The velocities were recorded at a
number of horizontal locations within the canopy and a spatially averaged velocity was
computed (see Neshamar et al. 2023, for details). The large distance from the bed to the
first measuring point means that no bed shear stresses or bottom boundary layer properties
could be reported.

The measured free-stream velocity signal was applied as forcing with Cm = 1 for
all cases. A value of CD = 1.30 was used for the sparse canopies (cases S1–S5), and
CD = 2.3 was used for the dense canopies (cases D1–D5) as per the experimental findings.
Neshamar (2021) reported that the maximum turbulent kinetic energy at the top of the
canopy, albeit somewhat varying, can be approximated as k � 0.04 (k̂ � 0.04û2

1) under
the assumption of isotropic turbulence.

The shape of the velocity profiles in the shear layer and the level of the turbulent kinetic
energy on top of the canopy were used to calibrate the two closure coefficients αk and αω

αk = 2
3

1√
1 − n

so k∞ = 2
3

√
1 − n√

n
|u|2, (2.27a)

and

αω = 28
3

1
1 − n

so ω∞ = 28
3

√
1 − n
d
√

n
|u|. (2.27b)

The source terms k∞ and ω∞ vanish for n = 1 (N̂ = 0 stems m−2).
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The comparison between the measured and simulated velocity profiles are shown
in figure 3 for the instantaneous maximum and minimum velocities (blue lines) and
the root-mean-square velocity ûrms (red lines). Generally, the root-mean-square velocity
profiles are captured well and maximum turbulent kinetic energy is predicted within
0.03–0.06, which falls within the accuracy of the assumption of isotropic turbulence and
the turbulence measurements for each case as reported in Neshamar (2021). The numerical
results for the minimum and maximum velocity profiles, however, differ somewhat from
the experimental data within the canopy. One explanation could be the spatial averaging
of the experimental data between discrete measuring points as applied by Neshamar et al.
(2023), since individual minimum and maximum values within the canopy will affect
the extremes (minimum and maximum) to a larger extent than the evaluation of the
root-mean-square velocities.

The numerical results for the near-bottom boundary layer thickness are O(1–3) mm, so
too thin to be captured in the experimental campaign. The boundary layer thickness, δ̂w,
was evaluated following (3.1), as defined below.

The phase lead of the first harmonic in-canopy velocity over u0, ϕu, is presented in
figure 4 for the cases S2, S4, D2 and D4. Generally, the variation is satisfactory, with
some discrepancy on top of the canopy for S4 and D4, and within the canopy for D2 and
D4. The discrepancy is less than 3◦ and generally within the expected accuracy.

2.4.3. Summary
The present numerical model can capture the laminar and turbulent smooth oscillatory
boundary layer friction factors in the case of no vegetation. Furthermore, the model can
capture the turbulent velocity profile within a canopy as well as the velocity magnitudes
and phase lags in the canopy shear layer. The model is considered valid for the investigation
of the oscillatory vegetated bottom boundary and shear layers in the presence of rigid
stems.

2.5. Canopy properties
A constant set of canopy properties is used throughout, unless otherwise stated:
d̂ = 8.3 mm, N̂ = {185, 370, 739, 1479} stems m−2, and associated porosities of n =
{0.99, 0.98, 0.96, 0.92}. Finite and infinite canopy heights, hv , are investigated, and hv

or ĥv will be specified in each section. The inertia coefficient is set to Cm = 1, as
applicable for large Keulegan–Carpenter numbers (Sumer & Fredsøe 1999). Finally, the
drag coefficient as a function of N̂ reads (Etminan, Lowe & Ghisalberti 2019; Neshamar
et al. 2023)

CD = n2CD,c(
1 − d̂

√
N̂/2

)2
. (2.28)

Here, CD,c � 1.1 is the drag coefficient based on the constricted velocity, and (2.28)
converts CD,c to a value of CD compatible with the use of the spatially averaged

filter velocity in the momentum equation ((2.2)–(2.3a–c)). The term d̂
√

N̂/2 assumes a
staggered stem arrangement with identical spacing in both horizontal directions.
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Figure 3. Comparison between experimental data by Neshamar et al. (2023) (markers) and present numerical
model. Minimum (blue, negative), maximum (blue, positive) and root-mean-square (red, positive) velocities
are evaluated from both experiments and the present model. (a) Case S1. (b) Case S2. (c) Case S3. (d) Case
S4. (e) Case S5. ( f ) Case D1. (g) Case D2. (h) Case D3. (i) Case D4. ( j) Case D5.

3. Results

3.1. Constant viscosity solution
In this section, the analytical solution is used to gain an understanding of the key physical
processes in vegetated oscillatory boundary layers. The analytical model is also compared
with the numerical solution for ν̂t/ν̂ = 0 and zI = 1/|λ−| with justification of the latter
choice in § 3.3.1. A wave period of T̂ = 10 s is used for all simulations. Only infinite
vegetation height is considered. The height of the numerical domain is 0.10 m and chosen
to be much higher than the bottom boundary layer thickness.

The effect of N̂ on the in-canopy velocity profile is depicted in figure 5 for Ren = 5 ×
104. The analytical model has an almost perfect match with the numerical predictions for
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Figure 4. The phase lead ϕu of u(z) over the free-stream velocity u0. Experimental data from Neshamar et al.
(2023). (a) Case S2. (b) Case S4. (c) Case D2. (d) Case D4.

N̂ = 185 stems m−2 (figure 5a), while minor discrepancies appear for larger values of
N̂. These discrepancies are most noticeable in the part of the oscillatory boundary layer,
where the analytical model shows a slightly stronger overshoot of |U1| compared with the
numerical model, which lacks this feature; the overshoots practically disappear in both
models for increasing ΓD. Here, the overshoot is defined as the occurrence of max u >

max u0, i.e. the envelope of the velocity is largest close to the bottom. On the other hand,
the overshoot exists for both laminar and turbulent unvegetated oscillatory boundary layers
(Jensen et al. 1989) and turbulent boundary layers affected by external turbulence (Fredsøe
et al. 2003), so the suppression of the overshoot in the oscillatory vegetated boundary
layer is ascribed to stem drag. This also explains why the overshoot is still present for
N̂ = 185 stems m−2 with ΓD = 0.22, which is in the inertia-dominated flow regime for the
canopy (Neshamar et al. 2023). Furthermore, there are slight phasing differences between
the analytical and numerical models which are likely due to the respectively linearised and
nonlinear treatment of the drag resistance.

