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Abstract. In this paper we give a complete set of invariants (moduli) for mild and
strong semilocal equivalence for certain two parameter families of diffeomorphisms
on surfaces. These families exhibit a quasi-transversal saddle-connection between
a saddle-node and a hyperbolic periodic point.

0. Introduction
Generically diffeomorphisms with simple recurrence are Morse-Smale and therefore
structurally stable [9]. It is conjectured that generically one parameter families of
diffeomorphisms, starting at a Morse-Smale one, first bifurcate either by the loss
of hyperbolicity of a periodic orbit or by the appearance of a nontransversal
saddle-connection [10]. Such one-parameter families may not be stable, but in
several relevant cases the classes of equivalence may be parametrized by finitely
many real invariants (moduli) as introduced in [8]. To be more precise, let us recall
some definitions and results.

Two smooth families of C°° diffeomorphisms of M2, /M and /M, ft e R", are mildly
equivalent if there exists a reparametrization p :R" :p and a family ftM: M«o of
homeomorphisms satisfying the equation

If in addition, /iM varies continuously with /j., we say that /M and /M are strongly
equivalent or simply equivalent. We say that a family /M is (strongly) stable if it is
equivalent to all nearby ones.

t Partially supported by CNPq-Brasil. This paper was prepared mainly at the Instituto de Matematica,
Universidade Federal do Rio de Janeiro, to whom the first author acknowledges hospitality.
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64 /. Beloqui and M. J. Pacifico

A complete characterization of stable generic arcs f^ of diffeomorphisms such
that fp is Morse-Smale for /j. <0 and f0 has simple recurrence was established in
[11]. They proved in fact that one of the periodic orbits of/0 must be nonhyperbolic
and that this orbit is either a saddle-node or a flip. Also, in [11], it is proved that
arcs going through either a saddle-node or a flip orbit are strongly stable near these
orbits. But arcs passing through a Hopf orbit are not even mildly stable due to the
appearance of invariant circles where the restriction of the diffeomorphisms have
irrational rotation number.

Now, in the same context, if the diffeomorphism at the first point of bifurcation
has simple recurrence and all periodic orbits are hyperbolic then their unstable and
stable manifolds meet transversally except along one orbit. In this case the arc is
not even mildly stable. For instance, let / be a diffeomorphism of a surface which
exhibits two hyperbolic fixed points p, q such that W"(p) meets Ws(q) along a
unique orbit of quasi-transversal intersection (parabolic contact) and let g be near
/ so that it also exhibits a unique orbit of quasi-transversal intersection between
Wu(q) and Ws(p), where q and p are fixed points for g near q and p. For / and
g to be equivalent near the closure of this orbit it is necessary and sufficient that

log/?"(<?) Jog/TO?) r

where fi^iy) (resp. P^iy)) is the eigenvalue associated to W(y) (resp. W(y)),
a = s, w; y=p,q- Thus there is a differentiable real invariant which is preserved
under topological equivalence. In this context we call A a modulus for the
equivalence. In [14] it is proved that for a generic one parameter family of
diffeomorphisms going through a quasi-transversal bifurcation, there are two moduli
for strong equivalence; namely @s(q) and /?"(/>). For mild equivalence there is one
modulus which is A.

For one parameter families of vector fields, a complete set of topological invariants
near quasi-transversal saddle-connections was established in [14], after the initial
contributions of [13] and [1].

For generic two-parameter families of diffeomorphisms, even the local study near
a codimension-two fixed point is not yet complete. Nevertheless, there are important
results like in [4], where the unfolding of a codimension-two Hopf bifurcation is
analysed. The case of two eigenvalues equal to one and a nontrivial nilpotent part
is essentially open. However, the corresponding unfolding and local equivalence
for vector fields is known [2,13]. More recently, in [7], codimension-two saddle-
nodes, flips and reflections (eigenvalues 1 and —1) were also treated, and global
stability involving such cases has also been analysed. Bifurcations in two-parameter
families of diffeomorphisms with simple recurrence include also cubic tangencies
and cascade of tangencies. This was studied in [6] where the authors characterize
surface diffeomorphisms having simple hyperbolic recurrence and a finite moduli
of stability.

However, diffeomorphisms in generic two-parameter families may also have
simultaneously a nontransversal saddle-connection and a nonhyperbolic periodic
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orbit, which may be a flip, a Hopf orbit or a saddle-node. Here we will study a
two-parameter family of diffeomorphisms for which f^ exhibits a quasitransversal
saddle-connection between a saddle-node and a hyperbolic fixed (periodic) point.

Let us describe the families we will deal with.
Let Diff0 (M2) be the space of C°° diffeomorphisms endowed with the C°° Whitney

topology and let Diff^(M2) be the space of mappings / : / x 7->Diff°(M2), / =
[-1,1] with the usual C°° topology. For short we write/M instead of/(/A), /J. e I x I.

Suppose that ^ is a 2-parameter family of diffeomorphisms such that at /x = 0,
fo exhibits:
(a) a hyperbolic saddle fixed point p = po, C2 linearizable, with contracting eigen-

value a e R;
(b) a saddle-node fixed point q = qo such that W(p) intersects Ws(q) quasi

transversally along a unique orbit y. Here there are two possibilities:
(b,) either Ws(q) is a submanifold with boundary Wss(q) and W(q) intersects

Wss(q) or
(b2) Wu(q) is a submanifold with boundary Wu(q) and W(p) intersects

Ws(q).
In any case we call /? the expanding eigenvalue at q.
The set of diffeomorphisms satisfying (b[) (resp. (b2)) above is denoted by SNQT1

(resp. SNQT2). We denote SNQT the union of SNQT1 and SNQT2.
We shall prove that SNQT is a codimension-two manifold in Diff°°(M2). Hence,

a generic two parameter family f^ meets SNQT transversally at fo, which we call
the central bifurcation forf^. The set of 2-parameter families for which fo € SNQTl
(resp. SNQT2) is denoted by SNQTV (resp. SNQT2'). We denote by SNQT' the
union of SNQTV and SNQT2'.

r

Let us now give the semilocal versions of the notions of equivalence.
A semi-local equivalence between / and / in SNQT is an equivalence defined

from a neighbourhood of the closure of y. We will prove:

THEOREM A. (1) Let f f be two C nearby diffeomorphisms in SNQTl. Then they
are semilocally equivalent if and only if a = a.(2) Letf fbe two Cr nearby diffeomorph-
isms in SNQT2. Then they are semilocally equivalent if and only if

log j3 _ log 0
log a log a

Thus there is one modulus of stability for diffeomorphisms in SNQT.
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THEOREM B. TWO nearby families f^ and /M in SNQT are mildly equivalent if and
only if their central bifurcations are equivalent.

Again, there is one modulus of mild stability for families in SNQT.
Before we state the next theorem, we describe some invariants for strong stability.

