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Abstract. In this paper we give a complete set of invariants (moduli) for mild and
strong semilocal equivalence for certain two parameter families of diffeomorphisms
on surfaces. These families exhibit a quasi-transversal saddle-connection between
a saddle-node and a hyperbolic periodic point.

0. Introduction
Generically diffeomorphisms with simple recurrence are Morse-Smale and therefore
structurally stable [9]. It is conjectured that generically one parameter families of
diffeomorphisms, starting at a Morse-Smale one, first bifurcate either by the loss
of hyperbolicity of a periodic orbit or by the appearance of a nontransversal
saddle-connection [10]. Such one-parameter families may not be stable, but in
several relevant cases the classes of equivalence may be parametrized by finitely
many real invariants (moduli) as introduced in [8]. To be more precise, let us recall
some definitions and results.

Two smooth families of C™ diffeomorphisms of Mz,f“ and fy, 1 €R”, are mildly
equivalent if there exists a reparametrization p: R" > and a family h,: M © of
homeomorphisms satisfying the equation

f# ° h# = hu °fp(u)-
If in addition, h, varies continuously with 4, we say that f, and f, are strongly

equivalent or simply equivalent. We say that a family f, is (strongly) stable if it is
equivalent to all nearby ones.

1 Partially supported by CNPq-Brasil. This paper was prepared mainly at the Instituto de Matemdtica,
Universidade Federal do Rio de Janeiro, to whom the first author acknowledges hospitality.
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A complete characterization of stable generic arcs f, of diffeomorphisms such
that f, is Morse-Smale for u <0 and f, has simple recurrence was established in
[11]. They proved in fact that one of the periodic orbits of f, must be nonhyperbolic
and that this orbit is either a saddle-node or a flip. Also, in [11], it is proved that
arcs going through either a saddle-node or a flip orbit are strongly stable near these
orbits. But arcs passing through a Hopf orbit are not even mildly stable due to the
appearance of invariant circles where the restriction of the diffeomorphisms have
irrational rotation number.

Now, in the same context, if the diffeomorphism at the first point of bifurcation
has simple recurrence and all periodic orbits are hyperbolic then their unstable and
stable manifolds meet transversally except along one orbit. In this case the arc is
not even mildly stable. For instance, let f be a diffeomorphism of a surface which
exhibits two hyperbolic fixed points p, g such that W*(p) meets W°(q) along a
unique orbit of quasi-transversal intersection (parabolic contact) and let g be near
J so that it also exhibits a unique orbit of quasi-transversal intersection between
W“(q) and W*(p), where ¢ and p are fixed points for g near q and p. For f and
g to be equivalent near the closure of this orbit it is necessary and sufficient that

L 2logB (@) _log B(4)

log g*(p) log B°(p)

where B7(y) (resp. ﬁ”(i)) is the eigenvalue associated to W7(y) (resp. W7(¥)),

o=s, u; y=p,q. Thus there is a differentiable real invariant which is preserved

under topological equivalence. In this context we call A a modulus for the

equivalence. In [14] it is proved that for a generic one parameter family of

diffeomorphisms going through a quasi-transversal bifurcation, there are two moduli

for strong equivalence; namely B°(g) and 8"(p). For mild equivalence there is one
modulus which is A.

For one parameter families of vector fields, a complete set of topological invariants
near quasi-transversal saddle-connections was established in [14], after the initial
contributions of [13] and [1].

For generic two-parameter families of diffeomorphisms, even the local study near
a codimension-two fixed point is not yet complete. Nevertheless, there are important
results like in [4], where the unfolding of a codimension-two Hopf bifurcation is
analysed. The case of two eigenvalues equal to one and a nontrivial nilpotent part
is essentially open. However, the corresponding unfolding and local equivalence
for vector fields is known [2, 13]. More recently, in [7], codimension-two saddie-
nodes, flips and reflections (eigenvalues 1 and —1) were also treated, and global
stability involving such cases has also been analysed. Bifurcations in two-parameter
families of diffeomorphisms with simple recurrence include also cubic tangencies
and cascade of tangencies. This was studied in [6] where the authors characterize
surface diffeomorphisms having simple hyperbolic recurrence and a finite moduli
of stability.

However, diffeomorphisms in generic two-parameter families may also have
simultaneously a nontransversal saddle-connection and a nonhyperbolic periodic

=1,

https://doi.org/10.1017/50143385700005393 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700005393

Quasi-transversal saddle-node bifurcation 65

orbit, which may be a flip, a Hopf orbit or a saddle-node. Here we will study a
two-parameter family of diffeomorphisms for which £, exhibits a quasitransversal
saddle-connection between a saddle-node and a hyperbolic fixed (periodic) point.

Let us describe the families we will deal with.

Let Diff* (M?) be the space of C* diffeomorphisms endowed with the C* Whitney
topology and let Diff (M?) be the space of mappings f: I x I - Diff*(M?), I =
[~1, 1] with the usual C* topology. For short we write f, instead of f(u), ue I x L.

Suppose that f, is a 2-parameter family of diffecomorphisms such that at u =0,
£, exhibits:

(a) a hyperbolic saddle fixed point p = p,, C? linearizable, with contracting eigen-
value a €R;
(b) a saddle-node fixed point q=gq, such that W"(p) intersects W*(q) quasi
transversally along a unique orbit y. Here there are two possibilities:
(b,) either W*(q) is a submanifold with boundary W*(q) and W*(q) intersects
W*(q) or
(b,) W*(q) is a submanifold with boundary W*“(q) and W*(p) intersects
W:(q).

In any case we call 8 the expanding eigenvalue at g.

The set of diffeomorphisms satisfying (b,) (resp. (b,)) above is denoted by SNQT 1
(resp. SNQT2). We denote SNQT the union of SNQT1 and SNQT2.

We shall prove that SNQT is a codimension-two manifold in Diff*(M?). Hence,
a generic two parameter family f, meets SNQT transversally at f,, which we call
the central bifurcation for f,. The set of 2-parameter families for which f, € SNQT1
(resp. SNQT?2) is denoted by SNQT1' (resp. SNQT?2'). We denote by SNQT' the
union of SNQT1' and SNQT?2'.

al #a
—— " ——q—o—v————-\_
P * V€Y P ? e y
B
—— ————— - —
q *q

Let us now give the semilocal versions of the notions of equivalence.
A semi-local equivalence between f and f in SNQT is an equivalence defined
from a neighbourhood of the closure of y. We will prove:

THEOREM A. (1) Let f, f be two C" nearby diffeomorphisms in SNQT1. Then they
are semilocally equivalent if and only if a = a. (2) Let f, f be two C" nearby diffeomorph-
isms in SNQT?2. Then they are semilocally equivalent if and only if

log B _log é
loga loga’

Thus there is one modulus of stability for diffeomorphisms in SNQT.
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THEOREM B. Two nearby families f, and f# in SNQT' are mildly equivalent if and
only if their central bifurcations are equivalent.

Again, there is one modulus of mild stability for families in SNQT".

Before we state the next theorem, we describe some invariants for strong stability.

