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Abstract

This work concerns Markov decision chains on a denumerable state space endowed with
a bounded cost function. The performance of a control policy is assessed by a long-
run average criterion as measured by a risk-seeking decision maker with constant risk-
sensitivity. Besides standard continuity—compactness conditions, the framework of the
paper is determined by the following conditions: (i) the state process is communicating
under each stationary policy, and (ii) the simultaneous Doeblin condition holds. Within
this framework it is shown that (i) the optimal superior and inferior limit average value
functions coincide and are constant, and (ii) the optimal average cost is characterized via
an extended version of the Collatz—Wielandt formula in the theory of positive matrices.
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1. Introduction

This work is concerned with Markov decision processes (MDPs) on a denumerable state
space endowed with a bounded cost function. It is assumed that the decision maker is risk-
seeking with a constant risk-sensitivity coefficient, and the performance of a control policy is
measured by a long-run average cost index. In addition to standard continuity—compactness
conditions, the framework of the paper is mainly determined by two assumptions on the transi-
tion structure: (a) the state process is communicating under each stationary policy, and (b) the
simultaneous Doeblin condition holds. In this context, the main objectives of this work can be
described as follows:

Received 16 September 2022; revision received 7 May 2023.

* Postal address: Departamento de Estadistica y Cdlculo, Universidad Auténoma Agraria Antonio Narro, Boulevard
Antonio Narro 1923, Buenavista, COAH 25315, México. Email: rolando.cavazos @uaaan.edu.mx

** Postal address: Facultad de Ciencias Fisico-Matemdticas, Benemérita Universidad Auténoma de Puebla, Ave.
San Claudio y Rio Verde, Col. San Manuel CU, PUE 72570, México. Email: hcs @fcfm.buap.mx

**% Postal address: Departamento de Matematicas, Universidad Auténoma Metropolitana-Iztapalapa, Av. Ferrocarril
San Rafael Atlixco 186, Col. Leyes de Reforma Primera Seccion, Alcaldia Iztapalapa, CDMX 09310, México.
Email: momr@xanum.uam.mx

© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust.

340

https://doi.org/10.1017/jpr.2023.40 Published online by Cambridge University Press


https://doi.org/10.1017/jpr.2023.40
https://orcid.org/0000-0002-0732-4943
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2023.40&domain=pdf
https://doi.org/10.1017/jpr.2023.40

Characterization of the optimal average cost 341

(i) to prove that the optimal inferior and superior limit average cost functions coincide and
are constant;

(ii) to characterize the optimal average cost.

The results for these problems extend to the present framework conclusions established
in [7] under the condition that the decision maker is risk-averse and, as in that paper, the
characterization of the optimal average cost presented in Theorem 1(ii) is a generalized version
of the Collatz—Wielandt formula for the largest eigenvalue of a positive matrix. On the other
hand, an additional objective of the paper is the following:

(iii) to establish the existence of a stationary policy whose average index differs from the
optimal one by less than a given tolerance.

The analysis of discrete-time Markov models endowed with a risk-sensitive average crite-
rion can be traced back, at least, to the seminal paper [14]. In that paper the Perron—Frobenius
theory of positive matrices [17] was employed to study MDPs with finite state and action
spaces, and the optimal average cost was characterized via an optimality equation. On the other
hand, motivated by important connections with the theory of large deviations and mathemati-
cal finance, risk-sensitive average criteria have recently been studied. Models with a countable
state space are considered in [5, 8, 9, 20], whereas MDPs on a general state space are analyzed
in [10, 11, 12, 15]. Connections of risk-sensitive average criteria with the theory of large devi-
ations are presented in [2, 16], whereas applications to mathematical finance are given in [3,
18, 21].

On the other hand, there are important differences between the risk-neutral and risk-
sensitive average criteria. For instance, in the risk-neutral case the simultaneous Doeblin
condition ensures that the optimal average cost is constant and is characterized via an opti-
mality equation [13, 19], a result that is not generally valid in the risk-sensitive case [6]. For
this reason, in this work the simultaneous Doeblin condition will be supplemented with the
requirement that the state space is communicating under the action of any stationary policy.

The remainder of the paper is organized as follows: In Section 2 the decision model is
formally introduced, the basic assumptions of the paper are formulated, and the risk-sensitive
average criteria are defined. Next, in Section 3 the idea of a subsolution of the optimality
equation is formulated and the main conclusions of the paper are stated in Theorem 1, which is
followed by a brief outline of the strategy used to prove that result. Section 4 contains the basic
properties of the family of subsolutions which allow us to establish the fundamental auxiliary
result in Theorem 2 of Section 5, establishing that if the space of stationary policies is finite
and the cost function is nonpositive with compact support, then the optimality equation has a
bounded solution. After those preliminaries, Theorem 1 is finally proved in Section 6, and the
paper concludes with some brief comments in Section 7.

1.1. Notation

In the following, the set of nonnegative integers is denoted by N, and, for a real-valued func-
tion A, || k| := sup{|h(x)|: belongs to the domain of %} is the corresponding supremum norm.
Given a nonempty set S, the space of all bounded real-valued functions defined on S is denoted
by B(S),i.e. h: S — R belongs to B(S) if and only if ||2|| < co. On the other hand, for real num-
bers a and b, a A b = min{a, b}, and, if F C S, the indicator function of the subset F' is denoted
by 1f, that is, 1p(y):= 1, ye F, and 1r(y) =0, y € S\ F. For an event W, the corresponding
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indicator function is denoted by 1[W], and every relation between random variables holds
almost surely with respect to the underlying probability measure.

2. Decision model

Throughout, M = (S, A, {A(x)}xes, C, P) represents an MDP, a model for a dynamical
system whose components are as follows:

(i) The state space S is a denumerable set endowed with the discrete topology.
(ii) The control set A is a metric space.
(iii) For each state x € S, the nonempty set A(x) C A is the class of possible actions at x.

(iv) C: K — R is the cost function, where K := {(x, a) | a € A(x), x € S} is the collection of
admissible pairs.

(v) P =[pxy(-)]is the controlled transition law.

This model M is interpreted as follows: At each time ¢ € N the state of a dynamical system
is observed, say X; =x € S, and a decision maker (controller) chooses and applies an action
A; =a € A(x). As a consequence of such an intervention, a cost C(X;, A;) = C(x, a) is incurred
and, regardless of the previous states and actions, the state of the system at time ¢ + 1 will be
Xi1+1 =Yy € S with probability px, x, , (A;) = px,y(a), where ZyeS Px,y(@) = 1; this is the Markov
property of the decision model.

Assumption 1.

(i) Foreveryx € S, A(x) is a compact subset of A.
(ii) Foreachx,y € S, the mappings a— py y(a) and a — C(x, a) are continuous in a € A(x).
(iii) The cost function C is bounded, i.e. C € B(K).

The observed history of the process up to time n is denoted by
Hy, = (Xo, Ao, X1, A1, - .o, Xn—1, An—1, Xn), n=0,1,2,3,..., ey

whereas
Fu = o(Hy) 2

is the o -field generated by H,,.

2.1. Policies

A policy is a measurable rule for choosing actions. Formally, a control policy 7 = {7, },eN
is a (special) sequence of stochastic kernels 7, on the action space A given H,, where the space
Hi, of possible histories up to time # is given by Hy = §, and H,, = K" x S for n > 1; the vector
h, = (x0, ao, . . ., xy—1, an—1, X,) represents a generic element of H,,, so thata; € A(x;) fori <n
and x; € § for i <n. When the controller drives the system using policy 7 = {m,}, given that
the history Hj, attains the value h,, € H,, the probability of choosing action A,, inside a Borel
subset B of A(x,) is 7, (B | h,), where m,,(A(x,) | h,) = 1. The family of all policies is denoted
by P and, given the initial state Xo =x and the policy & € P used to direct the system, the
distribution PT of the state—action process {(Xk, Ax)}ren is uniquely determined [13, 19] and
ET[ - ] represents the corresponding expectation operator. Next, set [ := [, g A(x), so that
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is a compact metric space consisting of all functions f: S — A such that f(x) € A(x) for every
x € S. A policy = is stationary if there exists f € F such that, under =, at each time 7 € N the
action A; =f(X;) is applied. The class of stationary policies and [ are naturally identified, a
convention allowing us to write F C P.

