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A REMARK ON FUJINO’S WORK ON THE CANONICAL BUNDLE
FORMULA VIA PERIOD MAPS

HYUNSUK KIM

Abstract. Fujino gave a proof for the semi-ampleness of the moduli part in

the canonical bundle formula in the case when the general fibers are K3 surfaces

or abelian varieties. We show a similar statement when the general fibers are

primitive symplectic varieties. This answers a question of Fujino raised in the

same article. Moreover, using the structure theory of varieties with trivial first

Chern class, we reduce the question of semi-ampleness in the case of families

of K -trivial varieties to a question when the general fibers satisfy a slightly

weaker Calabi–Yau condition.

§1. Introduction

Starting from Kodaira’s canonical bundle formula for minimal elliptic surfaces in [23], the

canonical bundle formula has been extensively studied and widely generalized (e.g., by [1],

[9], [10], [13], [21], [22], to list a few) and crucially used in higher-dimensional adjunction.

Roughly speaking, the setup is the following. Let f : X → Y be a projective morphism with

connected fibers between normal projective varieties. Let Δ be a (nonnecessarily effective)

Q-divisor on X such that (X,Δ) is klt (or lc) and KX +Δ ∼Q,f 0. Then the canonical

bundle formula suggests to write

KX +Δ∼Q f∗(KY +BY +MY )

in an insightful way so that, roughly speaking, BY comes from the contribution of the

singularity of the fibers, and MY comes from the (Hodge theoretic) variation of the general

fiber. Moreover, once we have f : X → Y , it makes sense to have the same formula for

other birational models f ′ : X ′ → Y ′ over f so that BY and MY make sense as b-divisors.

We call BY the divisorial part and MY the moduli part. After choosing a high enough

model satisfying certain simple normal crossing assumptions, the moduli part commutes

with generically finite base change and it is known to be nef [22]. In the following cases for

the general fibers, this nef divisor is known to be semi-ample:

1. P1: [21], [26, Th. 8.1];

2. Elliptic curves: [14], [23];

3. Surfaces with κ(Xη) = 0 or abelian varieties: [10];

4. Surfaces not isomorphic to P2: [9];

5. P2, and hence in relative dimension 2: [2, Th. 1.4].

A conjecture of Prokhorov and Shokurov [26, Conj. 7.13] predicts that this would always

be the case. They suggest to compactify the space parametrizing the general fibers to a

projective variety and show that the ample line bundle on the compactified moduli space

pulls back to the moduli part.

Received July 5, 2024. Revised July 16, 2024. Accepted July 28, 2024.
2020 Mathematics subject classification: Primary 14C30, 14D07, 14E30, 14J27.

Keywords: canonical bundle formula, period maps, minimal model program.

© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal.

https://doi.org/10.1017/nmj.2024.22 Published online by Cambridge University Press

http://dx.doi.org/10.1017/nmj.2024.22
https://orcid.org/0009-0007-7759-8441
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2024.22&domain=pdf
https://doi.org/10.1017/nmj.2024.22


2 H. KIM

Meanwhile, [9] gives an inductive approach to this conjecture by developing the canonical

bundle formula and adjunction for generalized pairs. Using the techniques in the minimal

model program, he shows that in order to verify the conjecture in relative dimension n, it is

enough to verify the conjecture in relative dimension < n, and the following two extremal

cases in relative dimension n:

1. f : X → Y is a Mori fiber space, or

2. KX ∼Q,f 0, and Δ has no horizontal divisors.

We concentrate on special situations in the second extremal case, when Δ has no

horizontal divisors. Indeed, the cases when the general fibers are K3 or abelian varieties in

[10] fit into this framework. Fujino observes that the semi-ampleness in this situation reduces

to a purely Hodge theoretic result, namely, by looking at the Baily–Borel compactification

of the period domain, we get semi-ampleness. He raises the question whether one can use the

same strategy when the fiber is a holomorphic symplectic variety. We provide an affirmative

answer.