First Case: /M e SNQTV. Here, the set of f^'s which exhibits a tangency between
W(p) and Wss(q) is a curve in the space of parameters, along which we need
a = d and P = J3 [14]. For /? small enough, we may use it as a parameter and
describe the modulus as a function a = a(/3).

Second Case: f^ e SNQT2'. The set of/M which exhibits a tangency between W(p)
and Wc(q) will be a curve along which we must have a = d and /3 = /3 [14]. But
now some other moduli arise at the saddle-nodes. Indeed, in [11] it is proved that
if f^ is a diffeomorphism which has a saddle-node q^, then f^ \ w<(q > is the time one
map of a vector field XM, called an adapted vector field. Moreover, if h^ is a
conjugacy between two such diffeomorphisms, then fcM|w''(<jM) is also a conjugacy
between the corresponding adapted vector fields. This conjugacy is differentiable
at W(ftt)\{<JL}.

The moduli are related to the rigidity of / i j w ^ ) anc* arise along the set of
saddle-nodes for which W^(p)n W^q)^®. Performing a suitable reparametriz-
ation this set may be represented by the semi axis {/i2s0, fj,t = 0}. Let us describe
the invariants:
(1) a^ = d^ due to the differentiability of JiJ w^.
Let N be a fundamental neighbourhood for W^(p), yo e N, and {aM, b^} = W^(p) n
Wl(q)nN. Then
(2) t(0, JJL2) = t(0, /I2) where X,(afL) = bft, X,-(dM) = b^,
(3) the normal derivatives at aM, b^ are equal, i.e., fe(aM) = fe(bM), as a consequence

of the differentiability of h\ w^.
Through a convenient reparametrization we can get rid of one of these invariants.

So if we choose the reparametrization given implicitly by t(0, /A2) = ?(0, /I2) we may
express the resulting moduli as

[•«M = aM and

./c(aM) = k{b^).

We finally state

THEOREM C. For generic families in SNQT the complete set of moduli for strong

equivalence is

(1) a{p) = d{p)forfti,fHLeSNQTY
(2) a((i) = d(/3) along the curves of tangencies and

along the curves of saddle-nodes for /M, /M e SNQT2'.

Hence, the space of moduli is given by a space of germs of real functions, showing
that for strong stability the moduli space is much richer than for mild equivalence.
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Nevertheless, they represent the full description of the equivalence classes of the
bifurcating two-parameter families described above.

In higher dimensions, the same question can be posed. We observe that new
moduli may appear due to the existence of a least contracting (resp. expanding)
eigenvalue at the saddle-node. Another possible, and yet not studied bifurcation in
higher dimension corresponds to a diffeomorphism with a quasi-transversal saddle-
connection between hyperbolic points p and q where there are two least contracting
eigenvalues at p or two least expanding ones at q.

Acknowledgement. We are thankful to R. Labarca and J. Palis for helpful and
stimulating conversations.

We are also thankful to the referee for good suggestions, including a simplification
of one of our proofs.

1. Bifurcation diagrams
In this section we exhibit the bifurcation diagrams for f^ e SNQT.

We start by choosing appropriate coordinates and parameters to describe^. One
of the parameters, Ai, will be related to the loss of hyperbolicity and the other, A2,
to the loss of transversality.

For /(Ojo) s SNQT we may choose a domain L where all diffeomorphisms near
/(O,o) are C2 linearizable in L [12]. Identify L with a neighbourhood of (0,0) in R2

so that we can write g(x,y) = {vx, ay), g near/(00). Let V/a W^(p) be a small
compact connected neighbourhood of p in W^(p). We call the closure of W\/~ '( W)
a fundamental domain DM for W^(p). Denote the local stable manifold of p by
Wpjocip). Any neighbourhood of DM that is disjoint from Ws^loc(p) is called a
fundamental neighbourhood for W^(p). We choose a fixed fundamental neighbour-
hood N containing DM for all /u., N nf~2(N) = <$>. Note that both D^ and N have

M for all /u., N nf
two connected components.

For a family/M e SNQT', there exists W£ a one dimensional Ck invariant central
manifold, which depends continuously on /J. [11]. Also, the unfolding o f / J ^ is

where U is a neighbourhood of fi = 0 in R2.
Observe that A, = A,(/x) 6 C2 and f^ exhibits a saddle-node fixed point only for

A, =0. From this expression we determine formulae for the hyperbolic fixed points:

U(i)-a if and only if Xl + q2 + q2cr(q, n) = 0.

So that q = ±>/|A,| for A, < 0, that is q/ ±J\k]^ 1 as A, -> 0. Call qx = -VJA ĵ, q2 = VjXj.
Since (d/dx)fli(q})< 1 and (d/dx)fli(q2)> 1, q} is a saddle fixed point and q2 is a

sink for/M.
Note that the distance d(qu q2) = 2-J\\^\.
Now we choose \2 for f00)e SNQTl.
Let F^iqo) be a C2 curve in M2 transversal to W^, continuously depending on

H, such that Fo(qo) = Ws
o
s(qn). Take yo a point in the orbit of tangency in the domain

of linearization around p. When no confusion is possible we still denote by N
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the connected component of the fundamental neighbourhood for W^{p) which
contains yo.

Define |A2| = d ( r , ( / » ) n N , FJqB)nN) and A2>0 if and only if W^ip) and
W"(^i) belong to the same connected component of N\FM(go). Observe that A2

depends diflerentiably on n e U and the distance d{F^(qo)nN, Ws*{qx) n N) is
proportional to 7|A,| = </(FAl(qro)n W^, qt).

For this choice of parameters we define . s^c SNQTV as the set of families for
which the jacobian matrix J(\i, A2)(/A) at fi = (0,0) is nonsingular. For technical
reasons we also assume that (d/3/dA2)(0,0) ^ 0.

By the Inverse Function Theorem, in a neighbourhood of (0,0) we can express
fi = (/A, , fi2) with

I, A2).

From now on we consider^ parametrized by (A,, A2), i.e., /x, = A,, /*2 = A2.
Due to this choice of //., and /i2 we easily derive the bifurcation diagram for

f^&Mi. Since we are only concerned with semiglobal properties, we fix a connected
neighbourhood V of p, q and the orbit of yo by /(o,o) •

The set of saddle-nodes corresponds to /x.] = 0 and tangencies between invariant
manifolds associated to hyperbolic fixed points are, up to a constant factor given by

Indeed, the distance between FM(go) and W-^g,) is proportional to V|//.,|, as we
remarked above.

Finally, for every other value of fjb = (/j.,, fi2), the restriction of f^ to V is a
Morse-Smale diffeomorphism.
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Now we turn our attention to families f^ in SNQT2'. Take V a connected
neighbourhood of p, q and the orbit of yo by /(00) and let N be a fundamental
neighbourhood of yo, N c V.