2.2. Utility function and average criteria

In this paper we suppose that the controller has a constant risk-sensitivity coefficient A # 0,
so that a random cost Y is assessed via the expected value of U, (Y), where the (dis-)utility
function U, is the strictly increasing mapping given by

U, (x) = sign(1)e™, xeR; (3)

notice that
Us.(c + h) =e* Uy (h), c,heR. 4)

When the decision maker has to choose between two random costs Yy and Y1, paying Yy
will be preferred if E[U, (Y1)] > E[U,(Yo)], whereas the controller will be indifferent between
both costs if E[U,(Y1)] = E[U,.(Yy)]. Given a random cost Y such that E[U, (Y)] is finite, the
certainty equivalent of Y with respect to U, is the unique real number &, [Y] determined by
U, (&,.[Y]) =E[U, (Y)], so that the controller will be willing to pay the amount &£, [Y] to avoid
facing the uncertainty associated with Y; note that

1
EY1=U; ELU(N]) = 5 log (B[, (5)
a relation that immediately leads to
PlY|<bl=1 = |Ex(Y)| <b. (6)

Observe that U, (-) is strictly convex (resp. concave) if A >0 (resp. A <0), and in that
case Jensen’s inequality yields that &, (Y) > E[Y] (resp. &, (Y) < E[Y]) if Y is a non-constant
random variable. When A > 0 (resp. A < 0) the controller is referred to as risk-averse (resp.
risk-seeking). Using the idea of the certainty equivalent, risk-sensitive average criteria can be
defined as follows: Let = € P be the policy used to operate the system starting at Xo = x. The
application of the first n actions Ag, A1, ..., A,—1 generates the cost ZZ;(]) C(X, Ay) and,
using (5), the associated certainty equivalent is

n—1
Ju(mr, x) = %log (JE;? |:exp {A > C(X,,At)”), n=1,2,3,..., (7

=0

which represents an average of J, (7, x)/n per step. The superior limit (A-sensitive) average
performance index of policy 7 at state x is given by

1
J(r, x) := lim sup —J,(7, x), (8)

n—oo N

and the corresponding optimal value function is

J*(x) = 12;[; J(m, x), xes; 9)
T
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apolicy 7* € P is lim sup (A-)average optimal if J(r*, x) = J*(x) for every x € S. The criterion
(8) represents the worst-case point of view about the behavior of the sequence {J, (7, x)/n} of
averages over a finite horizon. The optimistic perspective assesses the performance of 7 via
the smallest limit point of that sequence:

1
J_(m, x) := liminf =J,(7, x), (10)
n—o00 n

with the corresponding optimal value function given by

Ji(x):= inf J_(m, x), xes, (11)
neP

and m, € P is lim inf (A-)average optimal if J_ (7., -) = J.(-). It follows that
J_(m,)<J(m,:), meP, and then J,(-) <J*(). (12)
From the definitions in (7)—(11), using (6), it is not difficult to verify that
—lICl=J-(r, ) =J@@, )=ICll, meP, =lICI =4 () =T ) = ICII

Remark 1. In Section 6, several cost functions are considered simultaneously. In that case, the
cost function is explicitly indicated in the above notation for the average criteria and optimal
value functions. For instance, J.(C, -) and J*(C, -) are used instead of J,(-) and J*(-); notice
that

Jo(C+ B, )=JC, )+ B, J(C+B,)=T(C,)+8, peR. 13)

2.3. Optimality equation

Under appropriate requirements, the characterization of the optimal value functions in (9)
and (11) can be based on the following optimality equation:

Un(g+ h(x)) = aég(fx) { pr,y(a)UA(C(X, a)+ h(y))} , XES, (14)
yes

where g € R and A(-) is a function defined on S. Suppose that this equality holds, and set

n—1

Yo = Un(h(Xo)), Yy=U, ( Z (CXr, A — o)+ h(Xn)>, n=1273,... (15
=0

Remark 2. Direct consequences of (15) are the following facts:

(i) Let m ={m,} € P be a fixed policy. From (14), it follows that, for every n € N and a €
AXp), U8 + h(Xn)) < 3y c5 PX, y(@U(C(Xy, @) + h()); integrating both sides of this
relation with respect to w,(da | H,) and using the Markov property, it follows that

Us (h(X,)) < fA ) L PR UL, @)+ KOl | )
) oyeS

=ET[Un(CXp, Ap) — g + hXnt1)) | Ful,  x€S, neN.  (16)
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Next, using that exp {A Z:;—ol (C(Xy, Ap) —g)} is J,-measurable, (4) and the two
previous displays together yield

n—1
Yy =U,. (A Y (CXi, A)—g) + h(xn>>

=0

n—1
= exp {A > (CXi, A — g)} Up(h(X,)

=0

n—1
<exp {k Z (CXi, Ap) — g)}Ef[Ux(C(Xn, Ap) — g+ h(Xnt1)) | Fl
t=0

n—1
=E7 [ exp {?» Z (CXi, Ap) — g)} Up.(C(Xn, Ap) — & + h(Xn4-1)) | ]:n:|

=0

= EZ |:U)» ( Z (CX:, Ap) —8) + h(Xn—H)> | ]:n:| = E;T[Yn+1 | Ful, 17)

t=0

that is, {(Yy, Fn)}lnen is a submartingale with respect to PT for every x € S and 7w € P.

(i) Suppose that function A(-) in (14) is bounded. In this context, using Assumption 1, it is
not difficult to see that, for each x € S, the term within brackets in (14) is a continuos
function of a € A(x), and then it has a maximizer f*(x) € A(x). Thus, U, (g + h(x)) =
E{:[U 5 (C(x, f*(x)) + h(x))] for every x € S and, paralleling the argument in part (i), it
follows that the equality always holds in (16) and (17) when 7 is replaced by f*, so that
{(Yy, Fu)lnen is a martingale with respect to ]P’f: for every x € S.

(iii) Maintaining the assumption that A(-) is bounded, observe that, for every n € N\ {0},
xe S, and € P, part (i) implies that E7 [Yo] <ET[Y,], an inequality that, using (15),
is equivalent to Uy (h(x)) SJEZ[U,\(Z;’;O‘ (CX;, Ap) — &) + h(Xy41)) ] recalling that
U,.() is increasing, via (4) and (7) it follows that

n—1
Ui (h(x)) < EY |:UA ( Z (CXi, Ap) —8) + ||h||>]

t=0

n—1
— HIhl-nggT |:UA < peCa Az))i|
t=0
=M=y, (1, (7, %)) = Up(Ju(r, x) — ng + |hl)).

Thus, h(x) < J,(, x) —ng + ||A||, and then g < (1/n)(J,,(;r, x) + ||h|| — h(x)) for every
positive integer n. Therefore,

g E J*(JT9 ')7 T E 7)7 SO thatg EJ*(')7 (18)

by (10) and (11). On the other hand, part (ii) above yields Ef [Yo] = EL [Y,], which
is equivalent to U; (h(x)) = i [Ux( Z?:_o] (C(X;, Ap) — 8) + h(Xy41)) ]; paralleling the
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above argument, it follows that

n—1
Us(h(x)) = B [UA ( > (€Ki, A — g) - ||h||>}

t=0

n—1
_ e—k(ng+||h|\)EJ;* |:U)» < Z C(Xy, Az)>:|

=0
= e Mty (1,(F*, X)) = Us(—(ng + |hl) + Ju(F*, X))

Therefore, h(x) > J,(f*, x) — (ng + ||All), and then g > (1/n)(Ju(f*, x) — (I Al + h(x)));
via (8) and (9), it follows that g > J(f*, x) > J*(x), x € S. Combining this relation with
(12) and (18), it follows that g < J, <J*(-) <g,sothat J,(-)=g=J*() and J_(f*, -) =
g=J(f*, ), ie. g =limy_ oo n 1, (F, ).