The velocity profile also illustrates that the in-canopy velocity amplitude U1 reduces for
increasing N̂ (all with the same free-stream velocity), while the near-bed velocity gradients
practically remain constant. This yields friction factors that are fw = {8.9, 8.7, 8.2, 7.1} ×
10−3, so τb only decreases by 20 % from N̂ = 185 stems m−2 to N̂ = 1479 stems m−2,
even though the in-canopy velocity decreases by 40 %. The relatively small decrease in τb
is due to the simultaneous decrease in oscillatory boundary layer thickness for increasing
N̂ (see figure 5 and § 2.2).

The velocity profiles do show a phase difference between the two models, which is most
prominent for small values of u. The cause of this is the pure sinusoidal analytical solution
compared with nonlinear temporal variation caused by the drag term in the numerical
solution; this is illustrated in figure 6 at four distances from the bed. It is also noticed
that, in the time series closest to the bed, there is a perfect match of phase and amplitude,
which explains the predictive power of the analytical model as to the friction factors, see
discussion below.

Simulations were performed for Ren ∈ [103, 2 × 106] and the four canopies to allow for
a qualitative discussion on the importance of N̂, however, the results should not be applied
quantitatively, since transition to turbulence likely occurs for values of Ren smaller than the

999 A33-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.697


Vegetated oscillatory boundary layers

0

0.02

0.04
z,

 (
–
)

δw

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0
0

0.02

0.04

u, (–)

0

0.02

0.04

z,
 (

–
)

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0

u, (–)

0

0.02

0.04
Numerical
Analytical
±|U1|-range

(a) (b)

(c) (d)

Figure 5. The in-canopy velocity profiles from numerical and analytical constant viscosity models for
Ren = 5 × 104. Panels show: (a) N̂ = 185 stems m−2, ΓD = 0.22; (b) N̂ = 370 stems m−2, ΓD = 0.47;
(c) N̂ = 739 stems m−2, ΓD = 1.07; (d) N̂ = 1479 stems m−2, ΓD = 2.56. The boundary layer thickness,
δw, as computed by (3.1) is shown by a dash-dotted horizontal line.

transition value for unvegetated oscillatory boundary layers (at Ren = 1.5 × 105 following
Jensen et al. 1989). The friction factors fw and Fw are depicted in figure 7(a,b) as a function
of Ren and Ren|U1|2, respectively. It is seen that fw is nearly independent of N̂, and the
solution for N̂ = 185 stems m−2 is practically identical to that of the unvegetated Stokes
oscillatory boundary layer solution: fw = 2/

√
Ren with n = 1 (Fredsøe & Deigaard 1992).

Conversely, it is seen that Fw > 2/
√

Ren|U1|2, which means that τb in an unvegetated
oscillatory boundary layer is less than τb in a vegetated boundary layer for identical values
of U1; U1 = u1 for the unvegetated case. This potentially has important implications
for the onset and quantification of sediment transport in canopies. The value of fw is
overpredicted by 2 % (n = 0.99) which increases to an overprediction of 15 % (n = 0.92)
by the analytical model. On the other hand, the predictions of Fw by the analytical model
is within ±5 % of the numerical model for all values of n.

The increase in Fw with increasing N̂ is due to a thinning of the oscillatory boundary
layer. The thickness of the boundary layer is often defined to the level of the maximum
in the overshoot velocity (Jensen et al. 1989; Fredsøe et al. 2003), however, this is not a
useful definition in the present work, since the stems suppress the overshoot in the velocity
envelope. Consequently, δw is defined as follows:

δw = 2
√

2 × max
[∫ ∞

0

|ud(t)|
|U1| dz

]
, (3.1)

for both the analytical and numerical results. The motivation for (3.1) is that the integral of
the deficit velocity normalised by the in-canopy bulk velocity amplitude |U1| provides the
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Figure 6. Same as figure 5. Full lines are nonlinear, constant viscosity simulations and dashed lines are
analytical solutions. Panels show: (a) 1/|λ−| = 4.437 × 10−3; (b) 1/|λ−| = 4.4389 × 10−3; (c) 1/|λ−| =
4.272 × 10−3; (d) 1/|λ−| = 4.023 × 10−3.

displaced ‘height’ of water due to the viscous boundary layer as a function of time. The
maximum value of the displaced time-varying ‘height’ gives the boundary layer thickness.
The factor 2

√
2 ensures that δw for N̂ = 0 stems m−2 matches the boundary layer thickness

based on the overshoot maximum overshoot velocity in the laminar oscillatory boundary
layer solution to within 2.2 % (see Fredsøe et al. 2003, their equation (5.8)).

The comparison between the two models is shown in figure 7(c), and the analytical
model fairly accurately describes δw from the nonlinear and constant viscosity model. The
unvegetated boundary layer thickness is 3π/4

√
2/(Ren|U1|2) (Fredsøe et al. 2003), which

is larger than δw defined in (3.1) for all Ren|U1|2. For instance, δw decreases by a factor
of 2.8 from 185 to 1479 stems m−2 for Ren|U1|2 = 104. The analytical model overpredicts
the boundary layer thickness by up to 10 % for n = 0.99, which increases up to 20 % for
n = 0.92. The addition of |U1|2 in the analytical expression by Fredsøe et al. (2003) allows
for comparison for all values of n in a single plot, because it becomes a comparison of δw
based on the in-canopy bulk first harmonic velocity amplitude, U1, which is per definition
unity for the unvegetated case.

The phase lead τb over U, ϕb, and the phase lead of τb over u0, ϕ
u0
b , are depicted in

figure 7(d) as a function of ΓD. This shows a decreasing and increasing relationship,
respectively, as argued qualitatively in § 2.2. The value of ϕb = 45◦ for ΓD → 0 is identical
to the phase lead for unvegetated boundary layers. For large ΓD, ϕb is less than 10◦, which
is similar to the phase lead found for unvegetated, turbulent oscillatory boundary layers
(Jensen et al. 1989), while ϕ

u0
b tends towards 90◦.
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Figure 7. Comparison between analytical (lines) and numerical (markers) predictions of the constant viscosity,
vegetated oscillatory boundary layer. Panels show: (a) fw as a function of Ren, where the unvegetated solution is
fw = 2/

√
Ren; (b) Fw as a function of Ren|U1|2, where the unvegetated solution is Fw = 2/

√
Ren|U1|2; (c) δw

as a function of Ren|U1|2, where the unvegetated solution is 3π/4
√

2/(Ren|U1|2); (d) the phase lead of τb over
U (ϕb, full lines) and the phase lead of τb over u0 (ϕu0

b , dash-dotted lines) as a function of ΓD.