Theorem 1.1. Let f : X→Y be an algebraic fiber space, with X and Y projective normal

varieties. Suppose that the general fiber is a primitive symplectic variety of dimension 2m

(see Definition 2.12). Then there exists a vertical divisor Δ on X such that f : (X,Δ)→ Y

is an lc-trivial fibration. The moduli part MY does not depend on Δ and it is b-semi-ample.

We use the same idea as in [10], namely, we consider the Baily–Borel compactification of

the parametrizing space of weight 2 Hodge structures. The other input is to relate the second

cohomology and the middle cohomology of the general fibers. While it is hard to determine

the entire middle cohomology of the fiber, the existence of a generically nondegenerate two

form is strong enough for our purpose since we are only interested in the variation of the

lowest piece of the Hodge filtration.

We can combine this result with the structure theory of klt varieties with trivial first

Chern class, and reduce the semi-ampleness question to the case when the general fibers

satisfy a weaker Calabi–Yau condition. First, we recall the statement of the conjecture of

Prokhorov and Shokurov.

Conjecture 1.2 [26, Conj. 7.13]. Let f : (X,Δ)→ Y be an lc-trivial fibration. Then:

1. MY is b-semi-ample.

2. Let Xη be the generic fiber of f. Then there exists a positive integer I0 depending only

on the dimension of the generic fiber and the coefficients of the horizontal part Δh such

that I0(KXη +Δη)∼ 0.

3. MY is effectively b-semi-ample, that is, there exists a positive integer I1 depending only

on the dimension of the generic fiber and the coefficients of Δh such that I1MY is b-free.

We present two subconjectures of the first part of [26, Conj. 7.13] in our setting.

Conjecture 1.3. Let f : X → Y be an algebraic fiber space, with X and Y normal

projective varieties. Consider a pair (X,Δ) such that KX +Δ ∼Q,f 0 and Δ has no

horizontal divisors. Suppose that the general fiber of f

1. is a Calabi–Yau manifold, or

2. is a pre-CY variety (see Definition 2.11).

Then MY is b-semi-ample.
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Conjecture 1.4. Let f : X → Y be an algebraic fiber space as before. Consider the pair

(X,Δ) such that KX +Δ∼Q,f 0 and Δ has no horizontal divisors. Suppose that the general

fiber

1. is smooth, or

2. has klt singularities.

Then MY is b-semi-ample.

We show the following result.

Theorem 1.5. Conjecture 1.3(1) (resp. (2)) in relative dimension ≤ n implies Conjec-

ture 1.4(1) (resp. (2)) in relative dimension n.

Therefore, we reduce the b-semi-ampleness question for K -trivial fibrations to the (pre)-

CY case.

§2. Preliminaries

2.1 The canonical bundle formula

We discuss the canonical bundle formula and the behavior of the moduli part under

various operations, mainly following [24]. Before that, we collect some notation and

terminology for algebraic fiber spaces.

Notation and terminology.

1. An algebraic fiber space is a projective morphism f : X → Y between normal projective

varieties with connected fibers. We put dimf =dimX−dimY for the relative dimension

of the algebraic fiber space.

2. For a Q-divisor B on a normal algebraic variety X, we write B = B+−B− where B+

and B− are effective divisors sharing no irreducible components. We call B+ (resp. B−)

the positive (resp. negative) part of B.

3. Let f : X → Y be an algebraic fiber space, and let B be a Q-divisor on X. We write

B =Bh+Bv where the irreducible components of supp(Bh) are exactly the irreducible

components of B that map onto Y. We call Bh (resp. Bv) the horizontal (resp. vertical)

part of B. We say B is horizontal (resp. vertical) if B =Bh (resp. B =Bv).

4. [1] We say f : (X,Δ)→ Y is an lc-trivial fibration if f : X → Y is an algebraic fiber space

such that

(a) KX +Δ∼Q,f 0;

(b) (X,Δ) is klt over the generic point of Y ;

(c) if π : (X ′,Δ′)→ (X,Δ) is a log resolution, then h0(F ′,
⌈
Δ′

−|F
⌉
) = 1, where F ′ is a

general fiber of f ◦π : X ′ → Y .1

5. Let f : X → Y be an algebraic fiber space, and let μ : Y ′ → Y be a projective surjective

morphism from a normal projective variety Y ′. Let X ′ be any normal projective variety

mapping birationally onto the main component X ′ → (X×Y Y ′)main. Then we have the

1 This is equivalent to the condition rankf∗OX(�A(X,Δ)�) = 1 in [1, Def. 2.1].
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4 H. KIM

corresponding commutative diagram

X ′ X

Y ′ Y.

f ′

μ′

f

μ

We call f ′ : X ′ → Y ′ an algebraic fiber space induced by μ.