2.4. Assumptions for a constant average cost

Even under strong communication-ergodicity conditions, like those in Assumption 2 below,
in the present context of a denumerable state space the existence of a solution of the optimality
equation cannot be generally guaranteed for an arbitrary bounded cost function; an (uncon-
trolled) example illustrating this phenomenon was given in Section 9 of [7]. However, as we
verify later, the strong requirements imposed below ensure that the optimal value functions are
constant. To continue, it is convenient to introduce the following notation.

For each set F C S, define the first return time to F by

Tp:= min{n > 1|X, € F}, (19)

where, by convention, the minimum of the empty set is oo; if F' = {x} is a singleton, the simpler
notation
Ty =Ty 20)

is used. Combining the above definition with (1) and (2), it follows that [T = n] € JF,, for every
n €N, so that T is a stopping time with respect to the filtration {F,}.

Assumption 2. There exists z € S such that the following properties hold.

(i) Accessibility from z:
Under the action of any stationary policy, every state y € S is accessible from z, i.e.
PL[T, <o0] >0, y€S, f€F.

(ii) Simultaneous Doeblin condition:
The first return time T, satisfies SUPcs fel Ef([TZ] < 00.

The proof of the following result can be found in [7].

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then:
(i) Foreveryy €S, there exists a finite constant My such that
ET[Ty] < M,, xeS, meP. 20

(ii) For arbitrary different states x, y € S, PT [Ty < T] >0, w € P.
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2.5. The problems

As already observed, under Assumptions 1 and 2, the optimal average cost cannot be gen-
erally characterized via the optimality equation (14), since it does not necessarily admit a
solution. Thus, looking for a characterization of the optimal average cost is an interesting
problem. The main objectives of this paper are:

e to show that the optimal value functions J*(-) and J(-) coincide and are constant;
e to characterize the optimal average cost.
These problems were addressed in [7] for the case A > 0 of a risk-averse controller, so, from
this point onwards, our analysis focuses on the risk-seeking case X < 0.
3. Main result

In this section the main conclusions of this work are stated in Theorem 1, which extends
to the risk-seeking context results established in [7] for the risk-averse case. The ideas in the
following definition will be useful.

Definition 1.
(i) The set G of subsolutions of the optimality equation (14) for model M consists of all
pairs (g, h(-)), where g € R and the function /: § — R satisfy

Un(g +he) < Eig(fx) |: > pey@Un(Clx, a) + h(y))i| . XES. (22)
yes

(i) The set G is the projection of G on its first coordinate, i.e. G = {geR|(g, he G for
some h: R — R}.

Remark 3. When two cost functions are simultaneously being examined, the sets C; and G in
the above definition are denoted by G(C) and G(C), respectively, making it clear what cost
function is being considered. With this notation, it follows that, for each 8 € R,

(g ") €G(C) <= (g+ B, h(-)) € G(C + B),

whereas
8€Y(C) <= g+ BG(CH+P). (23)
Via (3), it is not difficult to see that if A < 0, then inequality (22) is equivalent to
MM > gqup |:e)‘c(x’“) Z px,y(a)e”’(y):|, x€eS. (24)
aeA(x) yes

Using the above notation, the main result of the paper can be stated as follows.

Theorem 1. Suppose that ) <0, and that Assumptions 1 and 2 hold. In this context, the
following assertions are valid:

(i) The inclusion g € G is equivalent to g < J(-).

(ii) Foreachx €S, J.(x)=sup{g|ge€ G} =J"(x).
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(iti) Set g* =sup{g | g € G}. With this notation, g* € G. More explicitly, there exists h*: S —
R such that (g*, h*(-)) € G, that is,

M > gy |:ekc(x’a) pr,y(a)em*(y) :| X€S. (25)
acA(x)

yeS
(iv) For each ¢ > (, there exists a stationary policy f € F which is e-optimal in the sense that
g <J (f.x)<J({f.x)<g"+e x€S.

The equality in Theorem 1(ii) is an extension of the Collatz—Wielandt formula for the largest
eigenvalue of a positive (finite-dimensional) matrix ([17]); see, for instance, the discussion on
this point presented in Remark 3.2 of [7]. The rather technical proof of the above result will
be presented in Section 6. Roughly, the backbone of the argument consists in ‘approximating’
the optimal average cost of the original model M, via MDPs with finite spaces of stationary
policies and cost functions with finite support. This strategy is developed in the following two
sections, and can be briefly outlined as follows: Section 4 concerns basic properties of the
class of subsolutions. First, it is shown that if (g, A(-)) € G then h(-) is bounded from above,
and g is a lower bound for the optimal inferior limit average index; moreover, given that the
system is driven by 7 € P starting at x € S, it is shown that A(x) is bounded from above by
the certainty equivalent of the total relative cost Z[T;o_ ! (C(X;, Ay) — ) up to the first return
time to a given state w. Additionally, such a certainty equivalent is studied for the case in
which the system evolves under a stationary policy, and the results in this direction are used
in Section 5 to show that, if the space of stationary policies is finite and C has finite support,
then the optimality equation (14) admits a solution (g, /(-)) where the mapping A(-) is bounded.
After these preliminaries, the proof of Theorem 1 is finally presented in Section 6 before the
concluding remarks.

4. Fundamental tools

This section presents auxiliary results that will be used to establish Theorem 1. The starting
point is the following lemma, which concerns two basic properties of the pairs in G, namely, if
(g, h(") € G then (i) the functional part 4 is bounded from above, and (ii) g is a lower bound of
the optimal inferior limit average index.

Lemma 2. Given that 1. <0, under Assumptions 1 and 2 the following properties hold for each
weSand (g, h(-)€g:

(i) Foreachxe Sandm € P,

Tw—1
S [exp {x D (CXi, A - g>”, (26)

=0

and then

Ty—1
1> Eg[exp {x > (CXi A - g)H. (27)

t=0
(ii) h(-) —h(w) <||C — g|IM,,, where M,, is as in (21).
(iii) g < J(x) for each x € S.
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Proof. For (i), let 1 € P and x € S be arbitrary. Given n € N, observe that, combining
Definition 1 with (24), it follows that e*"Xn) > Y es HMCKnD=9py  (a)e*"Y) for every a e
A(X,), and then

eMi(Xn) > Z / e}"(C(X”’a)_g)px,y(a) 7u(da | Hn)e)»h(y)

Tos JAc)

= BT [MCKn A=+t Xui) | F ],

where the equality is due to the Markov property. Now set Zy=e X0 7z —
exp {k Z:;—ol (CXi, Ap)—g)+ )»h(X,,)}, n=1,2,3,... Using these and the previous display,
and the fact that exp {A Z';:—ol (CXy, Ap) — g)} is F-measurable, an argument along the lines
of the one used in Remark 2 yields that {(Z,, F,)} is a supermartingale with respect to PT,
ie. Z, > EX [Zyy1 | Ful, n € N, PT-almost surely (a.s.). Therefore, since T, is a stopping time
with respect to the filtration {F,}, the optional sampling theorem yields ET [Zy] > ET [Z,A7,, ]
(Theorem 7.7.3, p. 304 of [1]; Theorem 35.2, p. 405 of [4]), i.e.

nATy,—1
e > T [ exp {A > (€AY -9+ xh(XnArWﬂ. (28)
=0
Now observe that P [T, < oo] =1, by (21), and that X7, =w on the event [7,, < o], by
(19). Therefore, with probability 1 with respect to PT,
nAT,,—1
lim_exp {A 3 (X A) -9+ xh(XnATw>}
n—oo —0

T,—1 T, —1
=exp {A > (CXi A)—g) + xh(XTW)} =exp { LY (CXLA) - g) + Ah(W)}-

=0 t=0

Thus, via Fatou’s lemma, (28) yields

nAT,—1
M) > lim inf E;T |: exp :A Z (CX:, A — 9+ Ah(XnATw)}j|

n—00
t=0

Ty—1
> Ef [exp ix Y (€Ki A) — ) + m(w)”

t=0

Tw—1
=E7 |:exp {)» Z (CXy, Ay) — g)}]elh(w),

t=0

and (26) follows; setting x equal to w leads to (27).
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For (ii), from Jensen’s inequality it follows that

Ty—1 Tw—1
Ej;[exp {A Z (CX;, Ay) — g)” > exp {]E;T [,\ Z (CX;, Ay) — g)“
=0 t=0
> e~ IMC-pIETIT,]

>He=sliMe = yes meP, (29)
where the negativity of A and (21) were used in the last step. The above relation and (26)
together imply that Ah(-) — Ah(w) > A||C — g||M,,, and the conclusion follows.

