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Abstract

We exhibit a variation of the Lazard Elimination Theorem for free restricted Lie algebras, and apply it to
two problems about finite group actions on free Lie algebras over fields of positive characteristic.
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1. Introduction

1.1. Elimination and Lie powers Lazard elimination is a powerful tool in studying
free Lie algebras. Let L = L( Y) be the free Lie algebra on a set Y over a commutative
ring K. The Elimination Theorem (see [2, Chapter 2, Section 2.9, Proposition 10])
reads as follows (here, and throughout this paper, we use the left normed convention
for Lie brackets).

THEOREM A (Lazard Elimination). Suppose that Y = Y\ U Y2 is the disjoint union
of its subsets Y\ and Y2. Then L — L(Y) is the direct sum of its free subalgebra L(Y\)
and the ideal I(Y2) that is generated by Y2. Moreover, I(Y2) is itself a free Lie algebra
with free generating set

Y2lYl = {[z, yuy2,..., yk]; z € Y2, yuy2,... ,yk e Yu k > 0).
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260 Ralph Stohr [2]

Thus the Elimination Theorem yields a direct decomposition (over K)

L = L(Yl)®L(Y2iYl)

which will be referred to as elimination of the subalgebra L(Y\). In the special case
where Yt = [x} is a singleton, this direct decomposition turns into

(1.1) L = (x) 0 L(Y\x),

where

Y\x = ( Y \ { x } ) l { x } = { [ y , x k ] ; y € Y \ { x ] , * > 0 } ,

(x) denotes the AT-span of x in L(Y) and

[y,xk] = [y,x,x, ,x).
k

The direct decomposition (1.1) will be referred to as elimination of the free generator x.
The proof of the Elimination Theorem (see [2]) is not difficult, and does not require
much more than the most elementary facts about free Lie algebras and derivations.
However, it has immediate applications of remarkable depths. For example, the well-
known Hall basis and other bases of the free Lie algebra can, in particular in the
finite rank case, be easily derived using Lazard elimination (see [2, Chapter 2] and
Section 3 below), and deriving a free generating set for the derived subalgebra is a
trivial exercise on repeated use of elimination (see Section 3). Recently, in [5], Lazard
elimination was one of the essential tools in studying modular Lie representations of
groups of prime order. Let L = L{Y) as before, and let Ln — Ln(Y) (n > 1) denote
the degree n homogeneous component of L. Furthermore, let G be a group and
suppose that G acts by linear automorphisms on L\ = (Y). Then Lx is a AT G-module,
V say. The G-action on V extends uniquely to the whole of L, with G acting by
graded algebra automorphisms. In particular, the Ln become A"G-modules, and these
are termed the Lie powers of V. It is common to write L = L( V) and Ln = Ln( V) in
this setting, and we shall say that L is freely generated by V. The paper [5] deals with
the situation where AT is a field of positive characteristic p, G is the group of order p,
and V is an arbitrary finite dimensional K G-module. A theory is developed which
provides information about the overall module structure of L( V) and gives a recursive
method for finding the multiplicities of the indecomposable A"G-modules in the Lie
powers Ln( V). The significance of these results lies, apart from the intrinsic interest
in a natural and easy to state, but at the same time notoriously difficult problem, in the
fact that they are the key to understanding the module structure of the Lie powers of
the natural module for GL(2, p) (see [14] for partial results for p =2 and p = 3; an
account of the general case is in preparation [7]). The recent interest in modular and
integral Lie powers was initiated by L. G. Kovacs, who started this line of research
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[3] Restricted Lazard elimination 261

by putting a problem about Lie powers of the regular module for the cyclic group
of order 2 into the Kourovka Notebook ([18, Problem 11.47]). The problem was
tackled in [3] and [17], and subsequently solved in [9]. This was then the starting
point of a period of intensive research on modular and (to a lesser extent) integral Lie
powers over the past five years or so, which is still ongoing and resulted up to now
in papers [3-17]. From the very beginning Laci Kovacs has been at the forefront of
these investigations, as an eminent author and tireless promoter of the subject.

1.2. Restricted elimination In this paper we exhibit a variation of Lazard elimina-
tion for free restricted Lie algebras, and apply it to two problems about modular Lie
powers. We hope to convince the reader that 'restricted elimination' is a useful tool in
studying modular Lie representations, and that many more applications will emerge
in the future. From now on K is a field of positive characteristic p, and R = R(Y)
is the free restricted Lie algebra on Y over K. Throughout this paper we will identify
the free Lie algebra L(Y) with the Lie subalgebra that is generated by Y in R. We
also use the notation R(V) (similar to the unrestricted case), and write Rn, Rn( Y) and
Rn( V) for the restricted Lie powers. An immediate consequence of Theorem A is that
under the above assumptions on Y there are direct decompositions

(1.2) R = R(Yl)®R(Y2iYl), R = {xp°; a>0)@R(Y\x)

of the free restricted Lie algebra R. The variation that is specific to free restricted Lie
algebras is as follows.