First Case: f, € SNQT1'. Here, the set of f,’s which exhibits a tangency between
W*(p) and W*(q) is a curve in the space of parameters, along which we need
a=a and B =[§ [14]. For B8 small enough, we may use it as a parameter and
describe the modulus as a function a = a(8).

Second Case: f, € SNQT?2'. The set of f, which exhibits a tangency between W*(p)
and W¢(q) will be a curve along which we must have a =& and B = £ [14]. But
now some other moduli arise at the saddle-nodes. Indeed, in [11] it is proved that
if f, is a diffcomorphism which has a saddle-node g,,, then f, | w«(,) is the time one
map of a vector field X, called an adapted vector field. Moreover, if h, is a
conjugacy between two such diffeomorphisms, then h,tlw((q“) is also a conjugacy
between the corresponding adapted vector fields. This conjugacy is differentiable
at We(g)\{g,.}.

The moduli are related to the rigidity of h,;lw‘(q“) and arise along the set of
saddle-nodes for which W},(p) n W (q)# ®. Performing a suitable reparametriz-
ation this set may be represented by the semi axis {u,=0, u, =0}. Let us describe
the invariants:

(1) a, =ad, due to the differentiability of h,|w:.

Let N be a fundamental neighbourhood for W}, (p), y,€ N,and {a,, b, } = Wi (p)n

W.(q)n N. Then

(2) K0, uz) = (0, @) where X,(a,) =b,, X;(d,)=b,,

(3) the normal derivatives at a,,, b, are equal, i.e., k(a, )= k(b,), as a consequence
of the differentiability of h| Wi

Through a convenient reparametrization we can get rid of one of these invariants.
So if we choose the reparametrization given implicitly by #(0, u,) = f(0, &,) we may
express the resulting moduli as

{a” =a, and
k(a,)=k(b,).
We finally state

TueorReM C. For generic families in SNQT' the complete set of moduli for strong
equivalence is

(1) a(B)=4(B) for f,, f. e SNQTY
(2) a(B)=a(B) along the curves of tangencies and

{au = d,
k(a,)=k(b,)
along the curves of saddle-nodes for f,,, f“ e SNQT?2'.

Hence, the space of moduli is given by a space of germs of real functions, showing
that for strong stability the moduli space is much richer than for mild equivalence.
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Nevertheless, they represent the full description of the equivalence classes of the
bifurcating two-parameter families described above.

In higher dimensions, the same question can be posed. We observe that new
moduli may appear due to the existence of a least contracting (resp. expanding)
eigenvalue at the saddle-node. Another possible, and yet not studied bifurcation in
higher dimension corresponds to a diffeomorphism with a quasi-transversal saddle-
connection between hyperbolic points p and g where there are two least contracting
eigenvalues at p or two least expanding ones at q.

Acknowledgement. We are thankful to R. Labarca and J. Palis for helpful and
stimulating conversations.

We are also thankful to the referee for good suggestions, including a simplification
of one of our proofs.

1. Bifurcation diagrams
In this section we exhibit the bifurcation diagrams for f, € SNQT".

We start by choosing appropriate coordinates and parameters to describe f,,. One
of the parameters, A, will be related to the loss of hyperbolicity and the other, A,,
to the loss of transversality.

For fo0€ SNQT we may choose a domain L where all diffeomorphisms near
fi00) are C? linearizable in L [12]. Identify L with a neighbourhood of (0, 0) in R?
so that we can write g(x, y) =(vx, ay), g near fgq. Let W< Wi (p) be a small
compact connected neighbourhood of pin W, (p). We call the closure of W\ f ;‘( W)
a fundamental domain D, for W;,(p). Denote the local stable manifold of p by
Wioc{P). Any neighbourhood of D, that is disjoint from W, ,.(p) is called a
fundamental neighbourhood for Wi ( p). We choose a fixed fundamental neighbour-
hood N containing D, for all u, N nf,*(N)=®. Note that both D, and N have
two connected components.

For a family f, € SNQT, there exists W}, a one dimensional C* invariant central
manifold, which depends continuously on p [11]. Also, the unfolding of f,;lw;; is

fix)=A(p)+x+x*+x%0(x,u), pel,

where U is a neighbourhood of =0 in R%.
Observe that A, =A,(u) € C” and f, exhibits a saddle-node fixed point only for
A, =0. From this expression we determine formulae for the hyperbolic fixed points:

f.(q)=q if and only if A, +¢’+q’c(q, n)=0.

Sothat g = A, | for A, = 0, thatis g/ £V|A,] > 1 as A, > 0. Call g, = —V]A,|, ¢, =V]A|.
Since (a/z?x)f“(q,) <1 and (4/9x)f,(q,) > 1, q, is a saddle fixed point and ¢, is a
sink for f,.

Note that the distance d(q;, g;) =2V|A,].

Now we choose A, for fo 0, € SNQT1.

Let F,(q,) be a C? curve in M? transversal to W, continuously depending on
i, such that F,(q,) = W.'(q,). Take y, a point in the orbit of tangency in the domain
of linearization around p. When no confusion is possible we still denote by N
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the connected component of the fundamental neighbourhood for Wi, (p) which
contains y,.

Define |A,]=d(Wi(p)n N, F,(g,)n N) and A,>0 if and only if Wj(p) and
Wi (q,) belong to the same connected component of N\F,(q,). Observe that A,
depends differentiably on u € U and the distance d(F,(g,) " N, W;(q,)n N) is
proportional to V|A,|=d(F,(g.) n WE, q,).

For this choice of parameters we define &/, c SNQT1' as the set of families for
which the jacobian matrix J(A,, A,)(u) at u =(0, 0) is nonsingular. For technical
reasons we also assume that (38/0A,)(0, 0) # 0.

By the Inverse Function Theorem, in a neighbourhood of (0, 0) we can express
p = {(p1, o) with

M= paAAr, Az)

M2 = ma(Ay, Az).
From now on we consider f, parametrized by (A,, A,), i.e., 1 =A;, u2=2A,.
Due to this choice of u, and u, we easily derive the bifurcation diagram for

/. € A, . Since we are only concerned with semiglobal properties, we fix a connected
neighbourhood V of p, g and the orbit of y, by f,).

F(q0)

F
e
9o q

The set of saddle-nodes corresponds to x, =0 and tangencies between invariant
manifolds associated to hyperbolic fixed points are, up to a constant factor given by

po=E(u)=—V]wl, p,=0.
Indeed, the distance between F,(q,) and W (q,) is proportional to J ||, as we
remarked above.
Finally, for every other value of p={(u,, u,), the restriction of f, to V is a
Morse-Smale diffeomorphism.

—

"""""""" My
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Now we turn our attention to families f, in SNQT2'. Take V a connected
neighbourhood of p, ¢ and the orbit of y, by f, and let N be a fundamental
neighbourhood of y,, N< V.

We choose A, similarly. Note that here g, is a source.

For A, we set

[A]=d(Win N, Wi N)

and A,=0 if and only if Nn W,(p)n W, #®.
As before we consider &, the set of families in SNQT?2' for which J(A,, A,)(0, 0)
is nonsingular and

_a_(logﬂ
dA; \log a

Hence, the Inverse Function Theorem allows us to take u, = A; and u, = A,. In this
case the distinguished sets in the bifurcation diagram are:

)(0, 0)#0.