For (iii), let x € S and 7w € P be arbitrary. Recalling that {(Z,, F,,)} is a supermartingale with
respect to PT, for every positive integer n,

e =BT [Z0] > BT [Z,]

n—1
=E7 | exp 1 ) (C(Xi A) — g)+ Ah(xnﬂ

t=0

n—1
> 7| exp i) (CX, A = g)”e“”“”“c‘gww)
L =0

n—1
=E7| exp {2 Z C(X;, Ay) } ] e A TAhW)FIC—gl M)
X E)
L =0
= exp{AJu(7, x) — nrg + A(h(w) + ||C — g|IM,,)},

where the second inequality is due to part (ii), and (7) was used in the last step. It follows that
Ah(x) > AJp(m, x) — nAg + A(h(w) + ||C — g||M,,), and then

1 1
g§= ;Jn(ﬂ, x)+ ;(h(W) —h(x) + [|C — gllMy).
Taking the inferior limit as n goes to oo in both sides of this relation, it follows that g <
J_(m, x), and then g < J,(-), since x € S and 7w € P are arbitrary in this argument. O

The remainder of the section is dedicated to studying inequality (27) for a stationary policy
f, and it is convenient to introduce additional notation.

Definition 2. Let f € F, g€ R, and w € § be arbitrary but fixed, and define the total relative
cost function up to the first return time to state w under f by

Tw—1
1 w
hy gw(x) 1= — log <E§[exp {A > (C(X,,A»—g)H), xes.
=0

Notice that this definition and (29) with f instead of 7 together yield Ahys g, (x) > A||C —
gllM,,, and the negativity of A leads to

hr () < 1IC — glIM,y. (30)
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On the other hand, a conditional argument combining Definition 2 with the Markov property
yields

Ty—1
E§|:exp {A Z (C(X;, Ay) —g)}l[X1 #w] |H1:|
t=0
Ty—1

= HMCOSED=D X, £ w]E] [ exp {A > (CXi A)— ) } 1[X; #w] | Hl}

=1

T—1

— M SX)-9)q[x, #w]Ex, |:exp {)\ Z (CX;, Ay) — g)}:|
t=0

— MECS =01 [x, £ ]eranXD)|

and then

T,—1
eMiren® — Ef;[ exp {x > (€ A - g)}l[Xl = w]:|

t=0

T,—1
+E§[exp {A 3 (cx, A —g)}l[xl #w]}

=0

— e)»(C(Xf(X))*g) <px)w(f(x)) + Z pxyy(f(x))e)»hf.g,w(y)> . (31)
yw

Next, the following lemma shows that if A¢ g ,,(w) is finite at some point, then s g, (-) is
finite on S, and a fundmental property of the mapping y — #y ¢ ,(y) will be established, namely,
if that function attains a non-negative value at some point, then it is always non-negative.

Lemma 3. Assume that . <0 and that Assumptions 1 and 2 are valid. In this context, the
following assertions hold for arbitraryf € F, g e R, and w € S.

(1) If hy g w(W) > —00, then hy 4,,(x) is finite for every x € S.

(ii) The following assertions are equivalent:

(a) hygw(w)=0.
(b) hygw(-) is finite and the following Poisson inequality holds:

Hiran® > MO0 3™ b (fethrar®,  xes. (32)
yeS

(c) hfgy(y) >0 foreveryyesS.

Proof. For (i), given x € S\ {w}, using Lemma 1(ii) pick a positive integer k satisfying

P,[Ty=k<T,] >0, (33)
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and notice that [Ty =k < T\, ] = [X; ¢ {x, w}, 1 <t <k, X = x] belongs to Fi (see (2)), so that

T—1
Ef;|:exp {)» Z (C(X;, Ar) —g)} |~7:k:|

t=0

T—1
>E, |:1[TX =k <T,]exp {k Z (CX1, Ap) —g)} |]:k:|

t=0

k—1 Ty—1
=exp :A > (X A — g)}l[T —k< TWJEa[exp { LY (CX A — g)} | fk}

=0 t=k

Ty—1
> ST, =k < T, ]H, [ exp {x > (€, A) — g)} | fk}
t=k

Tw—1
=Ml T, =k < T, 1B, [ exp {k Y (CXi, A - g)”,
=0

where the last equality is due to the Markov property. Since X; = x on the event [T, = k], it
follows from Definition 2 that

T,—1
E{v[exp [A > (C(XI,A,)—g)] |«7:k:|

=0

Ty—1
> Ml T, =k < T, 1, [ exp {A > (€ A) - g)”

=0
— e)‘knc_gnl[Tx — k < Tw]e)\hf.g,w(x)’

so that
Tyy—1
e =, [ exp {x > (C A g)” > My w P, [T =k < T, ],
=0
and then (33) yields

hy, g w(W) > —00 == Ahr g (W) < 00 == Ahf g (X)) < 00 == Ny g 0(x) > —00.

Since x € S\ {w} is arbitrary in this argument, this last display and (30) together yield that if
hy.¢.w(w) is finite then Ay ¢ ,,(x) is finite for every x € S.

For (ii) (c) == (a), the implication is clear. For (a) = (b), suppose that &7 g ,,(w) > 0, so
that iy ¢, (+) is a finite function, by part (i), and 1 > eMirew®) gince A is negative. Thus, from
(31),

Mrgn@ > ACES()=g) (px’w(f(x))e)‘hf“?vw(w) + Z pqu(f(x))e)\hf.gﬁr(y))’ xes.
y#EW

and (32) follows. For (b) = (c), let y € S be arbitrary but fixed. Consider the new MDP
My obtained from M by setting A(x) = {f(x)}. In this case f is the unique policy in this new
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model, and (32) establishes that the pair (g, & 4 () belongs to the set G (M) of subsolutions
corresponding to My, so that the conclusions of Lemma 2(i) applied to model My with y
instead of w hold. In particular, inequality (27) with f instead of & is valid, and then 1 >

Ty—1 :
B[ exp (A Y20 (C(Xi, A) — @)}] = 000, 50 that hy.g () > 0. O
The next result is a natural complement of Lemma 3(ii).

Lemmad4. Letf € F, g € R, and w € S be arbitrary but fixed. Under the conditions in Lemma 3,
the following assertions hold.