We choose A, similarly. Note that here q2 is a source.
For A 2 we set

and A2>0if and only if Nn Wtl(p)n W^<I>.
As before we consider s£2 the set of families in SNQT2' for which /(A,, A2)(0,0)

is nonsingular and

Hence, the Inverse Function Theorem allows us to take ixx = A, and ix2 = A2. In this
case the distinguished sets in the bifurcation diagram are:

Mi = 0 which corresponds to the curve of saddle-nodes and
/io = O, Mi — 0 which corresponds to the curve of tangencies.
For every other value of (/*,, ix2), the restriction of /M to V is a Morse-Smale

diffeomorphism.

(0.0)

Two important consequences derive from our choice of six and M2:
(1) six is open and dense in SNQTi', i= 1, 2.
(2) each family/„ e s£it i = 1,2, intersects SNQTi at a unique point/(0,0), which we

call the central bifurcation.
Let us describe the type of diffeomorphisms that lie in f^ near /(0,0) •

(O/^erf,, Met/<=R2.
From the bifurcation diagram we have that U\({{nx, £(AH)), MI —0}U{MI

 = 0})
has three connected components I/,, 1 < i <3.
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It is easy to see that for each i, all diffeomorphisms f^, /x e £/,, are equivalent.
Moreover,
(a) for/Mi, / i , e ( / h there are three fixed points p, qx, q2 in V, all of them hyperbolic

and W^(p)nWl(q}) = ^,
(b) for/^, jt,, e £/2, there are three fixed points p, g,, q2 in V, all of them hyperbolic

but W^(p) and W^(g,) meet transversally,
(c) for/M<, (ioe U3, p is the only fixed point in V.

For values (fi}, f (/x,)), VyjKp) and W"(g,) meet quasi-transversally, while p and
q, are hyperbolic. This gives rise to a modulus of equivalence [8], namely log /3/log «•

Along the curve of saddle-nodes, i.e., {^ = 0}, we have three classes of
equivalence: one corresponding to/(0,M2), /A2>0, another to/(o>^2), ^"^O. a n ^ the
last one to the central bifurcation.

Indeed, for/(0,M2), M2>0, W(p) intersects Wss(q) transversally, whereas for
/(O,M2). M2<0, W(p) does not intersect Wss(q).

From [11] it follows that all/(0M2), fi2>0 (resp. fi2<0) determine the same class
of topological equivalence.

Clearly, the central bifurcation /(0 0) is not equivalent to any other /M, fi # (0,0).
(ii)/M€rf2, M €l /c :R 2 .

From the bifurcation diagram we deduce that t/\({/i, = 0}u{/J.2 = 0,/i,s0}) has
three connected components l/f, l < / < 3 . All diffeomorphisms/M, with /x in Uit

are equivalent. Furthermore,
(a) for/Mo, / t o 6 [ / | = {(/x,, /x2); /i, <0, /tt2<0} there are three fixed points p, qt, q2

in V, all of them hyperbolic, and W^(p)n Wl(ql) = <t>,
(b) for/^o, fioe U2 = {{IJL1,^2); ^<0, ^2>0} there are three fixed points p, qu q2

in V, all of them hyperbolic, but W^(p)n W^iq,)^® and transversal,
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(c) for/Mo, fioe U3 = {(fiu /JL2); fj-,>0} p is the only fixed point in V, which is
hyperbolic.

u2

92

u,

92

IA

>.P

When fi lies in the semiaxis {/J,I<0, /x2 = 0}, WJ[(p) meets W^iqJ quasi-trans-
versally along a unique orbit of tangency. This gives rise to a modulus of equivalence
[8], namely log /3/log a-

Finally, the saddle-nodes appear only along the axis {/u,] = 0}, where we distinguish
three classes of equivalence:
(a) for / ( 0 ,M 2 ) ,M 2<0, Wl(p)nWl(q) = <t>
(b) for/(O>/i2), M2>0, W^(p) intersects Ws(q) transversally
(c) at/(Oo) we have a tangency between W%(p) and Ws

0(q).

2. Mild equivalence
In this section we will prove Theorems A and B from the Introduction.

As Theorem B is an easy consequence of Theorem A, we first show it follows

from Theorem A.

Proof of Theorem B

If /M is a nearby family in six and the central bifurcations /(0,0) and f(ofi) are
equivalent, we claim that there exists a reparametrization p: U-* U for which
p{ Ut) = 0,, 1 < «< 3; p(0,0) = (0,0), p(0, ft2) = (0, fi2) and p(/ i , , f (^t,)) satisfies

log a log a

Indeed, since

- ^ (0,0) ^ o(resp. 4 (0,0) * o) then ̂  (resp. ^ 4
3/i2 \ du.2 J l o g a \ F l o g a
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is monotonous along the curve of tangency. Moreover, as )8(/u.,, £(/u.,))-> 1 (resp.
/3(/Zi, £(/Ii))-» 1) monotonously as //,[-»0 we have

log0 / \ogB \
—^-^^Olresp .—^^0)
log a \ log a /log a \ log

This concludes the proof for flxesil.

Again the monotonicity of the invariants along the corresponding curves of
tangency (actually semiaxis) allow us to define a reparametrization £:U->U satisfy-
ing £(0,0) = (0,0), £(0, fi2) = (0, /I2), £( Ui) = Ui, 1 < i" < 3, and

log B log B
r - ^ (Mi, 0) = 7 ^ ^ 1 , 0 ) for M l <0 .
log a loga

This concludes the proof of Theorem B. •

Following [11] we consider the strong stable foliation fF", /u-eU, varying con-
tinuously with fj.\ TT" denotes the projection of a neighbourhood of q on a central
manifold W^ for q along the leaves of &™.

We denote by ^(p) (resp. 3^%(p)) the trivial unstable (resp. stable) foliation
given by the linearizing coordinates at p; v1^ (resp. TT )̂ is the corresponding
projection on W^(p) (W^ip) resp.). We also denote by aM the contracting eigen-
value at p.

The conclusion of Theorem A for/e SNQT2 is an easy consequence of the proof
in [5] and [11]. So we only deal with/e SNQTl.

The goal now is to show that mild equivalence implies a = a as stated in Theorem
A.

Let/|W'(q)(x) = <p(x) = x + x2 + o3(x) and define N(x, <p) = min {k e N, (pk(x) > 5}
where S > 0 is small enough.

Consider a sequence {zm} such that
(a) zm -* 1 e Ws(/>)as m -»oo, identifying the point with its second coordinate.
(b) ym = a mzm -* y0 as w -» oo, yQ is the point of tangency at N and ,ym belongs to a

transversal segment to W(p) at _y0.
Let xm =Amym, so that Am-»/4>0, where we identify xm with its projection on

Wu(q) along the leaves of SFS\ and Am, meN, are non zero constants.
Call Nm(<p) = N(xm, <p). Let us prove the following

PROPOSITION 1. limm^0O log Nm{<p)/m = -log a.