;=0 which corresponds to the curve of saddle-nodes and

1o=0, u, =0 which corresponds to the curve of tangencies.

For every other value of (u,, u,), the restriction of f, to V is a Morse-Smale
diffeomorphism.

Two important consequences derive from our choice of &/, and &,:
(1) o, is open and dense in SNQTi', i=1, 2.
(2) each family f, € &;, i =1, 2, intersects SNQTi at a unique point f,4,, which we
call the central bifurcation.
Let us describe the type of diffeomorphisms that lie in f, near f,.
(i) f,esd,, pneUcR.
From the bifurcation diagram we have that U\({(x,, é(u,)), w1 =0} {u,=0})
has three connected components U, 1=i=3.
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It is easy to see that for each i, all diffecomorphisms f,, u € U, are equivalent.
Moreover,
(a) forf, , u, € U, there are three fixed points p, q,, g, in V, all of them hyperbolic
and Wi (p)n Wi(q,) =9,
(b) forf, , u, € U,, there are three fixed points p, q,, g, in V, all of them hyperbolic
but Wy (p) and W} (q,) meet transversally,
(c) for f, , mo€ Us, p is the only fixed point in V.

92

U,

For values (u,, £(1,)), W,.(p) and W3 (q,) meet quasi-transversally, while p and
q, are hyperbolic. This gives rise to a modulus of equivalence [8], namely log 8/log a.
Along the curve of saddle-nodes, i.e.,, {u,=0}, we have three classes of
equivalence: one corresponding to fi ., , #2> 0, another to f ,.,), u><0, and the
last one to the central bifurcation.
Indeed, for fo,,.,), #.>0, W*(p) intersects W*(q) transversally, whereas for
Souns H2<0, W¥(p) does not intersect W*(q).
From [11] it follows that all f,,.,, u2> 0 (resp. u,<0) determine the same class
of topological equivalence.
Clearly, the central bifurcation f, is not equivalent to any other f,, u # (0, 0).
(i) fuest,, pe UcRL
From the bifurcation diagram we deduce that U\({u, =0} {u, =0, u,<0}) has
three connected components U;, 1=i=3. All diffeomorphisms f,, with ¢ in U,
are equivalent. Furthermore,
(a) for f, , mo€ Ui={(m1, 42); 11 <0, u, <0} there are three fixed points p, q,, >
in V, all of them hyperbolic, and W}, (p)n W, (q,) =,
(b) for £, , po€ Us={(u,, #2); 1 <0, u,> 0} there are three fixed points p, q,, q;
in V, all of them hyperbolic, but W;(p)n W, (q,) # ® and transversal,
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(c) for f, , po€ Us={(p1, 12); #1>0} p is the only fixed point in V, which is

hyperbolic.
P * — U
—a———
Ad
Y4

U

Kl

d g,

When u lies in the semiaxis {u, <0, u, =0}, W,(p) meets W, (q,) quasi-trans-
versally along a unique orbit of tangency. This gives rise to a modulus of equivalence

[8], namely log B/log a.

Finally, the saddle-nodes appear only along the axis {u, = 0}, where we distinguish

three classes of equivalence:

(@) for fiouy» #2a<0, Wi(p)n Wio(q)=®
(b) for fio,,, n2>0, Wa(p) intersects W*(q) transversally
(c) at fo0) We have a tangency between Wg(p) and Wy(q).

2. Mild equivalence

In this section we will prove Theorems A and B from the Introduction.
As Theorem B is an easy consequence of Theorem A, we first show it follows

from Theorem A.

Proof of Theorem B
(i) fue sy, neUcR’

If f“ is a nearby family in &, and the central bifurcations f,,, and f(o o) are
equivalent, we claim that there exists a reparametrization p: U~ U for which
p(U)=U, 1=i=3; p(0,0)=(0,0), p(0, #»2)=(0 #2) and p(u,, €(u,)) satisfies

log B
log &

Indeed, since

0»3

(#1 s f(,ul)) =

(0 0)#0(resp —B(O 0)#0) then

_—:P(,‘Ll, E(m)).

log B ( log é)
resp. p
log o log a
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is monotonous along the curve of tangency. Moreover, as B{u,, &(u,))—>1 (resp.
B(&,, £&(i1,)) » 1) monotonously as u; >0 we have

1 log B
Ogﬁeo(resp.oi[f» 0) as u,~>0.
log o log

This concludes the proof for f, € &,.
(ii) f,esfr, me UcR™

Again the monotonicity of the invariants along the corresponding curves of
tangency (actually semiaxis) allow us to define a reparametrization {: U » U satisfy-
ing £(0,0)=(0,0), (0, u2) = (0, ), {(U))= U, 1=i=3, and

lo log B
log A (11,0 =—g—.§(,u1,0) for w, <0.
log o loga
This concludes the proof of Theorem B. O

$S

Following [11] we consider the strong stable foliation %, u € U, varying con-
tinuously with u; o}, denotes the projection of a neighbourhood of g on a central
manifold W;, for g along the leaves of F,,.

We denote by F,.(p) (resp. ,(p)) the trivial unstable (resp. stable) foliation
given by the linearizing coordinates at p; mr, (resp. ;) is the corresponding
projection on Wi (p) (W, (p) resp.). We also denote by «, the contracting eigen-
value at p.

The conclusion of Theorem A for f€ SNQT2 is an easy consequence of the proof
in [5] and [11]. So we only deal with fe SNQT1.

The goal now is to show that mild equivalence implies @ = @ as stated in Theorem
A.

Let f|weq)(x) = ¢(x) = x + x*+ 05(x) and define N(x, ¢) =min {keN, ¢*(x)= 8}
where 6 >0 is small enough.

Consider a sequence {z,,} such that
(a) z,->1€ W*(p)as m > o, identifying the point with its second coordinate.

(b) ym=a"z, >y, as m—> 0, y, is the point of tangency at N and y,, belongs to a
transversal segment to W*(p) at y,.

Let x,, = A, ¥m, SO that A,, > A>0, where we identify x,, with its projection on
W*(q) along the leaves of ¥*, and A,,, me N, are non zero constants.

Call N,,(¢)= N(x,, ¢). Let us prove the following

PROPOSITION 1. lim,,_, . log N,,(¢)/m =—log a.

Proof. As pointed out in [11], up to some smooth coordinate system, the map ¢(x)
is the time-one map of a vector field of the form X (x) = x>+ 05(x). Let X, be the
flow of X. Then
t,<N,=t,+1,

where X, (x,,)=86 and N, = N, (¢).

If X,(x)=3x%, X)(x)=2x" and 1, is defined by X, (x.)=23, the following
inequality holds:

bm=t,=N,=t,+1=t ,+1
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As 1, =If X;(x) dx we get
1 1 1 1 1
~|—<+—|=N,=2|——<-+—|+1
e R ]

So,

1 1

amA,, .
—_ _.—_.+— p—
2[ 5 zm]Sa A,,,Nm<_2[

Taking logarithms,

a™A, 1
— Ly — | +amA,
Zm

1 "A, 1
log [_(_a +—>]Smloga+ log A,, +1og N,

2 é Zm
"A, 1
=<log [2(_01 5 +Z—)+a'"Am].