THEOREM B. Let x e Y, and let J be the ideal of R that is generated by xp and
Y\ {x). Then R is the direct sum of its subspace (x) and the ideal J. Moreover, J is
itself a free restricted Lie algebra with free generating set

Y\rx = {x", [z,xa]; ze Y\{x], 0<a<p-l}.

Thus Theorem B yields a direct decomposition (over K)

R = (x) 0 R(Y\rx)

which will be referred to as restricted elimination of the free generator x. Theorem B
is, in fact, well known. In [ 1 ], for example, it is a key ingredient of the proof of Witt's
celebrated theorem about the freeness of subalgebras of free restricted Lie algebras.
For a proof of Theorem B we refer to the proof of Theorem 2.7.4 in [ 1 ]. Note that the
second decomposition in (1.2) can, in fact, be obtained by using restricted elimination
repeatedly, that is by eliminating the free generators x, xp, xp , . . . successively in the
obvious way. The second decomposition in (1.2) will be referred to as full elimination
of the free generator x.
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13. The first application Our first application of restricted elimination refers to
free Lie algebras over a field K of characteristic 2. Let G be the cyclic group of order 2
with generator g and let V be a finite dimensional free K G-module. Then the Lie
powers Ln(V) and the restricted Lie powers Rn(V) are (like any finite dimensional
KG-module) direct sums of isomorphic copies of the regular module KG and the
trivial module K. The multiplicities of the indecomposables KG and K in Ln(V)
have been determined in [9], and a similar result for Rn(V) has been obtained in
[12]. Moreover, the main result of [12] was an explicit construction of G-invariant
homogeneous bases for L( V) and /?(V), in other words, an explicit decomposition of
the Lie and restricted Lie powers of V into the direct sum of indecomposables. Our
first application is an alternative construction of such bases using restricted elimination
(Theorem 1 in Section 2). It turns out that using this type of elimination simplifies the
construction considerably, and the technical difficulties that had to be overcome in [ 12]
disappear altogether. In addition, our new bases have the advantage that they consist
of monomials and hence they are not only homogeneous, but multihomogeneous
(meaning that each basis element has a well defined multidegree with respect to the
original free generating set of R( V)). We mention that in the much harder case of
free Lie algebras over 2 similar bases (however non-monomial ones) have recently
been constructed in [6]. In that case there is of course no hope for simplification via
restricted elimination as this tool is not available over 2.

1.4. The second application Our second application is more involved, and in-
evitably harder to describe. It gives a new, and in our view more natural and con-
siderably simpler way of proving the main technical result that is at the very heart of
[5]. Moreover, we prove this result in a slightly more general setting: While [5] dealt
with Lie powers of indecomposable modules for the group of order p, we extend the
result to indecomposables for the holomorph of this group, a Frobenius group of order
p(p — I). This has the additional advantage that the result in question comes directly
in a form required for applications in [7]. In order to be more precise, we need to
introduce some notation. Let K be a field of characteristic p, and let G be the group

where / is a positive integer such that the image of / under the unique homomorphism
2 —• K generates the multiplicative group of the prime subfield GF{p) of K. We
will not distinguish between / and its image in K. We let P denote the p-Sylow
subgroup of G. Thus P = (g), the cyclic subgroup of order p that is generated by g.
It is well-known (see, for example, [4] for more detail and references) that there are
precisely p(p — 1) indecomposable f̂ G-modules, which will be labelled here by 7, r
with i = 0, 1 , . . . , p — 2 and r = 1, 2 , . . . , p. In this notation r is the dimension
of 7,r and h acts on the top composition factor JLr/rad(J, r) as multiplication by the
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s c a l a r / ' . E a c h 7 , , r h a s a b a s i s K ( l > ) = { j , < 1 > ) , y { j ' r ) , . . . , y < ' r ) } ( c a l l e d t h e s t a n d a r d

b a s i s h e r e ) s u c h t h a t

y j ' - r ) 8 = y j i - r ) + y ^ i fory = 1 , . . . , r - i ,

y<«»g = >,<'» and yi
(I>)A = />; '•".