6. Let f : X → Y be an algebraic fiber space, and let Δ be a divisor on X such that

KX +Δ∼Q,f 0. We say that f satisfies the standard normal crossing assumptions if the

following conditions hold:

(a) X and Y are smooth;

(b) there exists an SNC divisor Σ on Y such that f is smooth over Y \Σ;
(c) supp(Δ)+f∗Σ has SNC support;

(d) Δ is relatively SNC over Y \Σ.

Even though the divisors Δ and Σ are oppressed in the terminology, we remark that

they are the part of the data of the standard normal crossing assumptions. For clarity,

we will sometimes say that X,Y,Δ,Σ satisfy the standard normal crossing assumptions.

7. Let f : X → Y be an algebraic fiber space satisfying the standard normal crossing

assumptions. We say f is semi-stable in codimension 1 if there exists a codimension

≥ 2 closed subset Z of Y such that f∗(Σ\Z) is a reduced SNC divisor. In this case, the

local system Rif∗CX |Y \Σ has unipotent monodromy for every i by [20].

Remark 2.1. For any algebraic fiber space f : X → Y , there exists a birational

morphism μ : Y ′ → Y and an algebraic fiber space f ′ : X ′ → Y ′ induced by μ such that f ′

is satisfies the standard normal crossing assumptions. Moreover, we can take a generically

finite morphism μ : Y ′ → Y and an algebraic fiber space f ′ : X ′ → Y ′ induced by μ such

that f ′ is semi-stable in codimension 1.

Remark 2.2. Even though there are more general setups considering lc or slc general

fibers due to [12] or [11] which are important in many applications, we are only interested

here in the case when the general fibers are klt.

We describe the canonical bundle formula for algebraic fiber spaces. Let f : (X,Δ)→ Y

be an lc-trivial fibration and fix L a Q-divisor on Y such that KX +Δ ∼Q f∗L. For each

prime divisor P on Y, we consider

tP = sup{t ∈Q : (X,Δ+ tf∗P ) is log-canonical over ηP }.

We define BY =
∑

P (1− tP )P . Note that this is a finite sum since (X,Δ) is klt over the

generic point of Y. We define MY = L−KY −BY , so that we have

KX +Δ∼Q f∗(KY +BY +MY ).

Remark 2.3. Note that by definition, BY and MY do not depend on the birational

model of X. In other words, if we consider a birational morphism π : X̃ → X such that

K
˜X + Δ̃ = π∗(KX +Δ), then f : (X̃,Δ̃) → Y is an lc-trivial fibration, and the BY and

MY computed in terms of f ◦π : (X̃,Δ̃) → Y agree with the ones computed in terms of

f : (X,Δ)→ Y .
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For every birational morphism μ : Y ′ → Y , we have a commutative diagram

X ′ X

Y ′ Y,

μ′

f ′ f

μ

where μ′ : X ′ → X is birational. If we write KX′ +Δ′ = μ′∗(KX +Δ), then we use the

formula for f ′ : (X ′,Δ′)→ Y ′ and write

KX′ +Δ′ ∼Q f ′∗(μ∗L) = f ′∗(KY ′ +BY ′ +MY ′).

We have μ∗MY ′ = MY and μ∗BY ′ = BY , and therefore we may and will consider the

divisorial part and the moduli part as b-divisors, and denote them by BY and MY . We

point out that each MY ′ may be well defined only up to Q-linear equivalence, but once we

fix a representative L such that KX +Δ∼Q f∗L, then MY is well defined as a b-divisor.