Since a™ >0, z,,~>1and A,, > A#0 as m > we obtain

log N,
08 m_ —log a. O

lim

m-—oo m

Remark. If lim,, ., inf A,, =0, the same computations show

lim inf

m-o

log N'"_>_ ~log a.

m
Proof of Theorem A
(I) Necessity.

Let h be a conjugacy between f and fe SNQT1 and consider the sequences {z,,},
{¥m}, {x.n} as above and their images under h, {Z,.}, {J.}, {X.»}. For simplicity assume
h(8)=5¢ W.(4), & small enough.

We will see that log @ <log & and then, considering h~', we get the reverse
inequality.

We know that x,,=A,a™, A, >A>0 as m->o and %, = A,a", where A, is
bounded from above. Observe that lim inf,,, .« /im could be zero. In any case, as we
remarked,

lim inf
where ¢ =f| ws,, and N,.(¢) = N(X,, ¢).

But, since h is a conjugacy, N(X,, ¢)= N(x,, ¢). Hence the last inequality
together with Proposition 1 yield

log Nu(é) _ _, =
m - b

—log a = —log a. 0

(II) Sufficiency.
It will follow easily from the proof of Theorem C. O

3. Strong equivalence for f, € A,

Several restrictions arise for strong equivalence between one parameter families [4]:

(1) f,|w: is the time one map of a flow which has to be conjugate to the corresponding
flow for f:,lw;, In particular, the conjugacy h, is determined once it is defined
at two points. It is differentiable at W;\{q} and the lateral derivatives exist at q.
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(2) h, must preserve F; , where F; is the strong stable foliation for q. Necessarily,
these restrictions remain in the two parameter case. The proof of the next Lemma
is in [S]:

COMPATIBILIZATION LEMMA. Let p be a hyperbolic fixed point of saddle type for f and
I be a C' curve transverse to W*(p) at x, e D“(p), where D“(p) is a fundamental
domain for W*(p). Let f be C? near f and p, I, %, be similar objects for f. Let h:T > I
be an homeomorphism, h(x,)=X%,, h(x)/x®~> C as x> x,, 8 =log &/log a, C a non
zero constant. Take A and B tubular neighbourhoods of 1 and f ) such that if
9A=A,UA, and 9B=B,U B, then f\(A)=8B,, i=1,2.

Then there is a continuous retraction 7: N°* > W¥( p), where N®isa neighbour-
hood of W*(p) containing D*(p), X, € D"(p), satisfying the following properties:
(@) =7'(p)= W“(F)n N’ 3 N
(b) ar is f invariant, namely, w(f(p)) =f(=(p))
(3) if g€ T, 7(h(9) = h(7*(q)) o i
(4) if U is a domain of linearization for f, p< U, then the fibres of # on U~ N’
coincide with the fibres of 7°, except on the iterates of the strip bounded by
1&, and I;’z
(5) in the interior of the strip bounded by 1&, and )§2 the fibres of 7 are differentiable
and transversal to the leaves of %°(p).
Moreover, h extends to W*(p).

COROLLARY 4. Suppose that Z, & are fibrations defined on N, transversal to the
fibrations m, 7 except at T, I', where they have quadratic contact. Assume also that
h|r\(,) is differentiable. Then h extends to an homeomorphism in N which is differenti-
able except along the fibres through x,.

When no confusion is possible we still denote by #;,(p) the foliation given by
the Compatibilization Lemma and we say that %} (p) is obtained by compatibility
with h,.

Proof of Theorem C for f, € A,

The plan is the following: we define a convenient reparametrization p and take
h.|w: as in [11]. Choose % (q) such that for u =0 it coincides with the foliation
F,(q) already defined and let F,(p) be the trivial fibration. We use the Com-
patibilization Lemma to obtain analogous suitable foliations for ¢ and p. These
foliations intersect in N along a unique curve of tangencies I'. The homeomorphism
h“|w; induces a homeomorphism along I', which will be extended to N. Such an
extension will vary continuously with u, will preserve %, at u = (0, ,), but not
necessarily at other values of u.

We define pe C' by

{ a,—a,=0
Bu - ﬁ# =0.

By the Implicit Function Theorem, and the fact that f,, f:‘ € «,, we can express

i = (11, p2) and inversely w; = ui(fy, 4,), i=1,2.

(*)
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From the hypothesis it follows that p maps the curve (u,, £(u;)) onto (i, g:(p,,))
and maps {u,; =0} onto {&, =0}, i.e., p preserves diffeomorphisms corresponding
to tangencies and also diffeomorphisms exhibiting saddle node fixed points.

Let n be the curve in U given by

n={(py, n(,)); Wi(p) meets W;(q,) quasi-transversally)}.

Note that n(u, E—A\/ht,l (see § 1).

We also note that p does not necessarily map 7 onto 7.

Let C = {(1, 12); —Ax|pi| < > < —A,V|u,|} be such that n, p~'(5) are contained
in the interior of C, a wedge shaped neighbourhood of 7 and p~'(#%).

When no confusion arises we will refer to the separatrix of Wy (p)\{p} that for
some u intersects the correspondent separatrix of W;(q,)\{q,} as Wy (p) and
Wi(q,).

Let %, be a strong stable foliation such that:

(a) for each pu, the space of leaves of & is W,

(b) F. extends the unique strong stable foliation defined on W, (q) for u = (0, u.)

(c) W;(q,) and W;(q,) are leaves of %,;

(d) #; is invariant by f, and varies continuously with u

(e) forafixed uo, F;, (x)e &, is a C™ disk varying continuously with x. Moreover,
the tangent space to F;; (x) also varies continuously with x.

m,, denotes the projection of a neighbourhood of {q,, ¢} on W, along the leaves
of F,.

Let now B, <T be a segment transversal to W;(q,) and K, a fundamental
neighbourhood for W;'(q,) such that

(i) 9K, > B, L f,(B,)
(i) for uep™'(7), B, W(q,) #® and B, n Wi(p) = ®
(iii) B, =® for un g C.

Take C,(q,) =, nfr(K,). It is possible to choose K, for which 4C,(g,)\B,
is an invariant curve. Furthermore, C, (q,) depends continuously on u and C, = ®
when u £ C.

It is easy to see that for each p, the intersection of 9C, (g,) with a leaf of % is
either a unique point or empty.

Let us define h,,.

For p & C we may define h, at W, as a diffeomorphism satisfying:

h,>h, as u-0,
h, (x)>hi(x) as u—->0,x#gq

and the lateral derivatives converge at x = q.

For p € C the definition is not as simple. Suppose W,(p)naC,(g,)n N # &,
This intersection contains at most two points a, and b,. It is possible to define a
C' homeomorphism h, at W; in such way that the normal derivatives of the
homeomorphism induced by hulw,; at a, and b, are the same, and different from
zero. If the above intersection is empty we define h, at W¢, as a C' homeomorphism
such that h, > h, as u - 0.
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Remark that we may suppose that h,, defined as above varies continuously with
M.
Using #;° we extend h,|w: to I'\C,.(q2) and to §C,(q,). We still denote this
extension by h,. We can choose h, so that h,(6C,(q,)) =93C,(§,) and the normal
derivatives of h, at a,, b,, ' W} (p) vary continuously with .