Proof. As pointed out in [11], up to some smooth coordinate system, the map <p(x)
is the time-one map of a vector field of the form X(x) = x2+oi(x). Let X, be the
flow of X. Then

' ^ A f m < l m + 1,

where X,m(xJ = S and Nm = Nm(<p).
If Xl(x)=\x2, X2(x) = 2x2 and tKm is defined by X,,,/n,(xm) = 5, the following

inequality holds:
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As f,,m = J*m X,(x) dx we get

So,

73

Taking logarithms,

Since a m -> 0, zm -» 1 and Am -» ,4 ^ 0 as m-»oowe obtain

ffl

Remark. If limm_co inf Am = 0, the same computations show

m-oo W

Proof of Theorem A
(I) Necessity.

Let /i be a conjugacy between / and / e SNQTl and consider the sequences {zm},
{_ym}, {jcm} as above and their images under h, {zm}, {ym}, {xm}. For simplicity assume
h(8) = 8€ Wc{q), 8 small enough.

We will see that log a <log a and then, considering h~\ we get the reverse
inequality.

We know that xm = Amam, Am->A>0 as m-*<x> and xm= Amam, where Am is
bounded from above. Observe that lim infm^co Am could be zero. In any case, as we
remarked,

lim inf 2: —log a,
m-»oo m

where <p = / | ^ and Nm(<p) = N(xm, <p).
But, since h is a conjugacy, N(xm, <p) = N(xm, <p). Hence the last inequality

together with Proposition 1 yield

-log a > - log a. •

(II) Sufficiency.
It will follow easily from the proof of Theorem C. D

3. Strong equivalence for f^ e si^
Several restrictions arise for strong equivalence between one parameter families [4]:
(1) fo\w;, 's the time one map of a flow which has to be conjugate to the corresponding

flow for/oliv;. In particular, the conjugacy ho is determined once it is defined
at two points. It is differentiable at Wc

o\{q} and the lateral derivatives exist at q.
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(2) ho must preserve &", where &" is the strong stable foliation for q. Necessarily,
these restrictions remain in the two parameter case. The proof of the next Lemma
is in [5]:

COMPATIBILIZATION LEMMA. Let p be a hyperbolic fixed point of saddle type for f and
F be a C1 curve transverse to W(p) at xoe D"(p), where D"{p) is a fundamental
domain for W{p). Let f be C2 near f and p, F, xo be similar objects for f Let h :F-»F
be an homeomorphism, h(xo) = xo, h(x)/xs^> C as x-*xo, S = log a/log a, Canon
zero constant. Take A and B tubular neighbourhoods of F and f'l(T) such that if
dA = AjU A2 and dB = B, u B~2 then f~\At) = Bt, i = 1, 2.

Then there is a continuous retraction n: Ns -> Ws(p), where Ns is a neighbour-
hood of Ws(p) containing D"(p), xoe Du{p), satisfying the following properties:

(a) n-\p)=W"(p)nNs

(b) 7T is f invariant, namely, •n(f(p))=f('rr(p))
(3) i f^eT, ir(h(q)) = h(n'(q))
(4) if U is a domain of linearization for f pe U, then the fibres of TT on U n Ns

coincide with the fibres of TT\ except on the iterates of the strip bounded by
A, and B2

(5) in the interior of the strip bounded by A, and B2 the fibres of IT are differentiate
and transversal to the leaves of ^s{p).

Moreover, h extends to Ws(p).

COROLLARY 4. Suppose that 2F, SF are fibrations defined on TV, transversal to the
fibrations TT, TT except at T, F, where they have quadratic contact. Assume also that
fc|r\{xo} 's differentiable. Then h extends to an homeomorphism in N which is differenti-
able except along the fibres through x0.

When no confusion is possible we still denote by ̂ {p) the foliation given by
the Compatibilization Lemma and we say that S'lip) is obtained by compatibility
with /iM.

Proof of Theorem C for f^ £ j ^ , :
The plan is the following: we define a convenient reparametrization p and take

/ijw^ as in [11]. Choose !F"(q) such that for /x =0 it coincides with the foliation
&so{q) already defined and let &l(p) be the trivial fibration. We use the Com-
patibilization Lemma to obtain analogous suitable foliations for q and p. These
foliations intersect in TV along a unique curve of tangencies F. The homeomorphism
/ijiv^ induces a homeomorphism along F, which will be extended to TV. Such an
extension will vary continuously with fi, will preserve ^ " at n = (0, /j.2), but not
necessarily at other values of /JL.

We define p e C 1 by

By the Implicit Function Theorem, and the fact that / ^ / ^ i , , we can express
. = Mi(/*i, M2) and inversely fi, = /*,(/!,, /I2), 1 = 1, 2.
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From the hypothesis it follows that p maps the curve (/A, , £ (AH)) onto (/Z,,
and maps {/*,=()} onto {/I, = 0}, i.e., p preserves diffeomorphisms corresponding
to tangencies and also diffeomorphisms exhibiting saddle node fixed points.

Let T) be the curve in U given by

*? = { ( M I , ^(Mi)); WJi(p) meets W"(q2) quasi-transversally)}.

Note that 7i(ni) = -Ay/\fi,\ (see § 1).
We also note that p does not necessarily map -q onto 77.
Let C = {(MI» M2); —v42V|/u-i| < /i2 < -i4,v|/Lii|} be such that 17, ^"'(17) are contained

in the interior of C, a wedge shaped neighbourhood of 17 and p~l(rj).
When no confusion arises we will refer to the separatrix of W^(p)\{p} that for

some /n intersects the correspondent separatrix of W"(q2)\{q2} as W^(p) and

Let &" be a strong stable foliation such that:
(a) for each /x, the space of leaves of &" is W^
(b) ^ " extends the unique strong stable foliation defined on Ws^{q) for /A = (0, /x2)
(c) W"(?,) and W?(q2) are leaves of S £
(d) ^ " is invariant by yj, and varies continuously with /u,
(e) for a fixed /J.Q, F"O(X) 6 ^"(> is a C°° disk varying continuously with x. Moreover,

the tangent space to F"(x) also varies continuously with x.
TT" denotes the projection of a neighbourhood of {qx, q2) on W^ along the leaves

of 9^.
Let now B^c f be a segment transversal to W"(q2) and K^ a fundamental

neighbourhood for W"(q2) such that
(i) dK^B^f^BJ

(ii) for M e p- ' (^ ) , BM n Wjr(g2) ^ * and BM n W^(p) # <D
(iii) BM = O for fi £ C.

Take C/i(92) = UneN/^(*:/x)- I I i s possible to choose K^ for which dCAl(^2)\BM

is an invariant curve. Furthermore, CM(g2) depends continuously on //, and CM =4>
when (i£C.

It is easy to see that for each fi, the intersection of dCIM(q2) with a leaf of &" is
either a unique point or empty.

Let us define h^.
For fi & C we may define /JM at as a diffeomorphism satisfying:

> 0,as

as

and the lateral derivatives converge at x = q.
For /n e C the definition is not as simple. Suppose W'^(p)ndCfl(q2)n .