Note that y[''r) is an eigenvector for h with eigenvalue /'. If i and r are understood, we
will write the standard basis as Y = [yt,... , yr}. The result in question refers to a Lie
subalgebraofthe free restricted Lie algebra/? = /?(7,,r) = /?(K). Throughout we will
assume that r > 2 (as the case r = 1 is of no interest). We use the term left normed
commutator in Y for a Lie product of the form [z \, Zi, •. • , zn ] with z i, • • • ,zn € Y (to
distinguish such Lie products from more complex commutators such as, for example,
[[Z\, 22,23], [24,25]])- The above left normed commutator is a left normed basic
commutator if z\ > Zi < • • • < zn with respect to some given order of Y. In this paper
we will use the order y{ > y2 > • • • > yr. Let Lp(Jir) denote the subspace of the
p-th Lie power Lp(Jir) that is generated by all Hall basic commutators of degree p
in Y except [y{, y", yf ' " ] with 1 < a < p — 1. Furthermore, let x( = y\g'~[ with
1 < i < p. Finally, put

L{Jur) = L2{Ji,r)

and

It is easily seen that L{Jir) and Ls are G-invariant Lie subalgebras of R{Jir). In [5],
Ls is called the shifted subalgebra of L{Jir). By M — M{Jir) we denote the free
metabelian Lie algebra on 7,,r, that is the quotient of L = L{Jir) by its second derived
subalgebra: M = L/L". We write Mn = Mn(Jir) for its homogeneous components,
which are termed the free metabelian Lie powers of Jir. The central technical result
of [5, Theorem 4.4], that makes the whole theory work, reads (suitably reformulated)
as follows.

THEOREM 2. Let r > 2. For each n > 2, there exists a K G-submodule Un of

RnUi.r) such that

(i) Ls is freely generated by U = U2® U3® • • • ,
(ii) for n ^ p, Un is a direct summand of Ln(Jj r),

(iii) Up has the form {xp
x,... , xp © Vp, where Vp is a direct summand ofLp(Jir),

(iv) forn < p, Un= Mn(JKr),
(v) for n > p, Un is aprojective KG-module, and, moreover,

Theorem 2 differs from Theorem 4.4 of [5] in that we have incorporated into the
statement all relevant results from the earlier Theorem 4.1 of [5], which is, in fact, an
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inseparable part of Theorem 4.4. We mention that Theorem 4.1 gives also a formula
for the dimension of the modules (/„. This information was used in the original proof
in [5], but since it is not required for the applications of the Theorem in [5], nor is it
used in our proof, we have omitted it from the statement. Our proof of Theorem 2
provides, in fact, additional information about the projective modules Un for n > p.
With a view to applications in [7], that information will be recorded in a Corollary.
The original Theorem 4.4 of [5] can be recovered from Theorem 2 by replacing the
group G by its subgroup P and the modules Jir by the restrictions Jr = Jir lP. We
wish to emphasize, however, that the main achievement of the present paper is not the
generalization of Theorem 4.4 from P-modules to G-modules, but the new method
of the proof. The fact that the theorem about the shifted Lie algebra can be extended
from P to G was known to the authors of [5] before work on the present paper had
started.

1.5. Organization of the paper The paper is organized as follows. Theorem 1, our
first application, is proved in Section 2, and the remaining three sections are devoted to
our new proof of Theorem 2. In Section 3 we use restricted and ordinary elimination
to derive various decompositions of free restricted Lie algebras, and in particular we
exhibit a particular free Lie subalgebra L(D) of R(Jir). A slight modification of this
algebra, which is carried out at the beginning of Section 5, will give us the shifted
algebra together with a convenient free generating set D* for it. In the rest of Section 5,
D* will be converted into another free generating set F whose span is G-invariant in
L(D*): This span will be the module U in Theorem 2. In Section 4 we assemble some
auxiliary results for use in Section 5. We assume that the reader is familiar with basic
material about free Lie algebras and free restricted Lie algebras as given in the first
two Chapters of [1]. In particular, the fact that if A is a basis of the free Lie algebra
L(Y), then {ap°; a eA, a > 0} is a basis of R(Y) (see [1, 2.7.1]) will be frequently
used without reference.

2. Invariant bases for Lie powers in characteristic 2

In this section AT is a field of characteristic 2, G is the group of order 2 with generator
g, and V is a free AT G-module. Hence V has a basis of the form {u, ug; u e T] where
T is a free generating set of V as a K G-module. Our aim is to derive G-invariant
bases for R(V) and L(V) in the case where V has finite dimension. Let u e T and
write T = T \ {«}. Elimination of the free subalgebra generated by u and ug from
R(V) (see (1.2)) gives a direct decomposition

(2.1) R(V) = R(u,ug)®R(TlUTig),
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where

7, = [[w, vi,... , vk]; w e T, v\ vk e [u, ug}, k > 0}.

It is clear that G acts freely on 7) U T\g and that 7, is a transversal of the G-orbits.
Now consider R(u, ug)'. Restricted elimination of u and ug (in that order) gives

R(u, ug) = (u) © R(u2, ug, [ug, «])

= (u, ug) © R(u2, u2g, [ug, u], [u2, ug], [ug, u, ug]).

Since [ug, u, ug] = [u2g, u], this can be rewritten as

R(u, ug) = (u, ug) © R([ug, u], u2, u2g, [u2, ug], [u2g, u]).