3.2. Smooth turbulent solution for sinusoidal free-stream velocity

3.2.1. Infinite canopy height
Simulations for the smooth, turbulent oscillatory boundary layers for the four values of
N̂ were performed for Ren ∈ [103, 107] for which the stems occupy the entire height of
the computational domain (infinite canopy height, see figure 1). The friction factors fw
and Fw are depicted as a function of Ren and Ren|U1|2, respectively, in figure 8(a,b).
The experimental data are the same as in figure 2. It is seen that fw for n = 0.99 exceeds
the unvegetated fw for Ren ∈ [104, 2 × 106] (a similar observation can be made for other
values of n and different Ren ranges). The explanation is due to (i) a reduction in the
phase lag ϕb,n=0.99 < ϕb,n=1 for the Ren-range and (ii) a small velocity reduction for
n = 0.99 compared with the decrease in phase lag: the decreasing phase lead wins over
the reducing in-canopy velocity in terms of the resulting bed shear stress. For a fixed Ren
and an increasing N̂, ΓD increases and the in-canopy velocity decreases, which explains
why the Ren-range for which the vegetated solutions show an fw larger than that for the
unvegetated case, reduces until the Ren-range finally vanishes for the case of n = 0.92.

It is also seen that Fw is equal to or larger than the experimental and unvegetated
values for identical Ren|U1|2, which means that τb cannot be evaluated based on in-canopy
velocities and unvegetated standard expressions for friction factors (e.g. Fredsøe &
Deigaard 1992; Soulsby 1997). If such an approach is nonetheless applied, τb can be
underestimated by a factor of 2–3.
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Figure 8. The smooth turbulent oscillatory boundary layer for infinite canopy height. (a) Value of fw as a
function of Ren. Experimental data are the same as in figure 2(a). (b) Value of Fw as a function of Ren|U1|2.
(c) Value of δw as a function of Ren|U1|2. (d) Values of ϕb (full lines) and ϕ

u0
b (dash-dotted lines) as functions

of ΓD.

The physical explanations for the quantitative values for fw and Fw are the thinning of
the boundary layer with Ren|U1|2 and the decrease of ϕb with increasing characteristic
drag, ΓD (see figure 8c,d), as also discussed for the constant viscosity case (§ 3.1). The
introduction of the turbulence closure results in a smaller phase lead as compared with the
laminar solution and ϕb is no longer uniquely determined by ΓD; the latter is ascribed to the
stem-generated turbulence. This is in line with the measurements by Fredsøe et al. (2003,
their figure 12), on oscillatory boundary layers with external grid-generated turbulence.
As for ϕ

u0
b this has a qualitatively similar behaviour to the constant viscosity results with

convergence towards 90◦ for large ΓD.
The validity range for the analytical and constant viscosity models from § 3.1 are

investigated for the spatially averaged bed shear stress; see figure 9. Here, the numerical
results for fw and Fw for the constant viscosity model (dashed lines) and for the turbulence
closure (full lines) are depicted, where it is seen that they deviate significantly from each
other for Ren > 104 or Ren|U1|2 > 5 × 103. The limits are only qualitative, since the
present numerical model does not include laminar-to-turbulent transition and experiments
are required for a firm transition limit; nonetheless, the results suggest that transition of the
turbulent oscillatory boundary layers in vegetation takes place at Reynolds numbers one
to two orders of magnitude lower compared with the transition over a smooth unvegetated
bed. The results also suggest that reasonable estimates for the friction factor fw can be
obtained for the vegetated case with the analytical model in § 2.2 for Ren < 104.

3.2.2. Finite canopy height
The same type of simulations as for the infinite canopy were performed for different
canopy heights. The canopy height was specified to ĥv ∈ [0, 0.60] m; therefore, to ensure
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Figure 9. Comparison of smooth oscillatory friction factors for constant viscosity model (dashed lines) and
turbulence model (full lines); both based on numerical solutions. Panels show (a) fw as a function of Ren and
(b) Fw as a function of Ren|U1|2.

that the description of the shear layer on top of the canopy was not affected by upper
boundary conditions, the computational domain was set to 2.0 m. The simulations were
performed for the four values of N̂, seven values of Ren/n ∈ [104, 107] and ten values of
the canopy height.

Firstly, the near-bottom friction factor and the boundary layer thickness ( fw and δw)
were compared with the case of infinite canopy height for identical free-stream conditions,
and it was found that there are only minor differences between finite and infinite canopy
heights as long as the canopy is sufficiently high: hv = ĥv/â1 > 0.1. Differences arise for
hv < 0.1, because the shear layer on top of the canopy (see e.g. figure 3) becomes so thick
that it affects the entire velocity profile within the canopy and, in turn, also affects the
quantitative measures for fw and δw relative to the infinite canopy results. On the other
hand, a relative canopy height of hv < 0.1 is so shallow that the assumption of spatial
averaging within the canopy might be violated, since vortical structures from above the
canopy (not resolved in the present work) can easily penetrate to the seabed between the
individual stems; vortical structures with dimensions similar to the thickness of the shear
layer. For this reason, no further analysis is performed as to the interaction between the
bottom boundary layer and the shear layer on top of the canopy. Instead, only results for a
single canopy height of ĥv = 0.50 m are considered for the remainder of this work, since
it is high enough to allow for studying the canopy shear layer and the associated mean flow
effects (§§ 3.3 and 3.4) independently of the bottom boundary layer.