This intersection contains at most two points aM and fcM. It is possible to define a
C1 homeomorphism ftM at Wl, in such way that the normal derivatives of the
homeomorphism induced by h^w at aM and b^ are the same, and different from
zero. If the above intersection is empty we define /iM at W^ as a C1 homeomorphism
such that /iM -> ho as /x -» 0.
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Remark that we may suppose that h^, defined as above varies continuously with

/ * •

Using &" we extend hjw^ to r\CM(g2) and to dCM(<72). We still denote this
extension by h^. We can choose /iM so that hti(dCti(q2)) = dC^(q2) and the normal
derivatives of /iM at aM, fcM, F n WJKp) vary continuously with p.

Inside Cti(q2) we proceed as follows.
We first define h^BJ = BM and

Then we extend it to Cli(q2)n N in such way that the normal derivatives along
Wl(p)n C^iq^n N are all equal.

Consider the foliation ^(p) obtained by compatibility with /iM|rU3CM(?2)-
Extend h^ to N-CM(q>2) preserving F " and ^ . The extension of /i^ to a

neighbourhood of p, qt and q2 is obtained using the equation/^/iM =/iM/^. Since
all the normal derivatives of h^ along W)L{p)n>Clx{q2)nN are equal and the
equality a(fi) = dp(fi) holds, /iM extends to W^ip).

The continuity of h^ on fj. follows from the continuity on /x of fyjiv;,, C^iqj),
&", &1 and the normal derivatives along W^(p).

4. Strong equivalence for f^ e ^ 2

In this section we prove Theorem C for /M e $£2 •
Recall that for /u,, = 0 both /M and f^ are the time one map of a vector field along

W^ and the conjugacy between these diffeomorphisms has to be also a conjugacy
between the corresponding vector fields. So, /iM|w; is very rigid: it is uniquely
determined by its values at two points in W^iq^iq}, and it is also differentiable.
If {aM, b^} = N n W^(q) n W^(p), the differentiability of h^ at these points implies
that its extension to Ws^(p) has to be linear, that is, aM = a^. Moreover, the normal
derivatives of h^ at these points must be equal, i.e., A:(aM) = fc(bM) in order that such
an extension exists.

The plan of the proof is as follows:
(a) we use the results in [11] to define h^/W^ and the reparametrization
(b) in order to extend h^ we define some special fibrations
(c) the region R^ bounded by W"^{p) and W^iqJ, for fi - (/*,, ix2), /x2>0, is

carefully analysed so as to guarantee the extension of /iM to neighbourhoods of
p and qt as well as the continuity of /iM on fi.

We start by choosing convenient coordinates around pip) and q}(n).
Since the corresponding Sternberg condition is trivially satisfied, according to

Takens [13], we fix Cr coordinates, r > 2 , for/^ such t h a t ^ near qx is given by

/*(*, y) = (<p(x, Mi. Mz), b(x, /A, , n2)y), (4.1)

where (x,0)e W^q,) and ( O j J e W ^ , ) for M l s 0 , (d<p/dx)(0,0, M2) = 1,
6(0, /A,, /t2) = B(fii, fi2) for /*, <0.

Analogously, by imposing the Sternberg condition on /(OiO) at p (which holds in
an open and dense subset) we fix C linearizing coordinates, r > 2 , on a neighbour-
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hood Vo of p. Call ^ the trivial unstable fibration given by these coordinates and
let 77-J1: Vo-» W^ip) be the projection along the leaves.

It is basic for our proof to fix a suitable conjugacy along W^. All further
constructions are based upon /iM/ W^. This is the subject of our next Lemma.

LEMMA 5. For f^, /M there are a reparametrization p(/u.) = (L and a homeomorphism
K/V/^-.W^Wl such that
(a) hp is a conjugacy between f^/ Wj^ and f^/ W%, depending continuously on yu
(b) /or M2>0, (d/dy)n;(hli(y))\^a^(d/dy)7ru^hfl(y))\y^, where {ali,blt} =

Proof. Given f^ and /M let XM and XM be corresponding families of adapted vector
fields defined on V/% x R2.

Following [11] we choose a box

U = {(x, M); |X|=S d, 0< |M l | + \fi2\ < e}

where X(x, ft) and (d/dfi)X(x, fi) are positive on £/\{(0, 0)}. We assume {aM, bM}c
U, aM <0, bM <0 and both are contained in a fundamental domain DM for W^.

For fit > 0 we define 7"M by XTji(-d, /*) = (d, /x). Observe that TM goes to infinity
monotonously as /u,, goes to zero.

For M2^0, let t^ satisfy X,iL{aIL) = blJl.
In a similar way we define dfi, b^, fM and TM.

Choice of the reparametrization p
(a) For /t, > 0 and n2 — ®, P is implicitly given by

(b) For n ^ O , /u,2s0, p is implicitly given by

(c) For / i ,<0 , / i 2 <0we extend p with the property that /8M = )3^, and the semiaxis
/i.2 < 0, /LA, = 0 is preserved.

(d) For (Ai^O, M2 —0 we proceed as follows.
Along the semiaxis (/u.,,0), ^ , > 0 , the reparametrization is already given in (b);

also at (0, fi2), /x2 =£ 0, the reparametrization is given in (c). Under generic conditions,
namely

— y3<o,o)Ui)
dX

and —/8(<
oX

it is possible to choose a reparametrization p and families of points JCM e
varying continuously with u, (I in the fourth quadrant verifying:
(d.l) at the boundary of the fourth quadrant we have

{*(0,^2) = Q\ ' X(0,M2> = ^1
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(d.2) in the interior of the fourth quadrant we have

T = f-
Observe that p preserves both axis.
We now define hJW^. Let gM be a conjugacy between XM, XM such that

^ ( a M) = ^M- W e w i ' l define /JM = «^1gMMM, where wM (resp. u^) is a conjugacy
between^ and X^ (resp./M and Xp), with uM(x) = x for /* = (0, //.2) (resp. «,i(x) = x
for /I = (0, /22)).
(a) For / i ! > 0 w e choose uM, /2^ such that

_ U I • — 1

wM(x) = x for fj, = (0, /A2) and

The moduli conditions grant that these equations hold simultaneously at
(i, = 0. For /Lt, > 0 we extend MM and M^ continuously with /x since we are free
to choose uM in DM and M in D^ .

Remark that at y. = (/*,, 0). aM = ftM, so that first two equalities hold trivially.
For M = (Mi, M2), M2 < 0, they hold too, since W^p) n W^(g,) = <!>.

(b) For / A ^ O , ,̂2 — 0) w e choose MM, U^ satisfying the same set of equations and
preserving the corresponding fixed points.

Observe that in this quadrant the equations X^(aM) = fcM and X!.(dll) = blx
hold by the definition of p.