Inside C,(q,) we proceed as follows.

We first define h,(B,)= B, and

h(Wi(p)n Cu(g) " N)= Wi(5)n C.(§2) n N.

Then we extend it to C,(g,) n N in such way that the normal derivatives along
Wi(p)n C,(g.)n N are all equal.

Consider the foliation %, (p) obtained by compatibility with h“|ruacy(qz,.

Extend h, to N—-C,(q,) preserving F,; and %,. The extension of h, to a
neighbourhood of p, g, and g, is obtained using the equation f,h, = h, f % Since
all the normal derivatives of h, along W;(p)n C,(q;)n N are equal and the
equality a(u) = ap(u) holds, h, extends to W, (p).

The continuity of h, on u follows from the continuity on u of h“[w;, C.(q5),
F.., ¥, and the normal derivatives along W.(p).

4. Strong equivalence for f,, € oA,
In this section we prove Theorem C for f, € sf,.

Recall that for u, =0 both f, and fl are the time one map of a vector field along
W, and the conjugacy between these diffeomorphisms has to be also a conjugacy
between the corresponding vector fields. So, hﬂlw; is very rigid: it is uniquely
determined by its values at two points in W;,(¢q)\{q}, and it is also differentiable.
If {a,, b,}= Nn W;.(q)~ W,.(p), the differentiability of h, at these points implies
that its extension to W, ( p) has to be linear, that is, a, = &,. Moreover, the normal
derivatives of h, at these points must be equal, i.e., k(a, ) = k(b,,) in order that such
an extension exists.

The plan of the proof is as follows:

(a) we use the results in [11] to define h,/ W}, and the reparametrization

(b) in order to extend h, we define some special fibrations

(c) the region R, bounded by Wy(p) and W;(q,), for pu=(u,, ua), u2>0, is
carefully analysed so as to guarantee the extension of h, to neighbourhoods of
p and g, as well as the continuity of h, on u.

We start by choosing convenient coordinates around p(u) and g,(u).

Since the corresponding Sternberg condition is trivially satisfied, according to
Takens [13], we fix C" coordinates, r=2, for f, such that f, near q, is given by

fy.(xy }’):(<P(X, Mla“2)9 b(x, ,“1,,“2))’), (4-1)

where (x,0)e W,(q,) and (0,y)e W.'(q;) for p,=<0, (3¢/3x)(0,0,u,)=1,
b(0, 1, p2) = B(p1, p2) for u,=0.

Analogously, by imposing the Sternberg condition on fi 4, at p (which holds in
an open and dense subset) we fix C" linearizing coordinates, r =2, on a neighbour-
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hood V, of p. Call |, the trivial unstable fibration given by these coordinates and
let 7, : V,> W,(p) be the projection along the leaves.

It is basic for our proof to fix a suitable conjugacy along W;. All further
constructions are based upon h,/ W;,. This is the subject of our next Lemma.

Lemma 5. For f,, f“ there are a reparametrization p(u) = i and a homeomorphism
h,/ Wi : W, > W such that
(a) h, is a conjugacy between f,/ W, and f i/ W, depending continuously on u
(b) for =0, (d/dy)mi(h,(¥))y=a, =(d/dy)mi(h.(¥))],-s,, where {a,,b,}=
Wi(g)n Wi(p)n N.

Proof. Given f, and fu let X, and X, be corresponding families of adapted vector
fields defined on W xR>

Following [11] we choose a box

U={(x, p); |x|=d,0= ||+, = £}

where X (x, ) and (6/9p )X (x, ) are positive on U \{(0, 0)}. We assume {a,,, b,} <
U, a, <0, b, <0 and both are contained in a fundamental domain D, for W,.

For ;>0 we define T, by Xr,(—d, u)=(d, u). Observe that T, goes to infinity
monotonously as u, goes to zero.

For p,=0, let ¢, satisfy X, (a )—

In a similar way we define au, b, t and

Choice of the reparametrization p
(a) For u,>0 and p2=0, p is implicitly given by

{n=n
a#=&,;.

(b) For u, =0, u,=0, p is implicitly given by

(c) For p,; <0, u, <0 we extend p with the property that 8, = ~,; , and the semiaxis
#2<0, w, =0 is preserved.
(d) For u,=0, u,=0 we proceed as follows.
Along the semiaxis (u,, 0), u, =0, the reparametrization is already given in (b);
also at (0, u,), <0, the reparametrization is given in (c). Under generic conditions,
namely

d 0 ~
— #0 d — 7,) #0,
ax Boolq) an ax Boo(41)

itis possible to choose a reparametrization p and families of points x, € W, X;e W}
varying continuously with u, & in the fourth quadrant verifying:
(d.1) at the boundary of the fourth quadrant we have

{x(o W2) T =4, x(O ) T ql
b(xu., I'L) = b(xﬂ.’ /"’)'
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(d.2) in the interior of the fourth quadrant we have

{b(x;n F’) = 5()(11, /1)
T,=T;.

Observe that p preserves both axis.

We now define h,/W,. Let g, be a conjugacy between X,, Xu such that
g.(a,)=d;. We will define h, =ii;'g,u,, where u, (resp. ii;) is a conjugacy
between f, and X, (resp.fu and iﬁ), with u, (x) = x for u = (0, u,) (resp. dz(x)=x
for 4 = (0, 4i,)).

(a) For ;>0 we choose u,, u; such that

hu(b#) =l1l_;1g}l“#(bl-'-) = Eﬁ’

d . d . .
”&;77';(“,:18#““)()0 =(_1;7Tu(u;llguuu)(y) ’

y=ay, y=by
u,(x)=x foru=(0,u, and
i(x)=x for i=(0, ).
The moduli conditions grant that these equations hold simultaneously at
u,=0. For u,>0 we extend u, and #d; continuously with u since we are free
to choose u, in D, and i in D;.
Remark that at u = (u,, 0). a, = b,, so that first two equalities hold trivially.
For p = (i1, #2), p <0, they hold too, since Wi(p)n Wi (q,)= .
(b) For u;=0, u,=0, we choose u,, i satisfying the same set of equations and
preserving the corresponding fixed points.
Observe that in this quadrant the equations X, (a,)=b, and X (dg)= b
hold by the definition of p.
(c) For u;=0, u,<0, the only restrictions on u, and i are
u,(x)=x foru=1(0,u,),
i (x)=x for i =(0, i)
and the preservation of the corresponding fixed points.

This completes the definition of h, |y« a

Let F.(q) be a C? central foliation depending continuously on u and . : V,~
W, be the projection along the leaves (g is either a saddle-node or the hyperbolic
saddle g,). Call I, = N the unique C' curve of tangencies between % (q) and
Fa(p) [5,11].