The shear layer thickness is defined as follows:

δs = 2
√

2 × max
[∫ ∞

hv/2

|ud|
|u1| dz

]
. (3.2)

Notice the use of |u1|, which per definition is unity for the sinusoidal free-stream velocity.
Equation (3.2) requires a definition of the deficit velocity for the case of finite canopy
height, where the following was adopted:

ud =
{

u(z, t) − u(z = hv/2, t), for z < hv,

u(z, t) − u0(t), for z ≥ hv,
(3.3)
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Figure 10. The smooth turbulent oscillatory boundary layer of a canopy of finite height. Panels show (a) δw
(full line) and δs (dashed line) as a function of Ren|U1|2 and (b) ϕs (full line) and ϕ

u0
b (dashed line) as a function

of ΓD.

i.e. the deficit velocity above the canopy is relative to the free-stream velocity u0, while
the deficit velocity within the canopy is relative to the velocity at z = hv/2, i.e. the best
estimate for an in-canopy bulk velocity.

The boundary and shear layer thicknesses (δw and δs) are depicted in figure 10(a); δw

decreases as a function of Ren|U1|2 given the in-canopy drag, while δs = δ̂s/â1 remains
roughly constant, a weak dependency also observed for unvegetated smooth oscillatory
boundary layers (Fredsøe & Deigaard 1992, their chapter 2). The phase lead φ

u0
b and the

phase lead of u(z = hv) over u0, ϕs, are depicted in figure 10(b) and they are only a few
degrees apart for ΓD > 1. This means that the in-canopy velocity up to and including
the top of the canopy is practically in phase, which may have important implications for
the quantitative description of in-canopy sediment transport, because sediment can be
transported out of the canopy due to diffusion without any bottle necks due to changes
in diffusion and phase lead over the height of the canopy. The latter is hypothesised
because the sediment diffusion must be related to the turbulent production by the stems,
so when shear stress, in-canopy velocities and turbulent production are (almost) in phase,
an increased sediment transport potential is envisaged.

3.3. Steady streaming due to finite wavelength
Steady boundary layer streaming is the mean velocity driven by a period-averaged
wave-induced shear stress stemming from the time averaging of the multiplication of u0
and the oscillating vertical velocity w; the latter is caused by the time-varying growth and
collapse of the bottom boundary layer (Longuet-Higgins 1957)

〈τss〉
ρ

= −〈uw〉
n

. (3.4)

Here, n in the denominator is included, because 〈τss〉/ρ shall be based on the product
of pore velocities averaged over the unvegetated area; 〈·〉 means period averaging.
Equation (3.4) requires finite wavelengths, since w ≡ 0 for oscillatory flow, however, a
first approximation of 〈τss〉/ρ can be achieved by assuming a water depth, evaluating the
wave propagation speed from the linear dispersion relation and approximating w from the
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Figure 11. Value of 〈τss〉/ρ for a water depth of 2 m, and a period of T̂ = 10 s. (a) Value of 〈τss/ρ〉 as
a function of Ren|U1|2. Full lines: analytical solution (zI = 1/|λ−|). Markers: numerical, laminar solution.
(b) Value of 〈τss〉/ρ as a function of ΓD.

continuity equation (e.g. Fredsøe & Deigaard 1992, chap. 2)

w(z) =
∫ z

0

∂ud

∂x
dz = −1

c

∫ z

0

∂ud

∂t
dz, (3.5)

with w(0) = 0. The finite wavelength enters through the relationship ∂/∂x = −(1/c)∂/∂t;
c is the wave propagation speed. Combining (3.5) with the simulated u allows for an
approximation of 〈τss〉 for both infinite and finite canopy heights. Both the boundary and
shear layer streaming processes will be considered and both named ‘steady streaming’.

3.3.1. Laminar solution
The value of 〈τss〉/ρ above the oscillating bottom boundary layer is calculated with the
analytical and numerical models for a constant viscosity and infinite canopy height. For the
analytical model, the far-field vertical velocity amplitude w1 (complex valued) is derived
in Appendix A, whereby it directly follows that

〈τss〉
ρ

= −1
n
〈Re[U1eit]Re[w1eit]〉 = − 1

4n
[U1w∗

1 + U∗
1w1], for z → 0, (3.6)

where Re returns the real-valued part, the superscript ∗ means the complex conjugate
and the right-hand side returns the period-averaged value based on complex amplitudes.
The term τss is depicted in figure 11 as a function of Ren|U1|2 and ΓD. The comparison
shows that the analytical model can be used to reasonably predict 〈τss〉/ρ for a constant
viscosity. The analytical and numerical results are within 5 % to 20 % of each other, which
is considered reasonably accurate given the range in values.

The value of zI = 1/|λ−| was used in figures 5, 7 and 11, where limited sensitivity
to the interface level zI was observed for the velocity profiles, friction factor, boundary
layer thickness and phase leads. In the case of 〈τss〉/ρ, however, the solution is very
sensitive to zI , which is illustrated in figure 12 for zI = {1.0, 1.5, 2.0}/|λ−|. The solution
is reasonably robust for zI = {1.0, 1.5}/|λ−|, while the solution experiences vanishing
〈τss〉/ρ for Ren|U1|2 = 4 × 104, n = 0.92 and zI = 2/|λ−|. This happens because the sign
of w in the free stream changes, whereby 〈τss〉/ρ changes sign as well. This is contrary to
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Figure 12. Analytical solution for 〈τss〉/ρ for three values of zI . Colours are defined in (a) and line styles are
defined in (b). Panels show (a) 〈τss〉/ρ as a function of Ren|U1|2 and (b) 〈τss〉/ρ as a function of ΓD.

the numerical results. For this reason, zI = 1/|λ−| was adopted throughout this work to
avoid the collapse of the solution of 〈τss〉/ρ.

3.3.2. Infinite canopy height
The numerical evaluation of (3.4)–(3.5) for the smooth turbulent boundary layer solutions
from § 3.2.1 is depicted in figure 13 (full lines), and these are compared with the analytical
solution for a laminar, unvegetated oscillatory boundary layer (Fredsøe & Deigaard 1992)

〈τss〉
ρ

= π

2L

√
2n
Ren

|U1|2, (3.7)

where L is the non-dimensional wavelength. Equation (3.7) is based on the in-canopy
free-stream velocity amplitude U1 to be compatible to the numerical results with an infinite
canopy.

It is seen that the unvegetated laminar and vegetated turbulent solutions are of similar
orders of magnitude for Ren = 104, however, for increasing Ren, 〈τss〉/ρ is much smaller
for the vegetated boundary layer. This is due to the thinning of the oscillatory boundary
layer and the resulting smaller magnitude of w, since the boundary layer displaces less
water. The term 〈τss〉/ρ for the vegetated, smooth turbulent boundary layer is depicted as
a function of ΓD in figure 13(b) and increasing drag is seen to reduce 〈τss〉/ρ significantly,
which is again linked to the decrease in δw with increasing ΓD (figure 8c).