Here [ug, u] is fixed by g while u2, u2g and [u2, ug], [u2g, u] generate regular KG-
modules. Now full elimination of [ug, u] gives

(2.2) R(u, ug) - {u, ug, [ug, u]2"; a > 0) © R(T2 U T2g),

where

T2 = {[w, [ug, «]*]; u; € [u2, [u2, ug]}, k > 0}.

Clearly, G acts freely on 72 U T2g and 72 is a transversal of the G-orbits. Substituting
(2.2) into (2.1) gives

R(V) = (M, ug, [ug, a]2"; a > 0) © R(T, U Tlg) © R(T2 U 72g).

We call that an elimination step for u. Let Fi = 7! U 72, u2 e V,, and perform another
elimination step for the free restricted Lie algebra /?(7] U Tg) that contains u2. This
results in a direct decomposition

2 3

£, : fl(V) = @ ( M , - , «,-£,[«,•£, u,-]2"; a > 0) © 0 /?(T,(2) U T,(2)g),
i=i i=i

where we have put u = ux for convenience. We can then pick an element from
F2 = U / = 1 T, and perform another elimination step, and so on. After n such steps we
arrive at a direct decomposition

n n+\

and then the (n + l)-st elimination step can be performed for some element un+l e
p I in+l y(n)
1 " — Ui=l ' l

Now suppose that V has finite dimension, in other words, T is a finite set. We call
a sequence E\, E2, E 3 , . . . of elimination steps suitable, if for all « > 1 the element
«„ e Fn is of smallest possible degree.
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THEOREM 1. Let E{, E2, E3,... be a suitable sequence of elimination steps. Then

= \J{uhu,g,[uig,ui]
2'; a > 0 }

1=1

is a G-invariant monomial basis ofR( V), and the subset ft' consisting of all elements
o/ft that are not written as a proper power is a G-invariant monomial basis ofL(V).

PROOF. It is clear from the very nature of the elimination process that the elements
of Q are linearly independent, that they are monomials in the free generators u, ug
(u e T), and that Q is G-invariant. It remains to show that Q. spans R(V). To see
this, we argue as in [12]. Observe that every set Fn consists precisely of Fn_, \ [un]
plus elements of degree strictly larger than deg «„. Moreover, every Tn contains only
finitely many elements of any given degree. It follows easily that if <$(«) denotes
the smallest positive integer such that fn contains an element of degree S(n), then
8(n) -> oo as n -*• oo. Consequently, for each m there exists an n such that the
direct sum of free restricted Lie algebras on the right hand side of En consists entirely
of elements of degree > m. This in turn implies that the homogeneous component
Rm(V) is contained in the span of the eliminated elements. Hence R(V) c (ft), as
required. To show that ft' is a basis of L(V) observe first that ft' consists of Lie
elements, and hence (ft') c L(V), and that ft = {w"°; w e ft', a > 0}. If ft'
is not a basis of L(V), it can be extended to a basis ft" of L(V). But then the set
[wp°; w € ft", a > 0} would be a basis of R( V), which is impossible as it contains
the basis ft is a proper subset. This completes the proof of Theorem 1. •

In the smallest non-trivial instance where V is a regular ATG-module with basis
{x, y] and G-action given by xg = y, yg = x, the basis elements in ft' up to degree 6
are as follows.

x,y, [y,x]; [x\y], [y\x]; [x2,[y,x]], \y2,[y,x]], [y\x2];

[x\y,x2], [y\x,y\ [x2,y,y2], [y2,x,x2], [[x2,y],\y,x]], [[y2, x], \y,x]}\

[x\y2l \y4,x2], [x2,ly,x],[y,x]], [y2,\y,x],iy,x]], [x2,[y,x],x2],

[y\\y.x],y2], [x2,[y,x],y2], [y2,[y,x],x2], [[y2, x], [x2, y]].

In conclusion of this section we mention that with Theorem 1 at our disposal it is
very easy to produce G-invariant bases for free Lie algebras and restricted Lie algebras
on arbitrary finite dimensional /CG-modules. The relevant construction is outlined in
the proof of Corollary 2 in [6].
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3. Decompositions by elimination

In this and the remaining sections of this paper we will use the notation introduced
in Section 1.4. Unless stated otherwise, we assume throughout that i and r are fixed,
and write simply Y instead of Yu'r) for the standard basis of /, r. However, in the
present section we do not make use of the G-action on {Y), and the restriction r < p
is irrelevant here. Recall that Y — [yu y2 , . . . , yr] is ordered by y, > v2 > • • • > yr,
and consider L = L(Y). Consecutive elimination of yr, yr-\,... , y\ (in that order)
yields a direct decomposition

= {yuy2,...,yr)®L{B),

where
B=Y\yr\---\yx

= {[zi, z2, • • • , z*]; z i , • • • , Zk € Y, z, > z2 < • • • < zk, k > 2}

is the set of all left normed basic commutators of degree at least 2 in Y. It is clear that
L(B) = L', the derived algebra of L. Thus, as mentioned in the Introduction, an easy
repeated application of Lazard elimination allows us to obtain a free generating set of
the derived algebra L'.