(c) For fii^O, ^2*^0, the only restrictions on uM and u^ are

u^(x) = x for ix = (0, /x2),

M/I(X) = X for/I = (0,/t2)

and the preservation of the corresponding fixed points.
This completes the definition of /JJW1- •
Let SF^iq) be a C2 central foliation depending continuously on p and ITC: Vq^

W™ be the projection along the leaves (q is either a saddle-node or the hyperbolic
saddle <?,). Call f̂  <= N the unique C1 curve of tangencies between &c^(q) and
^(P)[S,UI

Consider N n TTUH^)
 n W^. which is either empty or consists of one or two points.

In the last case, we call them (x,, y) and (x2, y), x, <x 2 . Their images under h^\w^
are (x, ,^ ,) and (x2,y2) where yt is generally different from y2 due to the rigidity
of /JM. So the image of an horizontal segment of ^(p) may not be horizontal; thus
^ M ( P ) ^ N and &>^(p)n N cannot be simultaneously preserved. Nevertheless, the
equality of the normal derivatives guarantees the

PROPOSITION 6. There is an invariant foliation <J>£ defined in a neighbourhood VM of
p, so that the projection along the leaves n^: V-» W^ip) satisfies
(a) ^(hMy)) = K«(

https://doi.org/10.1017/S0143385700005393 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005393


Quasi-transversal saddle-node bifurcation 79

(b) the segment joining (x,, yt) and (x2,y2) is contained in (n^)'l(y) for some
ye W^ip), that is, in a single fibre off"

(c) the restriction of <J>£ to N is C1

(d) there is a unique C1 curve fM of tangencies between <£>^ and SF^ip) in N
(e) <t>Jl varies continuously with /J.
(f) ^(y) = ir^(y)fory>s((i), S((JL) = O(^2), where s(/z) e f M and will be determined

later.

Proof. It is straightforward and follows from the proof of the Compatibilization
Lemma. We observe that the choice of <&£ and the preservation of 9^, <££ and 9^,
9>% induce a definition /JJPM :FM-»fM. •

The following proposition is a consequence of a result in [3]. Nevertheless, we
include its proof for the sake of completeness.

PROPOSITION 7. Let F^, f M be C1 curves parametrized by (-s, e) c R, e > 0, transversal
to W^iq) at 0 andg^ :T^ ->fM a homeomorphism such that g^(y)/yx

A = (log )8/log ^ ) (M) . 77ie« gM exfemfr ro fAe c/o5«re o/ LUo/IKrV) u
/Voo/ The diffeomorphisms/^, f ^ are partially linearized:

Call TT\, TT\ (resp. TT ,̂ TT2) these coordinates.
We take ^ and ^ invariant foliations such that W£(</,) and ^(q- , ) are leaves.

We also take ^™ and ^ " strong invariant foliations such that FM and f M are leaves.
The only point of this proof is the convergence of some infinite products. To get

this we define the following conjugacy G^ :
(a) /jjiv; = hjwi-
(b) Gli\7r-<(ndqi))(7T}ql,y) = (T71ql,ctly^). Observe that for / i ,<0,

(c) it preserves 9^, 9% and ^ " , &J.
Now consider a sequence (x^.^JeT^ for which/J1"(XM,>'M)^(H'O, zo)asfcM^ +oo,

(wo, zo)e W^(q,). Observe that (vvo, zo) does not necessarily belong to W^"(^,

and

where cM^cM<, a s / i -*^ i o , <pM(xo, ^o) = 77-2(G^(wo, zo)) = zo, (xM, j M ) = GM(xM,>'M). In
particular, <pIJi(wo, zo)=Cliz

x
o if (wo, zo)€ W™{qx). So,

}}0 b^rix^yj) »-<p»(wo, Zoy
Set gM|w^ = />JwM'- We claim that gM extends to the closure of

n^,) .Indeed, for MO = (M>,M2), M>>0 we have U / ; ( r M ) = U / ; ( r M ) and
M(<7I) ^s n o t defined. So, trivially gM extends and it is continuous.
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Thus, the interesting case is when fj.o = (0, fi2). Take a sequence (xM,_v/x)€r,1 as
before, with

Note that

• = n
j = 0

=¥
j = 0

As zM converges to zo, gM (.*,*, >v )/}»£-» C(n) by hypothesis and

/=o

converges by (6.1), our result holds. •
Important remark For fi = (0, ft2) we can continuously extend g^ to W^(qx), preserv-
ing ^"(qx) and ^(qx). The same proof grants the continuity of gM with /A.

The following two propositions will give h^ on the second and third quadrants.
To do so we distinguish some regions where we define special foliations.

PROPOSITION 8. For / i , < 0 and(JL2>0 there exists an homeomorphism ftM defined on
N with the following properties: j
(a) /JM|r^ coincides with the homeomorphism defined in Proposition 6, i
(b) it has an extension to a neighbourhood of p and to a neighbourhood of qx such ;

that fyjw^p) is linear and tojw;:(<7i) ^ logarithmically linear.

Proof. We first construct three fibrations ^ , , ZF2 and ^ 3 in N. Let {c^} = T^n
Ws^(qx) n N, identifying this point with its projection TTJ1(CM) and consider

,

Observe that so< r < s , <s2, so that the leaves L, and L2 of ^ ( ^ , ) passing through
5, and 52 are the boundary of a neighbourhood of W^(qr,). Call /?, = 7?j(^) the
region bounded by W£(/?) and L(, /'= 1,2.

Let F ) l ( r )G^( />) be the leaf at r and call / - . ^ ( / u ) , i = l ,2, the elements of

Define F, = F,(/t) as the union of the vertical segment joining r, to L2 with the
arc of L, connecting r, to W^(/?). Analogously we define F2.

Let Ri = Ri(/j.) be the region in N bounded by F , , F2, L2, that contains TM n
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It is possible to define a continuous fibration 2F3 = ^3(fi) in R3 with the following
properties:
(a) TnR3, Fx and F3 are fibres,
(b) 3>3 is topologically transversal to ^( t f i ) and ^(p) in the interior of R3n

(c) in #3n{7r]l(_y)<0} it coincides with ^(q,), so that F is a singular fibre.

Let R4= R4(n) = {ye N;0<iru(y)<iTu(so)} and define ^ , = ^,(/i) as:
(a) the restriction of 3 ,̂ to .R, u R4<u(N\R2) coincides with ^Ji(p)
(b) the restriction of ^ to R2\(R4v R3) is a C1 foliation transversal to ^ ( ^ i )

such that F,, F2 and the two segments (TT'^)~\'JT'^(SO))n R2\Rt are leaves.
Remark that 9>x is not defined in R-\RX.
Finally, take &2 = &2(n) as ^ ( 9 , ) in (N\Rt) u (/?,\/?4) and it is not defined in

RtnR4.
In order to construct analogous objects for/M we need a definition of fcjr, which

now follows.
We set hli(y) = A(ix)yA for ye Wuu(g,). This induces a definition of /iM|r\R,, via

projection along ^ (^1 ) , ^l(qi)-
Recall that fcJiv,R, is given by the preservation of 9fU

ll, <t?1 and ^ , #^ together
with /ijw;- We restrict this definition foryeFnJ? , , y<r , and complete it along
Fni?, , for /x2>0, by continuity on y and /u..