Fredsøe & Deigaard (1992) summarise that 〈τss/ρ〉 ∝ 〈u〉2, where 〈u〉 is the
period-averaged streaming velocity. Consequently, the streaming velocity for the vegetated
case is expected to be (much) smaller than the corresponding unvegetated turbulent
streaming velocity, and this will be quantified for the case of finite canopies in § 3.3.3.

3.3.3. Finite canopy height
The vertical distribution of 〈τss〉/ρ can also be calculated in the case of a finite
canopy height, when ud in (3.3) is utilised. Its vertical distribution is depicted in
figure 14(d–f ) for Ren = {105, 106, 107} for unvegetated (hv = 0) and vegetated canopies
(hv = {1.25, 0.39, 0.12} corresponding to ĥv = 0.5 m). For the vegetated case, 〈τss〉/ρ is
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Figure 13. Value of 〈τss〉/ρ for a water depth of 2 m, and a period of T̂ = 10 s. (a) Value of 〈τss/ρ〉 as a
function of Ren|U1|2. Full lines: vegetated, smooth turbulent solution. Dashed lines: unvegetated, laminar
solution, (3.7). (b) Value of 〈τss〉/ρ as a function of ΓD.
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Figure 14. (a–c) The vertical variation of 〈u〉 for unvegetated and vegetated conditions and for Ren = 105 (a),
Ren = 106 (b) and Ren = 107 (c). (d–f ) Corresponding vertical variation of 〈τss〉/ρ.

smaller than the corresponding value for the unvegetated case at the same distance from
the bed. The vegetated cases show the largest numerical values of 〈τss〉/ρ above the canopy
(z/hv > 1).

999 A33-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

69
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.697


N.G. Jacobsen

The profile of 〈τss〉/ρ experiences a kink around z/hv = 1 which stems from the
discontinuity in ud at z = hv (see (3.3)) that locally changes the phase of w(z) and thereby
the slope of 〈τss〉/ρ. The discontinuity can be removed by definition of ud as continuous
over z. One such continuous approach is to calculate ud = u − u0 for all z; however, this
negatively affects w(z) because the velocity reduction within the canopy is not accounted
for. This results in a linear increase in w(z) through the canopy (even in the part for which
∂u/∂z = 0). The linear increase in w(z) subsequently results in 〈τss〉/ρ being orders of
magnitude larger than the values reported in the present work. The approach taken in the
present work is considered as a reasonable compromise between an accurate estimate of
w(z) contra a smooth variation of 〈τss〉/ρ; the latter attaining quantitative values of the
same order of magnitude as the unvegetated case.

The resulting mean velocity profile is computed by including 〈τss〉/ρ in the momentum
equation (2.2) by substituting the diffusion term by

∂

∂z

{[
1

Ren

(
1 + ν̂t

ν̂

)]
∂u
∂z

}
→ ∂

∂z

{[
1

Ren

(
1 + ν̂t

ν̂

)]
∂u
∂z

+ 〈τss〉
ρ

}
. (3.8)

The resulting velocity profiles are depicted in figure 14(a–c), where it is seen that the
near-bottom steady streaming velocity within the canopy is small, and it decreases with
increasing Ren, while max〈u〉 increases with decreasing n adjacent to top of the canopy,
and its value approaches the free-stream streaming velocity for the unvegetated case (N̂ =
0). The maximum laminar streaming velocity, 〈us,lam〉 is also depicted in the figure, and
it is approximately 2.5 times larger than the turbulent unvegetated streaming velocity. The
ratio is consistent with the findings by Brøker (1985) for rough, turbulent boundary layers.

The variation in max〈u〉/〈us,lam〉 is depicted in figure 15 as a function of Ren and ΓD. For
increasing Ren and decreasing n the vegetated solutions converge towards the unvegetated,
turbulent solution. The term max〈u〉/〈us,lam〉 is also depicted as a function of ΓD and
all results practically collapse on a single line. For drag-dominated cases with ΓD > 10,
it is therefore possible to estimate the mean streaming velocity on top of the canopy as
0.3〈us,lam〉.

It is seen that the steady streaming velocity at the bottom boundary layer vanishes
even for sparse canopies, so for completeness 〈τss〉/ρ and 〈u〉 are depicted in figure 16
for very sparse canopies of 1 − n = {0, 10−5, 10−4, 10−3, 10−2} corresponding to N̂ =
{0, 0.185, 1.85, 18.5, 185} stems m−2 and Ren = 106. For 1 − n < 0.01, 〈τss〉/ρ is roughly
constant and with ∂(〈τss〉/ρ)/∂z � 0 for 0.25 ≤ z/hv ≤ 0.85. On the other hand, 〈u〉
steadily decreases in this z-range, which can only be attributed to the importance of the
mean force on the stems: ΓD〈|u + 〈u〉|(u + 〈u〉)〉 /= 0, which can only be balanced by a
finite value of the mean shear stress〈

∂

∂z

{[
1

Ren

(
1 + ν̂t

ν̂

)]
∂u
∂z

}〉
, (3.9)

through a finite velocity gradient: ∂〈u〉/∂z /= 0 for 0.25 ≤ z/hv ≤ 0.85. The analysis shows
that the mean drag force on the stems dominates over 〈τss〉/ρ, so it is concluded that no
bottom boundary layer streaming can be identified in naturally occurring canopies. It is
furthermore recalled that the present analysis is for pure oscillatory conditions, however,
under real conditions there will be a limit to the spatial extent of the flow, so additional
processes will become important to ensure mass conservation; including contributions
from unvegetated and vegetated Stokes drift (Philips 1980; Jacobsen 2016; Jacobsen &
McFall 2022).
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Figure 15. (a) Value of max〈u〉/〈us,lam〉 as a function of Ren. (b) Value of max〈u〉/〈us,lam〉 as a function
of ΓD.
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Figure 16. (a) Value of 〈τss〉/ρ for Ren = 106 and 1 − n ∈ [0, 10−2]. (b) Corresponding 〈u〉.