REMARK. It is not hard to see that if we continue the elimination process indefinitely
in such a way that at each stage a free generator of minimal degree is eliminated
(similar to what we did in the proof of Theorem 1), then the set of eliminated elements
emerging in the limit is a complete set of Hall basic commutators. Moreover, it follows
automatically that this set is indeed a basis of L. This is by far the easiest way of
obtaining a basis for a free Lie algebra of finite rank that is known to this author, and
it is another convincing demonstration of what a powerful tool Lazard elimination is.

Since B is a free generating set for L', it follows immediately that the set {w +
L"; w e y u B) is a basis of M = M(Y). This well-known fact will be used below
without reference. When working in M, we will allow ourselves the liberty to refer
to B and other subsets of L' as subsets of M, meaning, of course, the corresponding
sets of cosets.

Now consider the free restricted Lie algebra R = R(Y). Consecutive restricted
elimination of yr, yr_,, . . . , y,, (in that order) yields a direct decomposition

(3.1) R(Y) = (yl,y2,...,yr)®R(C),

where C consists of the left normed commutators

(3.2) [ z i , z 2
O 2 , . . . , z H
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with zi, • • • , Zk € Y, zi > Zi < • • • < Zk, k > 2 and I < a, < p (i = 2 , . . . , k),

and the elements

(3.3) ft, #,..., z?]

with z\,... , Zk € Y, Z\ < Z2 < • • • < Zk, k > 1 and 1 < a, < p (i = 2,... , k).
Note that the elements (3.2) are left normed basic commutators in Y. Note also
that the elements (3.3) include the p-th powers yp

x, y%,... , yp
r, and that the elements

(3.2) and (3.3) together include (up to sign) all left normed basic commutators of
degrees 2,3,... ,p,p + I. In fact, all these basic commutators except [yt, yf]
with 1 < i < j < r are of the form (3.2), and for the exceptional ones we have
[)>•, yf] = — [yj, yd- Let L(C) denote the Lie subalgebra generated by C in R. It is
clear that L(C) is freely generated by C, and it follows immediately from (3.1) that
there is a direct decomposition

Full elimination of yP, yp
r_x,... ,yP (in that order) from R(C), gives a direct

decomposition

(3.4) R{Y) = (yuyl\yP\... , yf; a > 0) © R(D),

where

D = {[w, y?'p,..., y?p, y?p\, w e C\[yP,yp,... , yp), ft, • •. , ft > 0}.

Now consider L(D), the free Lie subalgebra of R that is generated by D. It is clear
that this Lie algebra is freely generated by D and it follows immediately from (3.4)
that

L(D) = (yp)®L'.

We will return to the free Lie algebra L(D) in Section 5, but first we turn to some
auxiliary results required for the proof.

4. Auxiliary results

4.1. Changing free generating sets Let L(X) be the free Lie algebra on a set X
and assume that X is the disjoint union

X = X , U X 2 U X 3 U - - -

of its finite subsets X,, X2 Let L(< m) denote the subalgebra of L(X) that
is generated by X\, X2 Xm_i. For each n > 1, let <pn € GL({Xn)) be a linear
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automorphism of the space {Xn), and let <p : X -»• L(X) be a map that is, for all
x e Xn, n = 1 ,2, . . . of the form

(4.1)

where wx e L(< n). We need the following

LEMMA 1. If <p : X -*• L(X) is a map of the form (4.1), then <p(X) is a free
generating set ofL(X).

A proof of this simple fact can be found in [6, Section 2.3]. We record an easy
consequence of this lemma for reference purposes. Suppose that X is a graded set in
which the elements of Xm have degree m. This turns L(X) into a graded Lie algebra
with homogeneous components An = An(X), (n > 1) where An is the span of all
monomials of degree n in X. Here we use the Greek letter A deliberately to distinguish
these homogeneous components from the ordinary homogeneous components Ln

which are formed assuming that all free generators in X have degree 1. Note that
Xn c An for all n, and that An D L(< ri) is a vector space complement of {Xn) in An.
Now let H be a group and suppose that H acts on L(X) in such a way that each An is
a AT//-submodule of L(X). Then the subalgebras L(< n) are also A"//-submodules
of L(X). Let nn denote the natural surjection An -» An/(An n L(< n)).

COROLLARY. Assume that for all n > 1 the natural surjections nn split as KH-
module homomorphisms. Let vn be a spitting map for nn and put Fn = vnnn(Xn).
Then F = F{ U F2 U F3 U • • • is a free generating set for L(X), and for each n there
is an isomorphism

{Fn) =A,/(A,nL(<«))

of KH-modules. In particular, (Fn) is a KH-submodule for all n.