Consider N #7;'(y) W.,, which is either empty or consists of one or two points.
In the last case, we call them (x,, y) and (x,, ¥), X, <Xx,. Their images under h“|w;
are (%, y,) and (X, y,) where 7, is generally different from y, due to the rigidity
of h,. So the image of an horizontal segment of %,,( p) may not be horizontal; thus

F.(p)n N and F,(p)n N cannot be simultaneously preserved. Nevertheless, the
equality of the normal derivatives guarantees the

PROPOSITION 6. There is an invariant foliation ®}, defined in a neighbourhood ‘A/,‘ of
P, so that the projection along the leaves ,,: V> W, (p) satisfies
(@) #a(h(x p))=h(75(x,y)) for (x,y)e (WL(p)u Wi(q))nV
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(b) the segment joining (X,,¥,) and (X,,¥,) is contained in (#.)"'(¥) for some
y€ Wi(p), that is, in a single fibre of 7&*

(c) the restriction of ®% to N is C'

(d) there is a unique C' curve I~“# of tangencies between &), and F,(p) in N

(e) @} varies continuously with p

(f) ma(y)=mp(y)fory=s(p), s(pn)=o0(p,), wheres(u)e I~'M and will be determined
later.

Proof. 1t is straightforward and follows from the proof of the Compatibilization

Lemma. We observe that the choice of @, and the preservation of ¥}, &} and ¥,

F¢ induce a definition h, |-, :T, ~>T,. a

The following proposition is a consequence of a result in [3]. Nevertheless, we
include its proof for the sake of completeness.

ProrosiTION7. LetT',,, f‘“ be C' curves parametrized by (—¢, €) = R, £ > 0, transversal
toW,(q)atOandg,:T, >1, a homeomorphism such that g”(y)/y" >c(u)asy->0,
A =(log B/log B)(u). Then g, extends to the closure of \,-o f1(I',) v Wi (q)).

Proof. The diffeomorphisms f,, f .« are partially linearized:
Luxy)= (it x+a,x®, b,(x)y)
Fax y) =G+ x+azx, ba(x)y).
Call m,, w;, (resp. 7, 7.) these coordinates.
We take %, and %;; invariant foliations such that W}, (q,) and W(4,) are leaves.
We also take % and F4* strong invariant foliations such that I', and I, are leaves.
The only point of this proof is the convergence of some infinite products. To get
this we define the following conjugacy G, :
(a) h,;lw; = hu|w;‘-
(b) G“],;'(,l(ql,)(vr,q,, y)=(m§,,c.y"). Observe that for u,;=<0, 7 '(m(q))=
W*(q:)
(c) it preserves ¥, , #; and F.*, F2".
Now consider asequence (x,,, y, ) €I, for whichf,'iu(x“, Vu) = (w,, 2,)as k, » + 00,
(W,, 2,) € Wi(q,). Observe that (w,, z,) does not necessarily belong to W,.“(q,). Then
k -1

yu. 'HO bu(f{;(xuayu))')zo
=
and
k —

A
Cuy;\t H bp.(f‘;:.(x.:y., }‘;u.)) -> ‘P,u(wo, 20)9
ji=0
where ¢, > ¢, as u = u,, ©.(X,, ¥o) = (G, (W,, 2,)) = Z,, (X., ) = G.(x,, y,.)- In
particular, ¢, (w,, z,) = C, z5 if (w,, z,) € W*(q,). So,
k —1 j
i l{ﬁ({’,f(f,‘,{m))_) ” zy _
j=0 b#(fj(x;“)’,‘)) ‘P,L(Wo, zo)
Set g“'Wﬂ“:h“IW“‘. We claim that g, extends to the closure of U,,aof:(l‘“)u

Wi'(q,). Indeed, for po=(m,, u2), p,>0 we have | fL(F,)=si(T,) and
W (q,) is not defined. So, trivially g, extends and it is continuous.

(6.1)
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Thus, the interesting case is when u, = (0, u,). Take a sequence (x,,y,)€l, as
before, with
f:-“(x/.l.’ y;L) = (Wy.’ Zy.)—) (Woa zo)'
Note that

¥

k —1
o Pl (s 90 = 11 Bu(F( (50, y))) BT 2ad |

Jj=0 m

S B (s ) s 8% )

o bL(fl(x.,y.)) " Vo

As z, converges t0 Z,, g,(X,, ¥.)/¥a—> C(u) by hypothesis and

S B (F(8u (X 1))

4] b;\L(ny.(xu.syu.))

converges by (6.1), our result holds. 0

¥

j

b3

i

j

Important remark. For u = (0, p,) we can continuously extend g, to W.(q,), preserv-
ing #.(q,) and #,,(q,). The same proof grants the continuity of g, with pu.

The following two propositions will give h, on the second and third quadrants.
To do so we distinguish some regions where we define special foliations.

PrROPOSITION 8. For i, =0 and pu,> 0 there exists an homeomorphism h, defined on

N with the following properties:

(a) h“|ru coincides with the homeomorphism defined in Proposition 6,

(b) it has an extension to a neighbourhood of p and to a neighbourhood of q, such
that h,|w: ) is linear and h,|w:(q,) is logarithmically linear.

Proof. We first construct three fibrations %,, %, and %; in N. Let {c,}=T,.n
W.(g,) N N, identifying this point with its projection = (c,) and consider

So = So(p) =c, =3u3,
2
K2

si=s(p)= Cu -_2_,

S, =8,(p)= c“+u§.

Observe that s, < r<s, <s,, so that the leaves L, and L, of %,,(q,) passing through
s; and s, are the boundary of a neighbourhood of W;(q,). Call R,=R;(x) the
region bounded by W, (p) and L;, i=1,2.

Let Fp(r)e #,.(p) be the leaf at r and call r;=r,(u), i=1,2, the elements of
Fu(r)nL,.

Define F, = F,(u) as the union of the vertical segment joining r, to L, with the
arc of L, connecting r, to Wi.(p). Analogously we define F,.

Let R;= R,(u) be the region in N bounded by F,, F,, L,, that contains I', N
Wi(qy).
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Wiip)

s
I
t
'
{
Lz/z,v!'
|

It is possible to define a continuous fibration #; = () in R; with the following
properties:
(a) T R,, F, and F; are fibres,
{b) %, is topologically transversal to %, (q,) and F,(p) in the interior of R;n
{m(y)=0},
(c¢) in Ryn{m,(y)=0} it coincides with F,(q,), so that I is a singular fibre.
r

»

AN

Let R,=R,(u)={ye N;0=m,(y) =< m.(s,)} and define ¥, = F,(u) as:
(a) the restriction of %, to R,u R,U(N\R;) coincides with F.(p)
(b) the restriction of %, to R,\(R,u R;) is a C' foliation transversal to F;(q,)
such that F,, F, and the two segments (w,’i)“(w“i(so)) M R,\R, are leaves.

Remark that %, is not defined in R;\R,.

Finally, take %,= %,(un) as F.(q,) in (N\R;) U (R,\R,) and it is not defined in
R,~R,.

In order to construct analogous objects for f,‘ we need a definition of h, |-, which
now follows.

We set h,(y)= A(p)y* for ye W*(q,). This induces a definition of h#|r\Rl, via
projection along %..(q,), F};;(é,).