(1) hrgww) >0 &< hy ¢ y(y) >0 foreveryy€eS.
(ii) hrgwW)=0 < hy,,(y) =0 foreveryyeS.
Proof. For (i), the <= part is clear. To prove the =, suppose that hy ¢ ,,(w) > 0. In

this case Ay g (- is finite by Lemma 3, and, recalling that A is negative, 1 > e*en®) =
B [exp {1 X7 (CCXi. A7) — g)}]. Thus,

Tyw—1
1=e"E/ [ exp {A Z (CX;, Ay) — g)” for some p < 0. (34)

=0
Next, define the cost functlon C by C(x )=C(x, ), x £ w, C(w J)=Clw, )+ ps and con-
sider the new model M obtained from M by replacing C by C. In this case, if hf g.w 18 the

tAotal relative cost in Definition 2 associated with model M, (34) yields that e)‘hﬂw(w) =1,1i.e.
hy.¢.w(w) =0, and then the equivalence of assertions (a) and (c) in Lemma 3(ii) applied to

model M implies that .
hf.¢.y(y) >0 for every state y. (35)

Next, combining this fact with the inequality Ay ¢ ,,(w) > 0, we show that iy ¢ \(y) > Ofory € S.
Since hy g (W) > 0, to achieve this goal it is sufficient to establish the above inequality for
y # w. In this context, observe that (35) yields

) - Ty—1
12 Mo <E| exp 14D (CX,, A) —g) ]
L =0

- Ty—1 Ty—1
=F[| exp {1 Y (C(Xi. A) —g){ exp :Ap > l{w}<Xt>H

L t=0 =0

B Ty—1
= E§} €Xp A Z (C(Xt, At) - g) :| = e)‘h.ﬁg,y(}‘)’
L =0

where the strict inequality follows by observing that (a) exp {Ap Zzgl l{w}(X,)} > 1, since A

and p are negative, and that (b) exp {Ap ZtT‘z‘;l 13,1(Xp)} > 1 on the event [T,, < T,], which

has positive probability with respect to IP; by Lemma 1(ii), whereas the last equality is due to
Definition 2. Thus, 1 > e*7.¢30)_ and then Ay 4 y(y) > 0, since A is negative. This completes the

proof of part (i).
For (ii), the assertion follows by combining part (i) with the equivalence of properties (a)
and (c) in Lemma 3(ii). O
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5. Optimality equation in a special case

The objective of this section is to provide sufficient conditions to ensure the existence of a
bounded solution to the optimality equation (14). The result in this direction requires special
conditions on the cost function and the action sets, and is stated in Theorem 2. That result will
be established using the following lemma.

Lemma 5. Let .. <0 and f € F be arbitrary but fixed. Suppose that the cost function C(-, f(-))
under f satisfies the following requirements:

(a) C(x,f(x)) <0 foreveryxesS;
(b) C(-, f(-)) has finite support, i.e.
F:= {xeS|C(x, f(x)) <0} is finite. (36)
In this case there exists a real number g(f) such that the following properties are valid:

(i) g(f) <0, and the functions {hy g(),wlwes satisfy

Ty—1
eMrsw) — |f [ exp {x > (CXi A - g(f))H =1, weS (37

=0
see Definition 2.

(ii) For each w € S, the function hy g w(-) is finite and the following Poisson equation
holds:
M) — MCS())—g(f)) Zpx,y(f(x))e)“hf,g(/’).w(y)’ xes. (38)
y
(iii) The function hy o(r),w(-) is bounded for each w € S. More explicitly,

—o0 < )iclelg ht o), w(x) < iy ) w(-) <My [|C — gl

(iv) Givenw € S, for n € N set

nATy,—1
Wa(f):= exp {2 Z (C(Xz,At)—g(f))+/\hf,g,w(XnATw)}- (39)
=0

With this notation, Wu(f) = Ex[ exp {» X 00 (C(X,, A — g(F))} | Fu, Peeacs, x €35,
n e N; see (2), (19), and (20).

Proof. Recall that the equality A; = f(X;) is always valid when the system is driven using f.

The argument to prove (i) is by induction on |F|, the number of elements of the set F in
(36). If |F| =0 then C(-, f(-)) =0, so that, setting g(f) = 0, it follows that (37) holds for each
x € S. Next, assume that, for some nonnegative integer 7, the desired conclusion is valid when
the support of C(-, f(-)) has n elements, and suppose that |F| =n + 1. Pick X € F, so that

Cx, f(0) <0, (40)
and set F = F\ (&}, C(x, @) = C(x, )1 3(%), (x, a) € K, so that

F=FU(F, C@, f(x)=CHfE)gx) +Cx, f(x),  x€S. (41)
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It follows that the support of the function C(-, £()) is the set F, which has n elements. Thus,
by the induction hypothesis there exists g(f) < 0 such that (37) holds with C and g(f) instead
of C and g(f), respectively; in particular,

T;—-1
Eﬁ[exp {A 3 (€ A —é(f))” =1.

=0

Next, observe that (41) yields

D (CKi fXD)) = 3N = CEFE) Y LX)+ Y (CX, fX) — &)
t=0 t=0 t=0
Tl
= CE @1 HXo) + Y (CXi. f(X) — B(F))
t=0
T}*] -
=CGE @)+ Y (CX. fX) ()  Phas.,
t=0

where the second equality was obtained using that X, # X for 1 <t < T3, by (19) and (20),
whereas the relation ]P’; [Xo =Xx] =1 was used in the last step. Thus, (37) leads to

T:—1
EL [ exp {,\ > (. Ay — g(f))” = W) 5 (42)

t=0

where, recalling that 1 < 0, the inequailty is due to (40). Now observe that

exp !A > (€Ki, A - y)} N0as y N\ —oo,

t=0

T
t=

whereas, since the mapping y — exp {A » 51 (CXy, Ap) — y)} is increasing,

Ti—1 Ti—1
exp :A 3 (X A — y)} <exp {A 3 (€ A~ g(f))}, y <&(.

t=0 t=0

Combining (42) with the two previous displays, the dominated convergence theorem implies
that v(y) := Eé[exp {x 2261 (C(Xr, Ap) — y~)}] is continuous in y € (—oo, g(f)], and that
v(y) \( 0 as y \{ —oo; since v(3(f)) = e*CEH @) > 1, by (42), the intermediate value property
implies that there exists g(f) € (—oo, g(f)) C (—o0, 0) such that

Ti—1
L= () =E [ exp !A > (X A — g(f))” = Mran®,

t=0

From this point, Lemma 4(ii) yields that (37) holds for every x € S. This completes the
induction argument.
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For (ii), since e*.¢0») = 1 for every w € S, by part (i), Lemma 3(i) yields that iy g(r) ()
is finite, and (38) follows from (31).

For (iii), recall that the equality P7[T,, < oco] =1 is always valid, by Lemma 1(i). Now,
define the finite set G = {w} U F such that Tg < T,, and T < TF, and then

CXy, f(Xy) =0, l<t<Tg. (43)
Next, select an initial state
Xo=xe(S\G)C(S\F), 44)
so that
C(Xo, f(X0)) =0, (45)

and observe that

Ty—1
exp !A > (CXo f(X) — g(f))}

=0

Tyw—1
=1[Tg=T,]exp {A 3 (€ fX) — g(f))}

t=0

T,—1
+1[Tg < Tyl exp {A Y (€, fX) — g(f))}

=0

Tg—1
=1[TG = Tl exp {A D (CXi, f(X) — g(f))}

=0

Tg—1 Ty—1
+1[Tg < T] exp : A( 3 (€K fXD) — 8N+ Y (CX f(X0)) — g(f))) }

=0 1=Tg

T,—1
=1[T6 = T]e 070 4 1[TG < T, exp {—Ag(f)Tc Y (CX fX) — g(f))}

t=Tg

T,—1
<1[Tg =Ty] +1[Tg < Tyl exp : WY (O f(X) — g(f))},

t=Tg

where the third equality is due to (43)—(45), and the inequality stems from the negativity of A
and g(f). It follows that, for every x € S\ G,

T —1
M) = ]E{C|: exp {)» Z (CXy, f(X0) — g(f))}:|

t=0
Ty—1
<P[Te=T.+ Ef;[l[TG <Tw]exp {A > (CX, f(X0) — g(f))H

t=Tg
= PQ[TG <Twl+ E;[I[TG < Tw]e)”hﬂg(f),w(XTG)]’
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where, via a conditional argument, the second equality follows from the Markov property.
Thus, since X7, € G on the event [T < oo] and IP’{C[TG < ool > IP’{C[TW < oo] =1, it follows
that

Mo < 1 4 exp [ max |27 g0 } <2exp { max |17 g0 ) ] xeS\G,
ye ye

and then £y g(f) () > A‘l[log (2) + maxyeg |Ahy g(r),w()|] when x € S\ G; since Ay g5y, w(-)
is a finite function and the set G is finite, it follows that &7 ¢() () is bounded from below.