PROOF. The map X -> L(X) defined by x \~* vnnn(x) for x e Xn (n > 1) is of
the form (4.1), and Lemma 1 applies. Hence F is a free generating set of L(X). The
asserted isomorphism is obvious. •

4.2. The restricted Lie power Rp (Y) From now on we will work with the notation
introduced in Section 1.4. Let Y = [y\, yt,... , yr) be the standard basis of Jir and
xi,... , xp as in Section 1.4. Then, by an easy calculation, we get for i — 1 , . . . , p

x, =
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where the binomial coefficients are evaluated in K. Applying the p -power operation
of R(Y) gives for / = 2 , . . . , p,

y2+(^ y 3 + + ( ^ + / „
where /, € Lp( Y). The following result can be found in [5, Lemma 3.2 and Corollary
3.3].

LEMMA 2. (i) The elements x[, x\,... xp € Rp (V) are linearly independent mod-
ulo LP(Y). (ii) The elements I2,h,... , lpfrom (4.2) are linearly independent modulo
LP(Y), and form a basis ofLp{Y) modulo LP(Y).

43. Modules We continue to work with the notation from Section 1.4, but now
we write L(Jir), M(Jir),... to emphasize that the focus here is on the G-action on
these objects. The first of three results contained in this subsection is proved in [5,
Section 2].

LEMMA 3. For n = 2, 3 , . . . , p + 1, the natural surjection

Ln{Ji,r) -+ MnUi.r)

splits as a homomorphism of K G-modules.

The second result is implicitly contained in [5], but for the convenience of the
reader we spell out how to derive it in the compact form we use here. Let E denote
the set of all left normed basic commutators of the form

(4.3) [zuzV zT\

with z i , . . . , ZK € Y, zi > Zi < • • • < Zk, k > 2, a,•,. > 1 (i = 2,... , k), satisfying
the additional condition that ak < p whenever Zk = y\- Let E denote the subset of
all elements (4.3) in E such that z2 e {y3,... , yr}, and let E denote the subset of all
elements (4.3) in E such that z2 = yr. It will be convenient to introduce one more
piece on notation at this point. If A is a set of homogeneous elements in R(Ji.r), we
write An for the subset of elements of degree n in A.

LEMMA 4. (i) For all n > p + 1, and also for n — p and r > 3, the subspace
(En) C Mn(Jir) is a projective KG-submodule ofMn(Jir). (ii) For all n > p, the
subspace (En) C Mn(Jir) is a projective KG-submodule of Mn(Jir). (iii) For all
n > p + 1, the subspace (£„) c Mn(7,,r) is a projective KG-submodule of Mn{Jir).
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PROOF. It is easily seen that {£„), (En) and (£„) are submodules, and so it remains
to establish projectivity under the relevant conditions. It is shown in [5, (3.20),
Section 2], that the restriction (£„> lP is a free ATP-submodule of Mn(Ju) for
n > p + 2, but the proof works equally well for n — p + 1, and n = p when r > 3.
Hence (En) is a projective # G-module for the required range of n and r. This proves
(i). For the proof of (ii) and (iii), let

8^ : Mn(Ji,r) ~* MH(J,.r-l)

denote the natural surjection given by y(j''r) i-» y)''r~X) for j = 1, . . . , r — 1 and
yU.r) ^ o -T/jjjg j s a ^ G-homomorphism, and it is easily seen that the left normed
basic commutators in B (see Section 3) with z2 = y(

r''
r) form a basis of ke r^ ' r ) . The

restriction of 8{
n'-

r) to (£„) yields a short exact sequence

(4.4) <£<'•") ~ (£«•'») -* {£<--">

of AT G-modules and a chain of surjective homomorphisms

(4.5) (£<'•r)) ^> (£<'>-'») - » . . . - » (^'"•2)).

The kernel of the composite (£'<'r)) -» (£'^2)) is (£„). Since (£^ r ) ) is projective
(and hence injective) by (i), (4.4) and (4.5) yield direct decompositions

(4.6) (E^) =
;=2 7=3

Again, by (i), the (EjjJ)) in these direct decompositions are projective for the relevant
range of n and j . This proves (ii) and (iii). •

The third and final result in this subsection is the following

LEMMA 5. The subspace {xp
x,x\,... ,xp

p) of R(Ji,r) is a projective KG-module
isomorphic to Jip.

PROOF. The elements x\, xp
2,... ,xp

p are linearly independent by Lemma 2(i).
Hence they span a regular ^P-module which is generated by xp. As y\ is an
eigenvector for h with eigenvalue /', its p-th power xp = yp is also an eigenvector for
h with eigenvalue lp' = lp. The result follows now from [4, Lemma 1]. •
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5. Proof of Theorem 2

5.1. The proof Consider the free Lie algebra L(D) from Section 3. We follow the
strategy outlined in Section 1.5. The first step is a minor intermediate modification of
the free generating set D.