3.4. Steady streaming due to nonlinear free-stream velocity
In the preceding section, (3.9) was finite in order to balance a finite stem drag, but (3.9)
also becomes finite if the harmonic decompositions of u and 1 + ν̂t/ν̂ contains energy
on the same frequencies. For a sinusoidal u0, this will not happen, since the lowest
harmonic of 1 + ν̂t/ν̂ is the second harmonic. On the other hand, (3.9) becomes finite for
a nonlinear u0 (i.e. velocity- and acceleration-skewed free-stream velocities), a finite shear
stress leading to a finite 〈u〉 even under purely oscillatory conditions. This mechanism was
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recognised and described analytically for a second-order correction to u0 and flat seabeds
by Trowbridge & Madsen (1984), and later numerically and experimentally verified by
Ribberink & Al-Salem (1995), Davies & Li (1997) and O’Donoghue & Wright (2004).
The mean velocity is in the opposite direction of wave propagation for most practical
cases (namely for non-dimensional water depths h/L < 3.5 with h total water depth
Trowbridge & Madsen 1984, their figure 2). This process has important implication for
the oscillatory net sediment transport, where light sediment particles go in suspension
and has an oscillatory net sediment transport against the wave propagation, while heavier
particles are transported as bedload with an oscillatory net sediment transport following
the wave propagation (O’Donoghue & Wright 2004; Hassan & Ribberink 2005; Fuhrman
et al. 2013).

The nature of 〈u〉 for both velocity- and acceleration-skewed free-stream velocities is
investigated in this section when vegetation is present. The canopy height is 0.5 m in a
computational domain of 2 m. The four values of N̂ as well as unvegetated conditions
are simulated for Ren = {105, 106, 107}. The free-stream velocity is described by the
parameterisation in (2.26), where the degree of nonlinearity is controlled through the
parameter r ∈ [0, 0.75]. A sinusoidal signal is obtained for r = 0. The acceleration-skewed
signal is found for φ = 0 (sawtooth profile) and φ = −π/2 gives a velocity-skewed signal
akin to the one below cnoidal or streamfunction solutions. The parameters φ = {−π/2, 0}
and r = {0.1, 0.3, 0.5, 0.7} are investigated.

The results are qualitatively similar for all Ren, so 〈u〉 is only depicted for Ren = 106

(figure 17). For N̂ = 0 stems m−2 and φ = −π/2, 〈u〉(z) is qualitatively similar to the
results by Davies & Li (1997) with a monotonically decreasing value of 〈u〉 with z, while
the results for the acceleration-skewed response for N̂ = 0 stems m−2 exhibits a (negative)
peak in 〈u〉 very close to the bed followed by a constant far-field value. In all cases, 〈u〉 < 0.

First, for both values of φ, 〈u〉 < 0 within the canopy. For a velocity-skewed u0, this
would be expected, because 〈|u0|u0〉 /= 0, which, in the oscillatory case, can only be
balanced by a finite 〈u〉 in order to have a vanishing period-averaged stem drag and fulfil
the momentum balance. That 〈u〉 < 0 for the acceleration-skewed cases is due to the
fact that the canopy modifies the in-canopy velocity signal from an acceleration-skewed
towards a velocity-skewed signal, whereby a finite drag needs balancing by a finite 〈u〉
(see Neshamar et al. 2023, their figure 16). The transformation of u0 to the in-canopy
velocity signal is determined by ΓD. The term 〈u〉 is averaged over the stems and
depicted as a function of ΓD in figure 18 for all four values of n and the three values
of Ren = {105, 106, 107}. Estimates of 〈u〉 are also depicted based on the nonlinear
frequency-domain, two-layer canopy model (see § 2.1, and Neshamar et al. 2023) and
plotted as lines. The estimates from the two-layer canopy model were obtained by
requesting ΓD〈|u + 〈u〉|(u + 〈u〉)〉 = 0.

There is a reasonable match between the models (practically perfect for r = 0.10 and
deviations of the order of 0.02û1 for the most nonlinear conditions for r = 0.70), but
more importantly, 〈u〉 as a function of ΓD behaves qualitatively different for velocity- and
acceleration-skewed oscillatory free-stream conditions. For the velocity-skewed signal, 〈u〉
is largest for small ΓD, since the nonlinear free-stream velocity can only be balanced by
a mean velocity irrespective of the number of stems (see § 4.2.2 on the importance of a
free surface in this respect), while 〈u〉 attains a maximum for ΓD � 2. For this value, the
change in the velocity signal is sufficiently strong to result in a velocity-skewed in-canopy
velocity, while ΓD is so small that the velocity reduction is not too strong and the absolute
drag ΓD〈|u|u〉 is still significant.
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Figure 17. The variation of 〈u〉 with z/hv for nonlinear free-stream velocities. (a–d) Velocity-skewed u0
(φ = −π/2) with r = {0.1, 0.3, 0.5, 0.7}. (e–h) Acceleration-skewed u0 sawtooth shape (φ = 0) with r =
{0.1, 0.3, 0.5, 0.7}. All results for Ren = 106.
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(b) Acceleration-skewed u0.
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Returning to figure 17, the vertical variation in 〈u〉 differs qualitatively between the
velocity- and acceleration-skewed u0. The former shows a monotonic decrease in 〈u〉 over
z, while the latter first increases around the top of the canopy and then decreases towards
the free-stream value of 〈u〉. The explanation is found in the mean shear stress that reads

〈
1

Ren

(
1 + ν̂t

ν̂

)
∂u
∂z

〉
= 1

4Ren

∞∑
j=1

(v∗
j gj + vjg∗

j ). (3.10)

Here, vj and gj are the decomposed, complex-valued amplitudes for the jth harmonic
of (1 + ν̂t/ν̂) and ∂u/∂z, respectively. All other terms in the summation on the
right-hand side vanish due to orthogonality. The key difference between velocity- and
acceleration-skewed signals is that all vj and gj are (roughly) in phase in and above the
canopy for a velocity-skewed signal so each term has the same sign, however, this is not
the case for the acceleration-skewed u0, so the shear stress variation oscillates over z, and
it results in the observed 〈u〉.

4. Discussion

4.1. Validity of assumptions
The results showed that there is a close link between the stem densities and the dimensions
of the oscillatory boundary layer. The overall finding is that δw and ϕb decrease with
increasing N̂, whereby the effective in-canopy friction factor Fw increases. This has
similarities to the work by Fredsøe et al. (2003), who measured the oscillatory boundary
layer characteristics in the present of externally generated turbulence. The most important
difference from their work is that the findings in the present work also apply in the case of
constant viscosity, oscillatory boundary layers.