Recall that h,|;~g, is given by the preservation of #,,, @}, and %, ¢ together
with hu|w,:- We restrict this definition for ye ' R,, y =r, and complete it along
' R,, for u,>0, by continuity on y and pu.

The regions IE,-, 1=i=<4, and the fibrations 9'.*,-, 1=i=<3, are constructed
analogously to R; and &, respectively, except for the fact that ®, takes the
place of Z,(p), where ®, is given by Proposition 6 and 7=#(u)=h,(r,),
§=5(p)=hu(s), 0=i=2,
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Let us define h, on N.

Step 1. Since the family h, |- is already defined and h, (y) = A(u)y"* for ye Wi'(q,),
it induces a definition on N n W¥(p) and (#5) (7i(r)) N R, via F;, 97'3.

Note that h#IW;(ql) gives another correspondence between %; and 97'3, which
induces a definition of h, on Lyn{w (y)=m.(s,)}.

We extend h, to R\R, preserving the definition already given along I', con-
tinuously depending on u. Observe that h, may not preserve %; in R,\R,.

-~

Step 2. Extend h, to N preserving the above fibrations %,, %, 1<i<3, by their
identification through h,|row: (g, -

Step 3. Extend to |, f.(N) by the equation
hof =i

Along W, (p) the conjugacy is given by h,(x) = k(u )x, in the linearizing coordin-
ates. This extension is continuous due to the definition of h, near W, (p) and the
preservation of %, ?}].

Finally we extend h, to a neighbourhood of W*“(q,) by preserving %", J'&ﬂ" and
F, . 0
PROPOSITION 9. For u, <0 and pu,=0 there exists an homeomorphism h,, defined on
N with the following properties:

(a) h,|r coincides with the homeomorphism defined on Proposition 6,
(b) it has an extension to a neighbourhood of p and to a neighbourhood of q, such
that h,|w:,, is logarithmically linear and h,|w«,, is linear.

Proof. Recall that for u, =0, u,=0 the reparametrization verifies B, = ﬁﬁ.

Define h,|-(y), for y=<c,, through the homeomorphism induced by hﬂlw; and
the preservation of F*, ®%. For y=s,(u), h.(y)=A,y"*¥"#* and extend it
diffeomorphically to all of T.

Since h,|r- is differentiable at ' W*(q,) and B, = ﬁ,;, applying Proposition 7 we
obtain a conjugacy on |_,=o /() U Wi*(q,) which extends h,|;-. This conjugacy
turns out to be linear along Wy'(q,).

Modify %< by compatibility with h, | and extend h.|weq) to Wi(q;) by preserv-
ing F5, &% and F-, dY.

The extension of h, to a neighbourhood of W (p) is a consequence of the
definition of h,|;- and the preservation of F% and ®.. O

Proof of Theorem C for f, € sf,. In Propositions 8 and 9 we defined the homeomorph-
ism h, for u, =0. Here we extend it to u, >0 and prove continuity, using the same
notations as before.

Recall that h#|w;‘ is already defined. In the first place, consider u in the first
quadrant. Take #“ a strong unstable foliation for f, at g,, continuous with u,
transversal to %, (p).

Let S.,= R,\R, and S, be strips around W, (q,)n N, where S, is chosen with
the property that the closure of its saturation by f, contains a fixed segment of
F.'(q,) (F.*(q,) is the fibre of F. at g,). Observe that the width of S, goes to
zero with u,. Consider analogous objects for fu.
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Define a fibration F,= F,(«) in S, such that:
(a) it is transversal to W} (q,)
(b) it coincides with F,; in {7, (y) =< m,(s,)}
(c) it coincides with %; in R;N S,,,.

S, S

In a similar way we construct %., replacing %, by @ .

Note that the definition of h |W and the correspondence between %, and &,
#," and 9““ fix h, in a nelghbourhood of Wy. Since we want h, to enjoy some
additional properties, inside S,L. , we choose a special strong unstable foliation 97;:
(a) it is transversal to &,

(b) it is the restriction of 9"3 to Sm, when S = S
(¢) it is an extension of 5’}'3 when S 2 S
(d) for we Wi (q)), m(w)<7ru(s,,), we select IE‘"“(h“(w)) for which the homeo-
morphism .
h, . F'(w)> F ' (h,(w))
induced via projection of %, on %, satisfies h,,(y)/y* > h(u) as y->0, where
k(u) depends continuously on u, k(u)# 0 for every wu.

We are now ready to define h, in N. Along I' we follow the definition already
given in Propositions 8 and 9.

For u,=0 we proceed as follows:

(a) in R, N\S,, we preserve %;, J:; and %,, @,

(b) in N\R\S,, we preserve F,, ‘TC and #,,, @,

(&) if S, = 8,, we preserve F,., F}'ﬁ and Fo, %,

(d) if S, 25,, we preserve F., ¥5 and #,, %, inside S,,.

We preserve ., &, and %", 9““ out51de S,.,, but now the correspondence
between the pieces of the fibres of the last pair of foliations is given by the
homeomorphism defined on the boundary 9S,,,=L,uU L,.

For u, <0, u, =0, we recall that h“|r is differentiable except at ' » W, (p).

We modify 9.72 by compatibility with h, |- and extend h,|r to N by preserving
F:, @4 and F:, F.

In N, this homeomorphism is differentiable except at the leaves through I'n
W (p). By Corollary 4, a foliation %, in N, transversal to %, and extending T,
is sent to a foliation %“* satisfying the corresponding properties. This means that
h,|~ preserves three fibrations: F4, ®%; 9‘ and #.* 97““, and %, ﬁ,‘j“,

where . is chosen arbitrarily, varymg contmuously w1th M.
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A direct computation shows that the angle between ﬁﬁ“ and W; is bounded
away from zero, uniformly with u, and so the saturation of ﬁﬁ“ converges to the
unique strong unstable foliation in W;(é,) as u,->0.

We extend h, to a neighbourhood of W, (p) and to a neighbourhood of W, (q,)
by conjugacy. It is easy to see that for each u, h, is continuous.

We now prove the continuity for each of h, on .

(I) Continuity on Wi, (p), po = (17, u3).

(a) if u3#0, then h,(x)/x'*8%/"°8% > k(u) along T and we preserve F4, &% in a
fixed neighbourhood of W, (p). Hence, the continuity on u is direct

(b) if u, =(u7,0) and we approach u, by values in the interior of the first quadrant,
we proceed as follows.

Take v, > v, as pu = u,, v,, € W, (p)\{p}. Suppose w, =f"» =(v.) € R,\Ry, i.e.,
5o(n)=w, = 5,(u). Identifying v,, w, with their second coordinate, we have

a "w, =9,->0v, #0.

Remember that from Proposition 8,

Solp)=c¢,—3u3, sau)=c,+ui and ¢, =o(u,)

Also, 5,()=k\(55(1)) - so(u) and $(u) = ki($x(n)) - s2(u) where ki(5(u))~
k(po), 1=i=2, as pu > p,. Moreover, ¢, =5,(u)+ A(un)(c, —s.(u))*, where A(u)
is a constant corresponding to A(u) in N. As s,(n)=w, <s,(u) and §,(n)=w, <

R
k) then S(0)_ W dalw)
s(u)” w. T s.(p)

But

AM) Solp) (c, =313

=k =k So -k

() 1(5(u ) ekl () 1(5o(u ))(“_*_M) (u)

as {1 fho.