Remark 2.4. We say that a b-divisor D on X descends to X ′ if D=DX′ . We remark

that a b-divisor D on X is b-nef (resp. b-semi-ample, b-free) if there exists a birational

model X ′ → X such that D descends to X ′ and DX′ is nef (resp. semi-ample, free). For

basic notions for b-divisors, we refer to [7, Chap. 1]. Here, we collect some standard facts

about the divisorial part and the moduli part from [24, §8.4].

1. For an lc-trivial fibration f : (X,Δ) → Y , we can take a resolution of singularities μ :

Y ′ → Y and an algebraic fiber space f ′ : (X ′,Δ′)→ Y ′ induced by μ such that X ′, Y ′,

Δ′, BY ′ satisfy the standard normal crossing assumptions. In this case, MY and K+BY

descend to Y ′ in the sense that for any birational morphism π : Y ′′ → Y ′, we have

MY,Y ′′ = π∗MY ′ , and KY ′′ +BY,Y ′′ = π∗(KY ′ +BY ′).

2. MY only depends on the general fiber (F,Δ|F ) and Y.

3. Let f : (X,Δ) → Y be an lc-trivial fibration satisfying the standard simple normal

crossing assumptions. Then MY is b-nef.

4. Let f : (X,Δ) → Y be an lc-trivial fibration satisfying the standard normal crossing

assumptions. Let μ : Y ′ → Y be a generically finite surjective morphism from a smooth

variety Y ′. Let

X ′ X

Y ′ Y

μ′

f ′ f

μ

be an algebraic fiber space induced by μ and write KX′ +Δ′ = μ′∗(KX +Δ). Then,

f ′ : (X ′,Δ′)→ Y ′ is an lc-trivial fibration and

MY ′ = μ∗MY .

5. Suppose moreover that there exists an SNC divisor Σ on Y such that f : (X,Δ) → Y

satisfies the standard normal crossing assumptions and Δh is an integral divisor (hence

−Δh is effective). Furthermore, assume that pg(Xη) = 1 where η is the generic point of Y,

and the variation of Hodge structures Rdimff∗CX |Y \Σ has unipotent local monodromies.
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6 H. KIM

Then MY is the divisor class corresponding to the canonical extension of the lowest piece

of the Hodge filtration of Rdimff∗CX |Y \Σ.

Remark 2.5. We remark that it is enough to take a resolution of singularities and a

generically finite cover of the base in order to check the b-semi-ampleness of the moduli

part.

We compare our setup with the formulation in [10], [13]. Consider an algebraic fiber

space f : X → Y between smooth projective varieties. Suppose that the Kodaira dimension

of the generic fiber of f is zero, that is, κ(Xη) = 0, where η is the generic point of Y. Fix

b ∈ Z>0 such that the b-th plurigenus of the general fiber Pb(Xη) is nonzero. Then we have

the following formula for the canonical bundle KX .

Proposition 2.6 [13, Prop. 2.2]. In the above situation, there exists a unique Q-divisor

D on Y, modulo linear equivalence, with an isomorphism of graded OY -algebras:⊕
i≥0

OY (�iD	)

⊕
i≥0

(f∗OY (ibKX/Y ))
∗∗.

Furthermore, the isomorphism induces a Q-linear equivalence

bKX ∼Q f∗(bKY +D)+B,

where B is a Q-divisor on X satisfying

1. f∗OX(�iB+	) =OY for i > 0, and

2. codimY f(suppB−)≥ 2.

Note that we recover the canonical bundle formula in this situation, since f : (X,−b−1B)→
Y is an lc-trivial fibration, and we can write

KX − b−1B ∼Q f∗(KY +BY +MY ).

Remark 2.7. We point out that in this situation, there is a natural choice of Δh since on

the general fiber F, the divisor −bΔ|F is the zero locus of the unique section (up to scalar)

in H0(F,ω⊗b
F ). Moreover, any two such Δ that make (X,Δ) → Y an lc-trivial fibration

differ by the pullback of a divisor on Y. Note that the moduli part MY only depends on the

general fiber (F,Δ|F ). Therefore, given a projective morphism f : X → Y between smooth

projective varieties whose general fiber has Kodaira dimension zero, it makes sense to talk

about the moduli part MY without picking a divisor Δ on X such that f : (X,Δ)→ Y is

an lc-trivial fibration.