For (iv), looking at (2), (19), and (20) we observe that, for each x, we § and n, ke N\
{0} with k <n, the random variables 1[T;, = k], Y+~ (C(X;, A) — (), and 1[T, > n] are
JFn-measurable, and then

Tyw—1
Eﬁ[exp {A > (CXi A — g(f))} m}

=0

n k—1
Ef;|: > 1T, =k]exp [x D (CXi, A — g(f))} | fn}
k=1

t=0

n—1 Tw—1
+E [1[Tw > n] exp !A > (CX, A — g(f))} exp {A D (CXi, A — g(f))} | fn}

t=0 t=n

n k—1
= Z 1[T,, = k] exp {A Z (C(Xt, Ay) — 8«))}

k=1 =0

n—1 Tyw—1
+1[T, > nl exp {A > (CXi, A g(f))}Eﬁ [ exp {A > (i, A — g(f))} | fn}

t=0 t=n

nATy,—1
=1[T,, <n]exp {)» Z (CXy, Ap) — g(f))}

=0
n—1
+1[T,y > n] exp {k > (X A — g(f))]e“?fvmw(xﬂ
t=0
nAT,—1
=1[T, < n]exp{/\ > (X A - g(f))}
=0
nAT,—1
+1[T,, > n] exp {A > (A - g(f))}e”f‘mw“nﬂw,
=0

where the Markov property was used to set the third equality. Next, notice that on the event
[T\, <n] the equality X,7, =w holds, and in this case e*/.¢)wXnnti) = e*ys)wv(¥) = 1, by
part (i). Combining this fact with the previous display, it follows that

Tu—1
E{C|:exp !)» Z (C(Xt, Ap) — g(f))} | ]:n:|

=0
nATy,—1
=1[T,, <n] exp{x > (C(X,,A»—g(f))}e”ﬂmﬁ«w("'mm)
=0
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nAT,,—1

+1[T,, > n] exp {A > (C(xt,Af)—g(f))}emf’ng(""”w)

=0

nATy,—1
= exp {?» > (C(XZ,A,)—g(f))}eth-ﬂﬂw(x"”w)=Wn(f),

t=0

completing the proof. (]

Next, the previous lemma will be used to establish the main result of the section, which will
be derived under the following conditions.

Assumption 3. There exists a finite set F C S such that the cost function and the action sets
satisfy the following properties.

(i) Foreachx € S\ F, the action set A(x) is a singleton, whereas A(x) is finite for x € F.
(ii) Ifxe S\ F, C(x, )=0and C(x,-) <0ifxeF.

Theorem 2. Suppose that A < 0, and that Assumptions 2 and 3 are valid. In this context, for
each w € S, the following assertions hold.

(i) For each stationary policy f the cost function C(-, f (+)) satisfies conditions (a) and (b) in
Lemma 5, and there exists f € F such that the pair (8(f), hr o(r),w(-)) € (—00, 0] x B(S)
satisfies

My ()00 () — sup |:e)»C(X,ﬂ) pr’y(a)e)‘hf,g(f),w(y):| ,

acA(x) yes

= FOO) Y (Feran®), ke,
yes

(ii) J+()=g(f) =J*(), and g(f) =lim,, 0o (1/n)Ju(f, x), x € S.

Proof. Starting with part (i), notice that Assumption 3 implies that the space [ of stationary
policies is finite and that, for each f € I, the nonpositive cost function C(- f( )) has finite
support, so that conditions (a) and (b) in Lemma 5 hold for every f eT; see (36) It follows
that, for each f eI, there exists g(f) such that, for each state w, the pair (g(f) hf P, W) €
(—00, 0] x B(S) satisfies the conclusions in Lemma 5. Pick f € F such that

g(f) =min g(f). (46)

feF

Now let w € S be arbitrary but fixed, and note that (38) holds by Lemma 5(ii), so that

Mrapn® < gup eA(C(x,m—g(f))Z Pry(@erson® | xes. (47)
acA(x) y

Thus, to establish the first assertion it is sufficient to show that the equality holds in the above
relation. To achieve this goal, recall that the space A(y) is finite for every y € S, which allows
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us to pick f* € IF such that

MCESf @) —g() Z Pry(F* () s ®)
y

= sup eMCx.a)—g(f)) pr’y(a)e)‘hf.g(f).w()’) , xeS. (48)
aeA(x) Y

Combining these two last displays, it follows that, for each state x € S,

My s < MEES* () —g(f) Z Dy y(f*(x))e)\hf,g(f),w(y)’
y

and then there exists a function A: S — R such that
A()=0 (49)

and

M) — T AWHCES =8 §7 p (H(xetrann®), ke (50)
S

notice that g(f) — g(f*) < 0, by (46), and then
AMg() — g(f") =0, (51
since A < 0. To complete the proof of part (i) it is sufficient to show that
A(-) =0, (52)

since this equality combined with (48) and (50) yields that the equality occurs in (47). To
establish (52), recall that the equality A, =f*(X},) always holds with probability 1 under f*, so
that, via (50) and the Markov property, it follows that, for eachx e Sand n e N,

e)‘hﬁg(f).w(xn) — e_A(Xn)+)L(C(Xn S*X)—g()) prn,y(f* (Xn))e}‘hﬁg(f)qw(y)

— e AWK AN [;Ahf,g«->,w<xn+1) | F]. P as. (53)
Now define the positive random variables
Vo= e)‘hf,g(f).w(xo)’
n—1 (54)
Va=exp i Y [=AX) +MCXi, A) = g(fD]+ My gpywXn) g, neN.

=0
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Observing that under f* the random variable Y ;,_,[—A(X;) + A(C(X;, A) — g(f)] is
Fn-measurable, and using the Markov property, it follows that, for every xe S and
neN,

A [ exp { 3= AK) + MCXr A — g + th,gg-),w(xn+1)} | fn}

=0

= exp { [~ AC) + MCX, A) — g(f)] }Eﬁ* [ ) | 7,
=0
1

~

3

= eXp { [_A(Xt) + )L(C(Xt, At) —_ g(}(‘))] ]e)\hf-g(f),w(xn),
=0

where the last equality is due to (53). This last relation and (54) lead to IEJ;*[\/,1+ 1] Ful =V,

i.e. {(Vu, F)lnen is a martingale with respect to IP’;* Via the optional sampling theorem it
follows that, for every x € S and n € N,

M0 =B [Vol = B[] [Vanr, ]

nAT,—1
=E[ [ exp { Z [MCXr, Ar) — g() — AXD)] + )»hf,g(f),w(XnATw)}:|-

=0

Recalling that PE*[TW < oo] =1, by Lemma 1(i), and using that X7, =w on the event [T}, <
o0], it follows that

nATy,—1
Jim Vanz, = lim exp ! ZO [MCXe, Ap) = 8(N) — AXD)] + Ahf,gm,w(XNW)}
1=

Tyw—1
=exp{ > [A(C<Xt,At>—g(f>>—A(X»]th,g(f),w(w)}, P -as. (55)