The present work is based on the assumption that the stems are rigid and much longer
than δw. Real vegetation, however, can be flexible, which is already seen to have important
influence on the ability of the vegetation to dissipate wave energy (Lei & Nepf 2019).
However, when it comes to the near-bed processes, it is valid to assume that the part of the
vegetation within O(1) mm from the bottom undergoes small deflections, and the bottom
boundary layer thus experiences near-rigid stems (Jacobsen et al. 2019; Lei & Nepf 2019).
It should, however, be expected that the in-canopy velocity reduction and turbulent kinetic
energy differ from the case of rigid vegetation, so some deviations from the present work
might still be realised.

Finally, the present work considers spatially averaged processes, although local flow
amplification around the stem will result in locally increased turbulence levels, local
scour phenomena around the stems, and details in stem arrangement result in regions
with high-velocity streaks and more sheltered regions (Etminan et al. 2019). Nonetheless,
capturing the detailed processes around individual stems is not feasible for practical
engineering models, where the spatially averaged friction factors are likely of more
use, albeit parameterisation of the bulk sediment transport ought to account for the
fluid–stem–sediment interactions. Furthermore, to the author’s knowledge, the present
work represents a first theoretical description of vegetated, oscillatory boundary layers
and the associated mean flows due to (i) finite wavelengths and (ii) nonlinear free-stream
velocities, which is why emphasis on the bulk processes is justified.
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4.2. Importance of a free surface

4.2.1. Steady streaming shear stress
The physical processes of wave-induced mean streaming due to finite wavelengths and
mean flow due to nonlinear free-stream velocities are investigated in this work, where
it is found that 〈u〉 ∈ [0.02, 0.20] occurs for finite wavelength streaming, while 〈u〉 ∈
[−0.18, −0.02] are found for nonlinear free-stream velocities. For finite wavelengths, the
streaming velocity is dependent on Ren, and the value of 〈u〉 = 0.2 can only be achieved in
large- or field-scale experiments since 〈u〉 = 0.20 is found for Ren = 107 and high values
of ΓD.

The magnitudes of the numerical values are in contrast to the mean velocities observed
in the small-scale experimental work by Abdolahpour et al. (2017): the Eulerian-mean
velocities were around 〈u〉 = 0.25 (when corrected for their use of root-mean-square
free-stream velocity for normalisation). The explanation is that Abdolahpour et al. (2017)
measured in a wave flume with free surface effects, where the vertical velocities are much
bigger than those due to boundary layer growth and collapse.

This hypothesis is verified through quantification of the maximum organised shear due
to orbital wave motion, 〈−ũw̃〉, where ũ and w̃ are the wave orbital velocities from an
analytical free surface model (Jacobsen 2016; Jacobsen & McFall 2022). The maximum
of 〈−ũw̃〉 is found at the top of the canopy and the values are depicted in figure 19(b)
as a function of Ren for the experimental conditions by Abdolahpour et al. (2017). Their
value of max〈u〉 is depicted in figure 19(a). The values of max〈−ũw̃〉 should be compared
with 〈τss〉/ρ (figure 14), and it is clear that max〈−ũw̃〉 is orders of magnitude larger for
the same Ren. Consequently, while streaming due to boundary layer growth and collapse
can be important under severe conditions, the main drivers for mean flows in canopies are
likely to be the combined shear stress distribution due to free surface waves (see Jacobsen
& McFall 2022, for all shear stress contributions over the water column).

4.2.2. Balancing the mean stem drag
It was discussed in § 3.4 how a finite 〈u〉 is required in the case of nonlinear, oscillatory
free-stream flow. However, in the case of finite wavelengths and a free surface, there
are many other terms in the horizontal momentum balance within canopies (Jacobsen
& McFall 2022). Assuming that the nonlinearity is balanced solely by a sloping, mean
surface elevation, 〈η〉, the horizontal momentum balance reads

0 = −
∫ hv

0

ĝ
û1ω̂1

N̂d̂2π

4
∂〈η〉
∂x

dz −
∫ hv

0
ΓD〈|u|u〉 dz, (4.1)

where the first term is equivalent to the Froude–Krylov force based on the sloping
mean surface elevation across a canopy. Introducing typical values, ĝ/(û1ω̂1) = O(100),
N̂ = O(100–1000) stems m−2 and d̂2 = O(10−4) m2, the required surface elevation slope
becomes

∂〈η〉
∂x

= − ΓD

O(1 − 10)hv

∫ hv

0
〈|u|u〉 dz

� − 1
O(1 − 10)Γ 2

I

ΓD + 1.40Γ 2
D

1 + 1.30ΓD + 1.37Γ 2
D

. (4.2)

Here, the last similarity follows from the velocity reduction prediction formula by
Neshamar et al. (2023, their equation (23)). This allows for an estimate of the required
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Figure 19. (a) The measured maximum streaming velocity on top of canopies (Abdolahpour et al. 2017)
normalised by the horizontal velocity amplitude at still water level. (b) Maximum organised wave stress
max〈−ũw̃〉 for test conditions by Abdolahpour et al. (2017).

surface elevation gradient as ∂〈η〉/∂x = O(10−3) for ΓD = O(10−2) (sparse canopy and/or
small waves), while it increases to ∂〈η〉/∂x = O(0.1 − 1) for large ΓD (high density
canopy and/or large waves). This basically suggests that, for small ΓD, the nonlinearity
of the free-stream velocity can be balanced easily by a slight slope in the water surface,
while at larger ΓD the nonlinearity effect is unlikely to be balanced (solely) by a slope of
the water surface. This holds true for small ΓD since it is easier to establish a mild slope in
〈η〉 than ensuring the mass conservation associated with the large negative values of 〈u〉
found in figure 18 for the velocity-skewed u0. This also means that the large negative 〈u〉 is
most likely only to be observed experimentally in oscillatory flow tunnels or large physical
test facilities where large ΓD can be achieved.