We end this section by describing the behavior of the moduli part after taking a

generically finite cover of the source.

Proposition 2.8 [10, Lem. 4.1]. Let f : X → Y and h : W → Y be algebraic fiber spaces

between smooth projective varieties such that:

1. κ(Xη) = 0, where η is the generic point of Y,

2. there is a generically finite morphism g : W →X such that h= f ◦g,
3. there is an SNC divisor Σ on Y such that f and h are smooth over Y ◦ := Y \Σ, and
4. κ(Wη) = 0 and pg(Wη) = 1.

Let MX/Y and MW/Y be the moduli part of the canonical bundle formula coming from

f : X → Y and h : W → Y , respectively. Then MX/Y =MW/Y .
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Remark 2.9. We point out that there is a difference of a multiple of b in the formula

from [10], where b is the smallest number such that the plurigenus Pb(Xη) is nonzero. This

is because the semi-stable part denoted by Lss
X/Y in [10] actually equals bMX/Y in our

situation.

2.2 The structure theorem for K -trivial klt varieties

We recall the structure theorem for K -trivial varieties, starting from the decomposition

theorem of Beauville–Bogomolov and its singular generalization. Roughly speaking, this

theorem suggests to study K -trivial varieties by studying three different special types of

varieties.

Theorem 2.10 [4]. Let X be a Kähler manifold with c1(KX) = 0 ∈H2(X,R). Then X

admits a finite étale cover γ : X̃ →X such that X̃ decomposes as

X̃ 
A×
∏
j∈J

Yj ×
∏
k∈K

Zk

such that:

1. A is an abelian variety;

2. Yj are irreducible hyperkähler manifolds;

3. Zk are Calabi–Yau manifolds.

We introduce a remarkable generalization of this result to singular varieties, due to [18]

and a series of works including [8], [15], [17]. We first define the singular analogues of

irreducible hyperkähler manifolds and Calabi–Yau manifolds, in the sense of [15]. We also

introduce weaker versions of these notions.

Definition 2.11. Let X be a normal projective variety of dimension n≥ 2. We say

1. X is CY (Calabi–Yau) if X has Gorenstein canonical singularities with ωX 
OX , and

if H0(Y,Ω
[p]
Y ) = 0 for all covers γ : Y →X which are étale in codimension 1 and for all

1≤ p≤ n−1.

(1)’X is pre-CY (pre-Calabi–Yau) if X has Gorenstein canonical singularities with ωX 
OX ,

and if H0(X,Ω
[p]
X ) = 0 for all 1≤ p≤ n−1.

2. X is IHS (irreducible holomorphic symplectic) if X has Gorenstein canonical singularities

with ωX 
 OX , and if there exists a holomorphic 2-form σ ∈H0(X,Ω
[2]
X ) such that for

all covers γ : Y →X étale in codimension 1, the exterior algebra H0(Y,Ω
[•]
Y ) is generated

by the reflexive pullback of σ.

Following [5], we also give a slightly general class of symplectic varieties than those

appearing in the decomposition theorem.

Definition 2.12. A normal projective variety X is primitive symplectic if

1. H1(X,OX) = 0 and H0(X,Ω
[2]
X ) = Cσ, where σ is nondegenerate on the smooth locus

Xreg, and

2. there exists a resolution of singularities π : Y → X such that the pullback of σ|Xreg

extends to a holomorphic 2-form on Y.

Remark 2.13. Let X be a primitive symplectic variety of dimension 2m, and let σ

be the symplectic form. Then ωX 
 OX since it is trivialized by σm and therefore X is
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8 H. KIM

Gorenstein and canonical. We point out that the second condition in Definition 2.12 is

equivalent to X having canonical singularities by [16, Th. 1.4]. Pick any resolution of

singularities π : X̃ → X and let σ̃ be the holomorphic 2-form on X̃ extending π∗σ|Xreg .

Note that in this case, we have

h2,0(X̃) = h0,2(X̃) = 1.