=0

Next, we compare V,, with the random variable W,(f*) introduced in Lemma 5; see (39).
Observe that

nATy,—1 nAT,—1
D [FAX) +MCKL A) — g = Y MCXi, A) — g(f*) — O,
=0 =0
where
nATy,—1
Oni= (M ATOAE(D — e+ Y, AX)=0,
=0
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and the inequality is due to (49) and (51). Thus,

nATy,—1
0<Vinr, =expy . [—AX)+ACX;, A) — g+ Ahf,g(f)wxww)}
=0

nAT,—1
=expy Y [A(C(Xt,A,)—g(f*»]+Ahf,g<f>,w<xww>}e—9"
=0

nAT,,—1

<exp Z [MCX;, Ap) — g(F )] + )‘hf,g(f),W(Xn/\Tw)}

=0

nATy,—1

<exp Z [MC(X;, Ap) — g(F D] + khf*,g(f*),w(XnATw)}e'*' 1Ay gy =P gy
t=0

= W,,,(]pk)elM th’g(f)’wihf*,g(f*).wH ’

where W,,(f*) is as in (39). Since the equality

Tyy—1

Wal) =E [exp {A > (CX, A - g(f*))} | fn}
t=0

holds ]P’fj-a.s. for every x€ S and ne N, by Lf:mma 5(iv), it follows that {W,,(f*)},en is

uniformly integrable with respect to ]P{C , l.e. ]E{C [W,(F)IW,(F*) > c]] — 0 as ¢ — 00 uni-

formly in n; note that W,(f*) >0, and see, for instance, Theorem 7.6.6, p. 300 of [1], or
Theorem 16.14, p. 230 of [4]. Since ||Af g(r),w — hy+ g(r+),wl is finite, by Lemma 5(iii), the rela-

tion 0 < Vuar, < Wy(F5el* 1.0 =R es0ll obtained from the above display immediately

implies that {V,7, }sen is uniformly integrable with respect to IP{(* Combining this property
with (55), an application of Theorem 7.5.2, p. 295 in [1] allows us to interchange the limit and
the expectation to obtain that, for every x € S,

) = tim B [Vyr, 1 = | lim Viur, |
n—od n—oo

Ty—1
=E [exp { > IMCEL A) — g(F) — AKD] + Ahf,g(f),ww)”

=0

Setting x = w, it follows that

T,—1
M) = Bf] [ exp { D IMCXr, A — g(F) — AXD] + Ahf,g(f),w(m”

=0

and then

T—1
1=E[ [ exp { 3 IMCXr A) — g(f) — AXD] H

=0

Tyw—1
=E] [ exp {A 3" (e, A — g(f*))}eQ],

t=0
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where Q := T,,A(g(f) — g(f*)) + ZTW_I A(X;) > 0, and the inequality is due to (49) and (51).
Observe now that 1 = E, [exp{r ), ‘”0_1 (C(X;, Ay) — g(f*))}] by Lemma 5(i), and combining
this equality with the two previous expressions it follows that 1 = IP’f [Q = 0], an equality that,
combined with (49) and (51), implies that P, [ Tw_l AX)=0]=1.

To conclude, observe that ZT‘”_I AXp) > A(Xo) >0 and ZTW_I AX) > AT, <

T,]1>0,xe S\ {w}, and recall that ]P“; [Ty < T,]> 0 by Lemma 1(ii), whereas 1 =P,,[Xy =
w]. Combining these relations with the two previous expressions, it follows that A(-) =0. As
already mentioned, this completes the proof of part (i). From this point, part (ii) follows via
Remark 2(iii). O

6. Proof of Theorem 1

In this section the main result of the paper is established. Essentially, the approach used
to prove Theorem 1 consists in ‘approximating’ the original model M by a sequence {M,,}
of MDPs satisfying the conditions in Theorem 2. Throughout the remainder of the section
Assumptions 1 and 2, as well as the condition A < 0, are enforced. The argument relies heavily
on the preliminaries established in Section 5, as well as on Lemma 6. To begin with, suppose
that the cost function C satisfies

C(x,a) <0, (x,a) ek, (56)
let {F,},en be a sequence of subsets of S such that

Fyis finite, Fy C Fry1, k€N, U Fe=s. (57)
keN

and define the truncated cost function C, by
Cp(x, a):= C(x, a)lF,(x), (x,a) e K. (58)

Now, let fy € IF be a fixed stationary policy, and recall that, for each x € S, the action set A(x)
is a compact subspace of the metric space A, so that there exists a sequence of {D,(x)},en of
subsets of A(x) such that

Di(x) is finite, Dy(x) C Dg41(x), keN, D(x) := U Dy (x) is dense in A(x).  (59)
keN

With this notation, for each n € N define the collection {A,(x)}xcs of action sets as follows:
An(x) =Dy(x), x€Fy, Ap()={fo®)}, xe€S\Fp (60)

Next, let
an(Sy A» {Al’l(-x)}x657 Cna P)a nENv (61)

be the MDP obtained from M after replacing the actions sets {A(x)}yes and the cost function C
by {A,(x)} and C,,, respectively. It follows from (56)—(61) that, for every n € N, the conditions
in Theorem 2 are satisfied by M,,, and then there exists a stationary policy f;, € [ [,cg An(x)
such that, given w € S, the pair

(8n> hn () = (&), By, g(fw () € (—00, 0] x B(S) (62)
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has the following properties:

e)‘gn"l‘)‘hn(x) = sup e)\Cn(x!a) pr’y(a)e)lhn(y) —
a€A,(x)

yes
= OB Y T p (@), xes, (63)
yes
hn(-) < My |Gy — gall, ha(w) =0, =ICII = —=lICull = gn =0, (64)

by Lemma 5 and (56). It follows that g, € [—||C|, 0] and &, (x)b € (—o0, 2M,,||C||], x € S,
n € N. Via Cantor’s diagonal method, it is possible to determine a subsequence of (g, /1,(-))
(by notational convenience, still denoted by (g,, /,(+))) which is convergent:

lim g, =:g* e [—C]., 0], lim hy(x) =:h*(x) € [-00, 2M,,[|C]l],  x€S.  (65)
n

n—o0

The following lemma, using the conditions and definitions in (56)—(65), is the last step before
the proof of Theorem 1.

Lemma 6. The pair (g*, h*(-)) in (65) satisfies the following properties.

(i) h*(-) is a finite function, and

MW > gup | D Zl’x,y(a)ekh*(y) , X€S, (66)
acA(x) yes

and then (g*, h*(-)) € G; see Definition 1 and (24).

(ii) Foreach x € S,
Ji(x) = g* =J*(0). (67)

Proof. For (i), let x € S be arbitrary but fixed and select n, € N such that x € Fy if k> n,.
Next, let d € D(x) be arbitrary, so that there exists n() € N such that d € Di(x) for k > n(g). It
follows from (60) that d € A,(x) for n > max{ny, n(}, and then (63) implies

e*n T (x) > erCn(x.d) pr,y(d)e)”h"(y) — rCnd) pr,y(d)e)”h"(y), n > max{ny, n)},
yeSs yes

where the equality is due to the definition of C, in (58). Taking the inferior limit as n goes to
oo in this relation, (65) and Fatou’s lemma together lead to

8" TM) 5 ACWd) 1y jnf Z D, y(d)ekh”(y)
n—oo

yeS
LC(x,d) C Ay (y)
>e pr,y(d) I}Egéfe
yes
= DN "p (Y, de D).
yes

Next, given a € A(x), observe that (59) implies that there exists a sequence {di}ren contained
in D(x) such that limy_, », dx = a; replacing d by dy in the above display and taking the inferior
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limit as k goes to oo, from Fatou’s lemma and the continuity conditions in Assumption 1, it
follows that

e)»g*Jr)»h*(x) > lim inf e)»C(x,dk) pr,y(dk)e)\h*(}o
k— 00 ves

AC(x,a) P M*(y) _ AC(x,a) AR*(y)
>e E liminf p, y(dy)e =e E a)e .
= < i px,y( ) & px,y( )