It is noted that the vertical variation in u means that (4.1) cannot be fulfilled for all
z within the canopy and there is no mean drag above the canopy, so ∂〈η〉/∂x shall be
balanced by other stress terms (alongside mass conservation), which will ultimately result
in a mean velocity profile as observed experimentally and numerically (see e.g. Luhar
et al. 2010; Pujol et al. 2013; Abdolahpour et al. 2017; Van Rooijen et al. 2020). The
exact vertical balancing of the period-averaged momentum equation by a mean shear is the
same mechanism realised for the near-shore undertow profile by Dyhr-Nielsen & Sørensen
(1970).

4.3. Application of wall functions in canopies
The present work provides a first description of vegetated oscillatory boundary layer
processes, where a key finding is that the oscillatory boundary layer becomes increasingly
thinner with increasing drag in the canopy, and Fw for n < 1 is larger than Fw for
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n = 1 for the same value of Ren|U1|2. This thinning means that standard wall closures
in non-resolved turbulence models most likely give an incorrect (too small) bottom
shear stress, when based on either the log-law or van Driest velocity profiles (Roulund
et al. 2005; Dixen, Sumer & Fredsøe 2013). The incorrect shear stress is unlikely to
affect overall hydrodynamic modelling, since the overall in-canopy flow is governed
by the hydrodynamic drag on the stems; however, the incorrect shear stress will
have a considerable importance as to the possibility of accurately modelling sediment
transport within canopies. Consequently, it is necessary to develop updated in-canopy wall
functions, since boundary layers otherwise need to be fully resolved, which is challenging
in many practical applications.

5. Conclusions

The present work investigated the spatially averaged oscillatory bottom boundary and
shear layer processes for rigid vegetation of finite and infinite canopy heights. First, an
analytical model was presented that is consistent with the unvegetated Stokes oscillating
boundary layer solution for N̂ = 0 stems m−2. The analytical model was compared with
a nonlinear, numerical solution for constant viscosity conditions and an infinite canopy
height: the models compared well for velocity profiles, friction factors, boundary layer
thickness, phase leads and the steady streaming stress 〈τss〉/ρ.

A numerical solution with a two-equation k − ω turbulence closure was proposed and
validated against experimental data by Neshamar et al. (2023), where the vertical velocity
distribution and phase lead over the free-stream velocity were captured well, including
the turbulent shear layer on top of the canopy. Results with the two-equation turbulence
closure showed that friction factors from unvegetated oscillatory and wave boundary
layers cannot be used to predict the spatially averaged bottom shear stress. This is caused
by (i) the thinning of the bottom boundary layer in the presence of vegetation and (ii)
the decreased phase lead between the bottom shear stress and the in-canopy velocity
(becoming less than that for unvegetated turbulent oscillatory boundary layers for large
Ren). It was also found that, for relative canopy heights of hv = ĥv/â1 > 0.1, the canopy
height did not matter for the boundary layer friction factors, boundary layer thickness
and in-canopy phase leads. This means that the oscillating shear layer does not affect the
bottom boundary layer when the canopy is sufficiently tall.

Finally, the mean flow resulting from (i) finite wavelengths and (ii) nonlinear free-stream
velocities (velocity and acceleration skewed) was investigated. In case of the former,
in-canopy mean velocities were suppressed by the mean canopy drag, while the steady
streaming velocity in the shear layer above the canopy converged towards the streaming
velocity known from rough, turbulent oscillatory boundary layers (Brøker 1985). In case
of nonlinear free-stream velocities, both velocity- and acceleration-skewed free-stream
velocity signals resulted in a negative mean in-canopy velocity due to the transformation
of the in-canopy velocity such that 〈u|u|〉 /= 0, which can only be balanced by a finite
mean in-canopy velocity for oscillatory conditions such that 〈(u + 〈u〉)|u + 〈u〉|〉 = 0. It
was, however, discussed that a slope in the water level will contribute to the momentum
balance for free surface wave conditions, and it will potentially eliminate 〈u〉 for small
values of ΓD, i.e. inertia-dominated canopies. The mean velocity profiles for velocity-
and acceleration-skewed free-stream forcing are qualitatively different because of the
difference in phase between the eddy viscosity and the vertical velocity gradients.

Declaration of interests. The author reports no conflict of interest.
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Appendix A. Solution coefficients and vertical velocity

The solution coefficients c±
n for n = 0, 1, 2 in (2.15) are found by fulfilling the following

boundary and interface conditions:

u−
d,1 = −U1, z = 0, (A1)

u−
d,1 = u+

d,1, z = zI, (A2)

∂u−
d,1

∂z
= ∂u+

d,1

∂z
, z = zI, (A3)

u+
d,1 → 0, z → ∞. (A4)

These describe a no-slip condition with u = 0 at the bed, continuity up to and including
the first derivative at z = zI and a vanishing deficit velocity far from the bed. It is directly
seen that c+

0 = c+
2 = 0 in order to fulfil (A4) and

c−
0 =

√
2ΓD|U1|

4iΓI + √
2ΓD|U1|

U1. (A5)

Equation (A1) yields
c−

1 = −(c−
0 + c−

2 + U1), (A6)

which combined with (A3) gives

c+
1 = −1

λ+ exp[−λ+zI]

[
(c−

0 + c−
2 + U1)λ

− exp[−λ−zI] + c−
2 λ

− exp[λ−zI]
]
. (A7)

Finally, use of (A2) gives

c−
2 = c−

0 (exp[−λ−zI] − 1 − λ−/λ+ exp[−λ−zI]) + U1 exp[−λ−zI](1 − λ−/λ+)

exp[λ−zI] − exp[−λ−zI] + λ−/λ+
(
exp[−λ−zI] + exp[λ−zI]

) . (A8)

Inserting (A5) in (A8) gives c−
2 , (A5) and (A8) in (A7) gives c+

1 , and finally (A5) and (A8)
in (A6) gives c−

1 .
For the steady streaming shear stress, the vertical far-field velocity as per (3.5) is

required. The analytical solution to the far-field vertical velocity reads

w = w1eit = −1
c

∫ ∞

0
iud,1eit dz, (A9)

whereby it follows that the time-invariant velocity magnitude w1 becomes

w1 = −
∫ zI

0

iu−
d,1

c
dz −

∫ ∞

zI

iu+
d,1

c
dz (A10)

= − i
c

[
c−

0 zI − c−
1
λ−

(
e−λ−zI − 1

) + c−
2
λ−

(
eλ

−zI − 1
) + c+

1
λ+

e−λ+zI

]
, (A11)

at z → ∞.
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