The regions Rt, l < i < 4 , and the fibrations ^ , 1 < I ' < 3 , are constructed
analogously to Rt and ^,, respectively, except for the fact that 3>J1 takes the
place of S'lip), where <&1 is given by Proposition 6 and r = f(fi) = h)i(rlx),
s, = si(Ai) = Ms.), Os i s 2 .
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Let us define /iM on N.

Step 1. Since the family /iM|r is already defined and hlx(y) = /i(/j,)_yA for_ye W^(qx),
it induces a definition on N n W"(p) and (fl-JD~1(wJl(r))n/?1 via ^ 3 , # 3 .

Note that J»M|wc(<,,) gives another correspondence between ^ 3 and ^ 3 , which
induces a definition of fcM on Lxn{tTi{y)> TTJ1(SO)}.

We extend /iM to i?,\^4 preserving the definition already given along F, con-
tinuously depending on fi. Observe that /iM may not preserve ^ 3 in Ri\R4.

Step 2. Extend h^ to N preserving the above fibrations ^ , , S^t, I=£z'=s3, by their
identification through h^|ruw;<,,>•

S/e/7 3. Extend to U«ez/JI(-N) by the equation

Along W^(/)) the conjugacy is given by h^x) = k(/j.)x, in the linearizing coordin-
ates. This extension is continuous due to the definition of fiM near W^(p) and the
preservation of ^ , , ^ , .

Finally we extend /iM to a neighbourhood of W""(gi) by preserving ^ u , ^ " and
<5?c f3fc I '
>^>t» ^It.- LJ

PROPOSITION 9. For /n, s 0 a«d /x2 s 0 there exists an homeomorphism h^ defined on
N with the following properties:
(a) /i^|r coincides with the homeomorphism defined on Proposition 6,
(b) it has an extension to a neighbourhood of p and to a neighbourhood of qx such

that tojw^p) is logarithmically linear and h^\w^{qi) is linear.

Proof. Recall that for ^ s O , /i2 — 0 the reparametrization verifies j8M = Pp.
Define /iM|r(j), for y&c^, through the homeomorphism induced by fyjw; and

the preservation of ^ , <5^. For y>s2(p.), hli(y) = AMj l o g ' 5 / l o g" , and extend it
diffeomorphically to all of F.

| Since ^ | r is differentiable at F n Wc(qt) and /3M = 0p, applying Proposition 7 we
obtain a conjugacy on Unao/IKr)1^ WJl"(9i) which extends /iM|r- This conjugacy
turns out to be linear along W^iq^).

Modify ^ by compatibility with ftM|r and extend /iM| w^"(9l) to W^f^) by preserv-
ing ^ , J ^ and ^ , 4>^.

The extension of /iM to a neighbourhood of W^ip) is a consequence of the
definition of /»M|r and the preservation of ^ and <I>̂ . D

Proof of Theorem Cforf^ e s42. In Propositions 8 and 9 we defined the homeomorph-
ism h^ for /A, < 0. Here we extend it to /A, > 0 and prove continuity, using the same
notations as before.

Recall that / i jw; is already defined. In the first place, consider /x in the first
quadrant. Take ^ " a strong unstable foliation for /M at q}, continuous with n,
transversal to S'^ip).

Let SM2 = R2\R\ and 5M| be strips around W^(<7,)n N, where SMl is chosen with
the property that the closure of its saturation by f^ contains a fixed segment of
^ " ( ^ I ) ( ^ " ( ^ I ) is the fibre of 2P™ at q,). Observe that the width of SMl goes to
zero with /u,,. Consider analogous objects for/M.
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in SM2 such that:Define a fibration ^4

(a) it is transversal to W
(b) it coincides with 9"^ in {-n-u(y)s TTU(SO)}

(c) it coincides with 93 in

In a similar way we construct 94, replacing ^ by <££.
Note that the definition of fcjw; and the correspondence between ^ and

9f? and 9™ fix /iM in a neighbourhood of WJj. Since we want h^ to enjoy some
additional properties, inside SM|, we choose a special strong unstable foliation 9"^:
(a) it is transversal to <I>J1
(b) it is the restriction of 93 to SMl, when S^ c S^
(c) it is an extension of # 3 when 5Ml 3 5M2

(d) for we VV^(q,), Tr^w)^ TTU(SO), we select Fuu(hIIL(w)) for which the homeo-
morphism

induced via projection of ^ on ^Jl" satisfies hliW(y)/y* -*h((i) as >>-»0, where
/c(/x) depends continuously on M, k(/x) # 0 for every M-

We are now ready to define /iM in N. Along F we follow the definition already
given in Propositions 8 and 9.

For / i 2 > 0 w e proceed as follows:
(a) in /?, n N\SM ] we preserve
(b) in N\/?2\SM2 we preserve
(&) if SM| c SM2 we preserve ^
(d) if 5Ml 2SM2 we preserve ^

We preserve SF1^, OJ1 and

&3 and 9^, <££

^ M ' ^ M a n < ^ ^ M ' ^ M

, # ^ and ^ 4 , # 4 ,
, # ^ and ^4 , # 4 inside SM2.

FH", ^ " outside S^2, but now the correspondence
between the pieces of the fibres of the last pair of foliations is given by the
homeomorphism defined on the boundary <9SM2 = L, u L2.

For M2<0» Mi —0, we recall that fcjr is differentiate except at F n WAp).
We modify SF^ by compatibility with /iM|r and extend ftjr to Af by preserving

9^, 4>̂  and ^ ^ , ^ ^ .
In N, this homeomorphism is differentiate except at the leaves through F n

W^{p). By Corollary 4, a foliation ^ " in N, transversal to 9^ and extending F,
is sent to a foliation 9™ satisfying the corresponding properties. This means that
/IM|JV preserves three fibrations: 9"^, <!>£; 91^, 9°^ and ^Jl", 9™, and ^Jl", ^Jl",
where 9™ is chosen arbitrarily, varying continuously with M-
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A direct computation shows that the angle between §^ and W^ is bounded
away from zero, uniformly with /LA, and so the saturation of 3'"^ converges to the
unique strong unstable foliation in W^(<7,) as Mi-»0.

We extend /iM to a neighbourhood of Ws^(p) and to a neighbourhood of W^(q^)
by conjugacy. It is easy to see that for each fj,, /iM is continuous.