STEP 1. Let D' denote the set obtained from the set D by replacing the elements
[yi,y%> y"i~l~a] e Dp with 1 < a < p - 1 by the elements l2, h,... lp from (4.2).
Then D' is also a free generating set for L(D).

This follows by a straightforward application of Lemma 1 with Xt = Dt using
Lemma 2 (ii).

STEP 2. Let D* denote the set obtained from D' by replacing the elements l2, h, •.. ,
lp by x2, xP,... ,xp

p. Then D* is a free generating set for the (free) Lie algebra it
generates.

Suppose that D* is not a free generating set. Then there exists a non-trivial linear
combination

(5.1)

where a/ e K, and the 6;(D*) are Hall basic commutators in D*. Recall that
L(D) C L(C) (see Section 3), and observe that, by construction, the free generators
in D are Lie monomials in the free generators of C. Hence every Lie monomial in
L{D) has a well defined multidegree with respect to the free generators in C (which
have degree 1 in this context). Here we make use of the partial degree in the free
generators yf, y2 yp

r e C. For w € L(C) we write

Deg w = degyp w -{ (- w

for the sum of the partial degrees in those free generators. Note that Deg // = 0 since
/, 6 Lp. Now return to (5.1). We will use the degree Deg to obtain a contradiction.
We may assume that the bj(D*) involve (some of) the elements x2, xP,... ,xp

p since
the other elements of D* are contained in the free generating set D'. Now we replace
all entries of x2, xP,... , xp in (5.1) by the right hand sides of (4.2), and expand. This
results in a linear combination of basic commutators in D' and commutators obtained
from those basis commutators by replacing at least one of the entries of l2,h,... , /,,
by one of yf, y2,... yp

r. Since the latter have larger degree Deg than the former, this
gives rise to a non-trivial linear combination of basic commutators in D' that is zero.
But this is impossible since D' is a free generating set.
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STEP 3 . (i)L(D*) = L 5 . ( i i ) L s = L(J,,r) © ( j c f , . . . , x p ) .

By construction, L{D*) contains all Hall basic commutators in Y of degrees
2, 3 , . . . , p — 1, all Hall basis commutators in Y of degree p except [yt, y", yp ' " ]
with 1 < a < p — 1, and also the elementsxp = yp

x,x
P,.. .xp. But it also contains

all homogeneous components Ln{Jir) with n > p since |D*| = |DJ for all n, and
this clearly implies

dim(L(D*) n RMi,r)) = dim(L(£>) n Rn(Ji,r)),

but L(D) n Rn(Ji,r) = Ln(Jir) torn > p (see Section 3). This proves (i). Point (ii)
is obvious since the elements xp,... ,xp belong to the free generating set D*.

Our next step consists of a further modification of the free generating set D*.
Consider the elements

(5.2) [yuZ
a
2\...,gs;,yrl,y?p,>tip,• • • , ^ 2 P ] e D*

such that fis ^ 0 and ^ < z2, and replace them with

(5.3) [yu z?,..., z"_,', yf"1. y f . yfil". • • • - yf2"]

STEP 4. 77ie i£? D" obtained from D* by replacing the elements (5.2) with (5.3) «
a free generating set for L(D*).

Since the second term in (5.3) is a product of two free generators of L (D*) of smaller
degree (the last factor of the added term is yp e £>*), this follows by a straightforward
application of Lemma 1. The reason for this modification will become clear in the
next step. Note that all the replaced elements (5.2) are of degree > p + 2, and hence
D* = D"n for all n <p + l.

Our next goal is to identify the span of the image of the free generating set D* in
the free metabelian Lie algebra M = M(Y). We will use the well-known fact that in
M any Lie product w = [ut, u2, w 3 , . . . , uk] with u\,... , uk e R is symmetric with
respect to the entries « 3 , . . . , uk. This allows us to permute those entries arbitrarily
without changing the value of w. Recall the definition of the set E from Section 4.

STEP 5. In M(Y), (D'^) = (£„) for all n > 2 except n = p, where {D"p \

{xp,..., xp) = (£„).

There is nothing to prove for n < p + 1 as the relevant sets coincide for n < p and
coincide (up to sign) for n — p + 1. Now let n > p + 2. We show that (£„) c (£T).
This is by an easy but tedious case-by-case consideration as follows. Let w be a left
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normed commutator of the form (4.3), and write a, = /3,-p + p, with 0 < p, < p,
(/ = 2, 3 k). Then

We will see that w is either itself in ±D" or a linear combination of two elements
from this set. If p^ ^ 0, we have

,., r . -Pi Pi Pk fap T^'PI c 4-n"

If p2 = • • • = pk = 0, we have

w = [Zl, z 2
A p , . . . , z * ' ] = - [ z f , Zl, z f "I)p, • •. , z f " l e ± D "

Now suppose that p2 = • • • = PJ-I = 0, but ps ^ 0 for some s < k. Then we have

(5.4) u; = [z,, z£, zf,... , zf, z f -1)p,... , zfl

If Zi < zs in (5.4), we have

w = - t z j , z , , z f , . . . , z r , . . . ] .