Let us see that w,/w, - (02/0u2) (11, 0) as u = u,. Indeed,
_l /12+d/1.(w;¢ + ;) _ Mo/ fa M2+duwy. —d.u,

W W, W

fho M2 £ 5’#2 M2 > J223
={——-d,|—+d =(— ,0) ( ,0)— d) +d
(#2 “) Wy . Mo Opo o P10 0) W, J1% (1 W, .
where d, = (oh,/dy)/(7), 7€T.

Now observe that calling h(y, u.) the conjugacy along I' for values u = (0, u,),
a Taylor expansion yields

Gy e (i)y+8—l;; (Z2)Hs-

Since &, =f,+0(43) and (9h/du,)(f22)>0 as u,~>0, we get that 9,/du,=
(6h,/3y)(0). So d,—>(0fk2/0m2)(i1,0) and W,/ w, > (3i2/du2)(p,,0) since
limsup, ., |p./w.|=1.

Finally we see that if w,a ™" = v, > v, then W,&@ " =7, > §,:

Lo
ﬁe_“zﬁ(g) g
— .

w, a +» W}L [44
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We have just verified that w,/w, > (3i2/du:(p,,0); and

52(#) sZ(/“')
) ki($2(w)) —— )

—kmm»“zm k(w)

Cu

as p > p,.

Now ¥, =a "W, = a” "=w, because a =4, due to our reparametrization. Thus
o, =a "W, =(a "w,/w,) - w, which converges to k(u,) - v, as u->pu,. And we
have proved continuity on W _(p).

(b) If u,=(p1,0) and we approach u, by values in the fourth quadrant, take
v, >, as u->u,, v, € W, (p)\{p}. Note that in this case a, and &, may be
different.

Let w, =f"«(v,) € N. ldentifying v,, w, with their second coordinate we have:

a™v, =w,.

If w,=s5(p), hu(w,)=k(u)w, 8¢ and the result easily follows. Otherwise let

liminf,., |w./ml|=1.

We claim that u,n, >0 as g - u,. In fact, liminf, ., |w,/u,|=1 together with

(Wo/p)ps @ ™ >vp, imply |u,Ja™™ <8 for some constant &>0. Taking
logarithms the inequality turns into

log |, — n, log @ <log &
and multiplying by |u,| we get

|12] log || = |w2|n,, log a <|u.| log 8.
So |u,|n, - 0 and the claim is proved.
Also a@/a =1+ 0(u,) because & = a at the axis u,=0. So

(g) "= (14 0(2)) ™™ = [(1+ 0(ju)) /4] " ~1

as py=> o

Thus (W, /w,){(d/a) " = (3ft2/ dp,)(p, 0) as u > u, and this concludes the proof
of the continuity on u in a neighbourhood of W, (p).

(II) Continuity on W}, (q).

Take v, > v, as u - pu,. The interesting cases are when u,=(0, u3) and v, €
WL .(q).

(Il.a) We first consider u = (py, w2) > to, u,<0.

In this case S, =S, =®, A=1. As we preserve F., % and 9‘"‘ " the
convergence is direct when w«,> 0. Also, when u, =0, we preserve ¥ ff and the
continuity follows. :

If u,>0 then for u, small enough we have S,,2 5, . Note that as x,>0, the
saturation of S,, by f, covers a fixed neighbourhood of q,. Then the continuity
follows because we are preserving %,, %, and Z,., P}'; and %, converges to F*“.

When w3 =0 we consider the values of u such that
(1) S,,=®, (2) S,,=2S5,, and (3) S,,=285,,.
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We have just analysed above the first two possibilities. So it is enough to take
W,>W,as u,>0,S5, 285,

Let us make a few observations about the saturation of our fibrations.

Due to the choice of s,, §,, .. and F}’:‘j‘, the angle between # and #*“ in S,,,
has at'least the order of u,. As the width of S, has the order of u3, we conclude,
by a direct computation, that F* restricted to S, \S,,, when iterated, converges to
a fibration whose fibers are contained in those of the strong foliation in W(q,).
Analogously for .“}’,""‘.

Reasoning in the same way we can see that either the saturation of S, by f,
collapses to W (q,) or, when iterated, %, converges to the strong foliation in W}(gq,).
This means that the foliation 5= %s(u) of S, given by:

(a) outside S, it coincides with &,

(b) inside S,,, it coincides with %,

when iterated, converges to the strong unstable foliation in W;,(q,).

Similarly we define 9~:5 in 5#1’ just replacing %, by ®; when iterated it also
converges to the strong unstable foliation in W}3(q,).

Observe that the homeomorphism in 4S,,, is given by h,|w- projected through %,,
.01'74. As S, shrinks, it converges to h,;lw;- So, asymptotically with u, the saturation
of % (resp. %) is the strong unstable foliation in W,(q,) (resp. W,(4,)).

Let us now return to our sequence w, > w,€ W*(q,), S, 28S,,.

If {w,}<S,,, since h, preserves F°, F¢ and Fs, 95"5 then h,(w,)= h,(w,) as
p 0. Otherwise {w,} = S, \S,,.

On account of (6.1) and the preservation of %, 9';5, h,(w,)> h,(w,) as u > 0too.
(IL.b) We consider pu = (w1, p2) = o, #1=0.

When we approach u, by values u = (u;, o) with p, =<0, we are preserving ¥,
®* and %, ¥°. This grants continuity.

So we deal with u = (u,, w2}, #2>0.

In this case it is enough to consider sequences v, > v, € W*(q,) for which
w, =f."(v,) € fl2(Ryn R,), where f%(Ryn R,) is contained in a domain of partial
linearization around g, .

R,N R,

v, g, W*(q,)

Identifying all points with their second coordinate in the partially linearizing
coordinates,

1

U, =W, ‘Ho b (fl(w,))>v, #0,
=
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which implies

n —1

vp=wu 11 bL(fL(w)) >,
j-

We have to prove that

W, ;[10 B (FL(9,0)~ 5.
Observe that as
W, = f1(5(w)) + (0, = fla(5. (1))
then
W, = Af (s ()™ + k(W ) (w, = flz(so ().
Since fﬁ(s,,(u))=o(p.2) and w, —fj,g(so(u))=o(p.§) on account of the choice of

so(p),
Jo x L"n__f_’u(ioﬂ)]
&z(fu(so(#))) [A+k2(wp.)< f{‘j(SD(/.L))A
wh . \ wu—ff,:(s(,(m))*
(fe(so(p)) (1+ (s, (m)
_Avowdh
Tlto(u)) " BT
Finally,

Oy

A | W RGACT)

W A "t B (FLORL))
e L O L ey

By Proposition 7, we have

nUh (FL))
,«go bA(fL(w,))

and using the limits calculated above, we get

-1 as p->u,,

U > Ao, as p = p,. o
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