Since x € S and a € A(x) are arbitrary, it follows that (66) holds. To complete the proof of part
(i) we show that 4*(-) is a finite function. To achieve this goal, pick a stationary policy f € F
and define the sequence {S,} of subsets of S as follows:

So=1{w}, Si={eS|py({fx)) >0 for somexe Si_1}, k=1,2,3,...,

and notice that S =|J;2, Sk, by Lemma 1(ii). Using (65), to show that h*(-) is finite it is
sufficient to verify that, for each k € N,

h*(x) > —oo for x € S, (68)

a claim that will be proved by induction. Notice that #*(w) = 0, by (64) and (65), and then the
desired conclusion holds for k = 0. Suppose that (68) is valid for some k € N, let y € Sg+1, and
pick x € S such that

pi3(f() > 0. (69)

Now observe that (66) implies that

ehg +Ah* (%) > A CGESR) Zp&y(f@))ekh*(y) > e’\c(j"f@))pm(f(fc))ekh*@).
yeSs

Recalling that A < 0, the condition 4*(X) > —oo implies that the left-most term in the above
relation is finite, and then (69) allows us to conclude that M) 00, so that A*(y) > —o0;
since y € S+ is arbitrary, it follows that (68) holds with k + 1 instead of k, concluding the
induction argument. As already mentioned, this completes the proof of part (i).

For (ii), for each n € N let J*"(-) be the superior limit optimal average cost function for
model M,,. In this case, (62) and part (ii) of Theorem 2 yield that g,, = J*"(-). Moreover, if f;,
is the stationary policy in (63), then Theorem 2(ii) applied to model M, yields

k—1
1
g = JF(x) = klinolo v log (IE{C" |: exp {k Z Cn(Xq, A,)}:|>, x€eSs;

=0

see (7). Observe now that C,, > C, since the cost function is negative, so that the above display
leads to

k—1
: 1
gn > limsup 7 log (]E{C” |: exp {A Z CX;, A,)}:|>

k— 00 =0

1
= lim sup EJk(fn,x)zj(fn,x)zJ*(x), x€S;

k— 00
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see (8) and (9). From this point, (65) leads to g* > J*(-). Recall now that (g*, h*(-)) € G, by
Lemma 6(ii), so that g* < J,(-), by Lemma 2(iii). Combining these two expressions with the
inequality J.(-) < J*(-) in (12), it follows that J,.(-) = g* = J*(-). O

The proof of the main result is finally presented below.

Proof of Theorem 1. Let A <0 be fixed, and suppose that Assumptions 1 and 2 hold. The
proof has been split into two cases.

Case 1:C(x, a) <0 for every (x, a) € K. Let g* € R and h*(-) be as in (65). For (i), suppose
that g € G. In this case, (g, h(-)) € G for some function h(-), and then g < J,.(-) by Lemma 2(iii).
Assume that g < J,(-). Since J.(-) = g*, by Lemma 6(ii) it follows that g < ¢*, and then Ag >
Ag*, since A is negative. Combining this last inequality with (66), and recalling that A*(-) is a
finite function (by Lemma 6(ii)), it follows that (g, h*) € G, and then g € G; see Definition 1
and (24).

For (ii), since J4(-) = g*, by Lemma 6(ii), part (i) implies that g € G <= g < g*; then
g* =sup{g| g e G}, and the desired conclusion follows from equality (67) established in
Lemma 6(ii).

For (iii), since h*(-) is finite, by Lemma 6(i), and g* =sup{g|g € G}, by part (ii), the
conclusion follows from inequality (66) established in Lemma 6(i).

For (iv), consider the model M,, in (61), let (g,, h,(-)) € [—||C]|, 0] x B(S), and let f, € F
be as in (62) and (63). It follows from Remark 2(iii) that g, = limj_, o (1 /k)J,(cn)(fn, X), X €
S, where ],((n)(fn, x) is the (A-)certainty equivalent of the random cost Z;:& C,(X;, Ay) with

respect to IP’{C" , so that, for each initial state x,

k-1
. 1
8n =k£ngo oy log (Eﬁ"[exp {k Z Cn(Xi, Az)}:|>-

t=0

We show that policy f;, is e-optimal if # is large enough. To achieve this goal, using that C <0,
observe that C < C,, by (58), and then the above display implies that

k—1
, 1
gn > hlfrjip 5 log (Ef? [ exp {A Z CX:, A»H)

=0
| k-1
> linig}f o log (E{;’ |:exp :)» ; Xy, Az)}j|>,

ie. gn > J(fy, x) = J_(fn, X) = Ju(x), x €S, n € N; see (7)—(11). Since J4(-) = g*, by part (iii),
using that g, — g* as n — oo, pick n, € N such that g* 4 ¢ > g, to conclude from the above
display that g* 4+ & > J(fy, -) = J_(fy=, -) > g*, so that f;» € F is e-optimal.

Case 2: C € B(K). The notation in Lemma 1 and Remark 3 will be used. For (i), consider
the cost function C — ||C||, which is nonpositive. Using Remark 3, note that

8€9(C) <= g—ICledg(C—ICIH
— g—lICl =J(C—ICI, )
— g IICI =J«(C, ) —ICll,
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where the second equivalence is due to part (i) in Case 1 applied to the cost function C — || C]|,
and Lemma 1 was used in the last step. It follows that g € G(C) <= g < J.(C, -).
For (ii), an application of part (ii) of Case 1 to the cost function C — ||C|| < 0 yields

J«(C—ICIl, -)=sup{g | g € G(C — ICIN} =J*(C = [Cl, -,

a relation that, via (13) and (23), leads to J.(C, -) =sup{g | g € G(C)} = J*(C, -).
For (iii), since C — ||C|| <0, the third part of Case 1 yields that

sup{g | g € G(C — [ICIN} € G(C — [ICD;

since G(C — ||C||) = G(C) — || C], it follows that sup{g | g € G(C)} € G(C).
For (iv), let ¢ >0 be fixed. Applying the fourth part of Case 1 to the cost function
C — ||C|| <0, there exists f, € IF such that

sup{g | g€ G(C—ICID} + &= J(C = [Cll. fe. )
> J(C—ICII. fe. -) = sup{g | g € G(C — [ICID},

a relation that, via (13) and (23), leads to g* +¢ > J(C, f¢, ) > J_(C, f, -) > g*, where g* =
sup{g | g € G(C)}, showing that f is e-optimal for the cost function C. O

Remark 4. Finally, it is important to point out that the literature on risk-seeking is scarce. The
problem addressed in this manuscript is interesting by itself. The case A < 0 is associated with
a risk-loving (risk-seeking) controller. A risk-seeking controller is willing to accept greater
economic uncertainty in exchange for higher returns. Using a prospect theory approach, it has
been found that people are risk-averse in the domain of gains but become risk-seeking in the
domain of losses; see, for instance, [22].

7. Concluding remarks

This work has studied Markov decision chains endowed with average cost criteria.
Besides standard continuity—compactness conditions, three essential assumptions determined
the framework of the paper: (i) the simultaneous Doeblin condition holds, (ii) the state space
is communicating under the action of each stationary policy, and (iii) the decision maker driv-
ing the system is risk-seeking. Within this context, a characterization of the optimal average
cost was provided in Theorem 1, extending conclusions in [7] obtained under the condition
that the controller is risk-averse. Another interesting result stated in part (iv) of the main the-
orem is the existence of e-optimal stationary policies, which was obtained by truncating the
cost function, instead of taking a policy that ‘almost optimizes’ the term within brackets of the
optimality inequality (25). In this direction there is, at least, an interesting question to be ana-
lyzed in the future: Given ¢ > 0, assume that f € I is derived from the optimality inequality in
such a way that action f(x) is an ¢|A|-maximizer of the logarithm of the term within brackets in
(25), i.e. eM& T < [eMCE/@) > yes px,y(f(x))e’\h*(y)] for every x € S. With this notation,
establishing that f is e-optimal is an interesting problem.
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