This is in ±D" except when z\ = zs and ps = p - 1. In the latter case we have

,,, _ _\.P -P _/>«+! r ^ I
w — i z 2 , z { , z J + 1 , . . . , z k , • • • \

If Ps+i = • • • = Pk = 0, this is in ±D". If pJ+i = • • • = p,_i = 0 but p, ^ 0 for some
t < k, then we have

If zi 56 y! both terms in the last line are in ± D " (as we can move z\ in the first term
and z\ in the second term to the right), and if z\ = yi, then

w - t z i , z , , z p " ' , z P , . . . ] - U P , z , , z p , . . . ]

which is of the form (5.3) and hence in ±D".
Finally, suppose that z\ > zs in (5.4). Then

W = - [ Z 2 , Z s , Z i , . . . ] + [ Z i , Z s , Z 2 , . . . ] •

If zi = Zi = y\ and pk = p — 1, this is (up to sign) of the form (5.3), and hence in
±D", and if this is not the case, then both terms on the right hand side of the last
equation are in ±D". This proves that {£) c (D"). The verification of the inverse
inclusion is similar.
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STEP 6. The free Lie algebra Ls = L(D") has a homogenous free generating set
F = F2 U F3 U . . . such that for all n, Un = {Fn) is a KG-module. Moreover,
Un = Mn(Jir)forn = 2 , . . . ,p — 1 and Un is a projective KG-moduleforn > p.

We will apply the corollary to Lemma 1 with X, = D" for / > 2 and X\ = 0.
Then An = Ln (7,,r) for all n > 2 except n = p where Ap = Lp (/,>) © (xf, . . . , xp).
In order to apply the corollary we need to verify that the natural surjections An -»
AB/(An n L(< n)) split. Clearly, An D L(< n) = Ln(7,.r) n L" for 2 < n < p + 1.
Now, when 2 < n < p — 1, the elements of IT , that is all left normed basic
commutators of degree n in Y, generate modulo L(< n) the metabelian Lie power
Mn(Jj,r). The corresponding natural surjection splits by Lemma 3. If n = p we
have Dp — Ep U {xf,... , xp. The elements of Ep generate modulo L(< n)
a projective ATG-module by Lemma 4(ii) and the elements JC[, . . . , xp

p generate a
projective /TG-module by Lemma 5. Thus D"p generates modulo L{< p) a projective
X"G-module, and hence the corresponding natural surjection splits. It is plain that
we may take it that the splitting map is the identity map on (xp,... , xp

p), and that it
maps Ep + L(< n)/L(< n) into Lp(Jir). Finally, if n > p, it was established in
Step 3 that the image of D"n under the canonical surjection L(Y) —y M(Y) coincides
with the span of En in Mn{ Y). By Lemma 4(iii), this is a projective K G-module. But
then D"n also generates a projective ^G-module modulo L(< n). Hence the natural
surjections split for all n > p , and consequently the corollary applies to L(D"), thus
ensuring the existence of the required sets Fn.

STEP 7. The KG-modules Un = {Fn) satisfy all conditions in the statement of
Theorem 2.

All that remains is stocktaking: (i) has been established in Step 6, (ii) and (iii) are
obvious consequences of our construction (with Vp = {Fp \ {xp,... , xp})), (iv) and
(v) are proved in Step 6, and (vi) has been shown in Step 3. This completes the proof
of Theorem 2.

5.2. A corollary As mentioned in the introduction, our proof of Theorem 2 yields
extra information that will be useful for applications in [7]. For n > 2 and r > 2, let
Mn{Jir) denote the submodule spanned by the elements of E(J'r) (see Section 4.4) in
the metabelian Lie power Mn(Ju).

COROLLARY. For all n > p + 1, there are KG-isomorphisms
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and, moreover, in degree p we have

j] _ y n\ irP rP Yp\ ~ f \ \ M ( j ) ffi I
\Jp — 'p D̂ \^j i -*2 ' ' ' ' ' p I — \AJ P^- ij ' ^ JhP'

PROOF. The argument in Step 6 of the above proof yields, in fact, isomorphisms

Un = (En) forn>p + l,

Jp^(Ep)(B(xp,xP.Up^(Ep)®(xp,xp
2,...,x

p
p),

where the spans of En and Ep are understood as taken in M(Jir). The result now
follows immediately from (4.6) and Lemma 5. •
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