We now prove the continuity for each of h^ on /*.
(I) Continuity on W'J^p), nB = (/*?, /*!).
(a) if AijVO, then /iM(x)/xlog<5/l°gaH>.fc(M) along T and we preserve ^ , <J>̂  in a

fixed neighbourhood of W^(p). Hence, the continuity on n is direct
(b) if /Lto = (/x°, 0) and we approach //.„ by values in the interior of the first quadrant,

we proceed as follows.
Take «„. -* v^ as n -* /J.O, v^ e Wla(p)\{p}. Suppose wM = / "M = («M) e i?2\/?4, i.e.,

wM s^2( / i ) . Identifying v^, tvM with their second coordinate, we have

Remember that from Proposition 8,

| and

Also, So(M) = fci(so(M))-so(M) and S2(M) = fc,(s2(/i)) • s2(/*) where
), l < / < 2 , as /i.^/xo. Moreover, cM = so(/i) + A(/*)(cM -*o(/x))A, where

is a constant corresponding to A(fj.) in N. As 5o(/n)< wM < s2(fj.) and io(/x)< wM <
S2(/J.) then

But

as fj.^-iJ.0-

Let us see that Hv/w^^d/t j /d/^XMi*0) a s H~* Po- Indeed,

where dM = (dhjdy)/(y), yeT.
Now observe that calling h{y, /x2) the conjugacy along T for values fi = (0, /n2),

a Taylor expansion yields

Since cM = ^I2 + o(/I2) and (dh/dn2)(fi2)-*Q as ^ 2 -*0 , we get that d/I2/d/i2 =
(dK/dy)(0). So rf,1-»((9/Z2/<W(/41,0) and ^ / ^ ^ ( a ^ / a ^ J C M i . O ) since

Finally we see that if vvMa~"* = uM -* t)n then wMa~"» = i5M -» vo:

a
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We have just verified that w^/w^ -»(d/t2/d/u2)(Mi > 0)»

" 2

as fi -* fio.

Now £M = a~"">vM = a~"-w^ because a = a, due to our reparametrization. Thus
v^ = a~""wM = (a~"*w/1/w^) • wM which converges to k(/j.o) • uM> as /x -»/AO. And we
have proved continuity on W^o(p).
(b) If no = ((j.°, 0) and we approach /u.o by values in the fourth quadrant, take

v^ -» uMu as fi.-> (io, DM<J € W^,,(p)\{p}. Note that in this case aM and aM may be
different.

Let wM =/n"(tJM)e N. Identifying v^, w^ with their second coordinate we have:

If W M > 5 2 ( M ) , ftM(H'M) = fc(iu.)w^og<;/loga and the result easily follows. Otherwise let
lim inf^_Mo |wM//u,2| & 1.

We claim that /n2«M->0 as /i-»p,o. In fact, liminfM^Mo |w/x//it2|> 1 together with
(wli/fi2)/j.2 • a~n"-» uMo imply |/Lt2|a~n" < 5 for some constant 5 > 0 . Taking
logarithms the inequality turns into

log |/*2| - n^ log a < log 5

and multiplying by |/i2| we get

\fi2\ log |/*2| - |/x.2|n^ log a < \fi2\ log 5.

So |/X2|HM-*0 and the claim is proved.
Also a/a = \ + o{fj.2) because a = a at the axis /u.2 = 0. So

( » \ — n
0(^2)) "M =[(l + o

\ a /

as ju.2"* Po-

Thus (*vM/n'M)(a/a)~"«-»(a/x2/a/u.2)(ju., 0) as /Li-»/io and this concludes the proof
of the continuity on (U. in a neighbourhood of W^n{p).
(II) Continuity on W1n{qx).

Take u -> vo as /t -> /AO. The interesting cases are when /xo = (0, /u,2) and uo e

(Il.a) We first consider /J, = (/A, , fi2) -* M«. M2s 0.
In this case SMl = SM2 = <&, A = l. As we preserve ^ , # ^ and ^ " , #^" the

convergence is direct when ^ , > 0 . Also, when /tti^O, we preserve J ^ , ^ and the
continuity follows.

If M2>0 then for fit small enough we have SM2^SM,. Note that as /J.2>0, the
saturation of SM2 by f^ covers a fixed neighbourhood of qx. Then the continuity
follows because we are preserving &4, &4 and J ^ , ^ and ^ 4 converges to &uu.

When /i2 =0 we consider the values of fi such that
(1) 5M2 = 4>, (2) SM22SM, and (3) SM2=>SM2.

https://doi.org/10.1017/S0143385700005393 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005393


86 J. Beloqui and M. J. Pacifico

by

We have just analysed above the first two possibilities. So it is enough to take
wn ~* wo as /AM -» 0, SMl 2 SM2.

Let us make a few observations about the saturation of our fibrations.
Due to the choice of so, so, &™ and #£", the angle between &c and 2FU" in SM|

has at least the order of /i2. As the width of SM2 has the order of nl, we conclude,
by a direct computation, that 3FU£ restricted to S^XS^, when iterated, converges to
a fibration whose fibers are contained in those of the strong foliation in
Analogously for J^u.

Reasoning in the same way we can see that either the saturation of S
collapses to W^iq^ or, when iterated, 3F4 converges to the strong foliation in
This means that the foliation !F5 = &5(fi) of 5Mi given by:
(a) outside SM2 it coincides with ^ u

(b) inside SM2 it coincides with ^•"IL,
when iterated, converges to the strong unstable foliation in W"(q{).

Similarly we define &5 in SMl, just replacing 3F1 by <t>Jl; when iterated it also
converges to the strong unstable foliation in W"(qi).

Observe that the homeomorphism in dSM2 is given by /»,Jw' projected through &4,
^ 4 . As SM2 shrinks, it converges to /iM|i*^. So, asymptotically with fi, the saturation
of S's (resp. ^ 5 ) is the strong unstable foliation in Wo(qx) (resp. W"o(qx)).

Let us now return to our sequence wM -> wo e W"(qx), SMl 2 5M2.
If {W^}CSVL2<

 s m c e
 ''M preserves 2FC, &c and &5, &5 then /iM(wM)-» ho(wo) as

M^O. Otherwise {wM}c SMl\SM2.
On account of (6.1) and the preservation of S's, &s, h^iw^)-> ho(wo) as /t -»0 too.

(H.b) We consider /x = (/xj, ix2) -* /AO, MI — 0.
When we approach [x.o by values fi = (/i,, /J.2) with M2 —0, we are preserving S'",

$ " and ^ c , JK This grants continuity.
So we deal with /x = (fil, /J,2), \x2 > 0.
In this case it is enough to consider sequences t;M->uoe Wuu{qx) for which

wM =f^"k(vliL)efJ
l^(R4nRl), where fJ

l?(R4n Rx) is contained in a domain of partial
linearization around qx.

Identifying all points with their second coordinate in the partially linearizing
coordinates,

tv^M n ^(/i(H-M))^^,,^o,
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which implies

We have to prove that

Observe that as

then

Since f''A

j = 0

n wnw^

and wM- = 0(^-2) on account of the choice of

H ' M ~ / M ( 5 » ( M ) )

))K )}

Finally,

,

By Proposition 7, we have

j = 0

b (fJ (w ))

and using the limits calculated above, we get

D
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