Note that there is a natural morphism of Hodge structures μ : SymmH2(X̃,Q) →
H2m(X̃,Q). We observe that kerμ is a Hodge structure of weight 2m that does not have

a (2m,0) part since σ̃ is generically nondegenerate. We also point out that if X itself is a

smooth hyperkähler manifold, then the natural morphism μ for X is injective by [28].

Remark 2.14. We will use the following convention for Calabi–Yau manifolds. A

smooth projective variety X of dimension n is a Calabi–Yau manifold if ωX 
 OX and

dimCH
k,0(X) =

{
1, if k = 0,n,

0, otherwise.

This condition is weaker than the condition appearing in Beauville’s decomposition theorem

(see [4, Prop. 2]). However, we point out that if X is a holomorphic symplectic manifold of

dimension 2m with

dimCH
k,0(X) =

{
1, k is even,

0, k is odd,

then X is automatically simply connected, and hence irreducible holomorphic symplectic

(see [19, Prop. A.1]).

We finally introduce the generalization of the Beauville–Bogomolov decomposition to the

singular case.

Theorem 2.15 [18, Th. 1.5]. Let X be a normal projective variety with at worst

klt singularities such that c1(KX) = 0. Then there exists a projective variety X ′ with at

worst canonical singularities, with a quasi-étale (which means quasi-finite and étale in

codimension one) map γ : X ′ →X and a decomposition

X ′ 
A×
∏
j∈J

Yj ×
∏
k∈K

Zk,

into normal varieties with trivial canonical bundles, such that

1. A is an abelian variety;

2. Yj are irreducible holomorphic symplectic varieties;

3. Zk are Calabi–Yau varieties.

2.3 Summary of Fujino’s result for K3 surfaces

We briefly summarize the Hodge theoretic results used in [10, §2]. Let B be a smooth

projective variety, and let Σ be an SNC divisor on B. Let B◦ =B\Σ and consider a polarized

Z-variation of Hodge structures of weight 2 on B◦ with the following numerical conditions:

h2,0 = h0,2 = 1, h1,1 = g ≥ 3, and hp,q = 0 otherwise.
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We furthermore assume that the local monodromies around Σ are unipotent and there exists

a neat arithmetic group Γ containing the local monodromy operators around Σ. Then we

have the period map ℘◦ : B◦ →D/Γ and in this case, D is a bounded Hermitian symmetric

domain. By Borel’s extension theorem [6], the holomorphic map ℘◦ extends to B as

℘ : B → (D/Γ)BB,

where (D/Γ)BB is the Baily–Borel compactification of D/Γ [3] which is a normal analytic

space. The tautological sub-bundle on D descends to a line bundle L on D/Γ. The sections

of L⊗gk can be identified with automorphic forms of weight k (which are Γ-equivariant

k -pluricanonical forms on D). For some k > 0, the automorphic forms give an embedding

of D/Γ into a projective space, and the automorphic forms can be continuously (hence

analytically) extended to (D/Γ)BB. Moreover, these extended automorphic forms define a

projective embedding of (D/Γ)BB. Hence, L⊗gk extends to an ample line bundleO(D/Γ)BB(1)

on (D/Γ)BB. On the other hand, from the variation of Hodge structures, we have the

associated vector bundle H on B◦ with a filtration F •. By the nilpotent orbit theorem, the

canonical extension H of H is a vector bundle on B which carries a filtration F • by vector

bundles extending the filtration on H. By definition, we have the natural identification

(℘◦)∗L
 F 2H. The key content of [10, Th. 2.10] is that the lowest piece of the filtration on

the canonical extension H and the ample line bundle on (D/Γ)BB are compatible. In other

words, we have

℘∗O(D/Γ)BB(1)
 (F 2H)⊗gk.

In particular, this shows that F 2H is a semi-ample line bundle on B.

Remark 2.16. [10, §2] has a parallel statement dealing with variations of Hodge

structures of weight 1 which covers the case when the general fiber is an abelian variety.

§3. Proof of Theorem 1.1

We give a proof of Theorem 1.1.

Proof of Theorem 1.1. All other assertions except b-semi-ampleness are clear. By

Remark 2.5, we can take a generically finite base change of Y and resolve singularities.

Hence, we can assume that we have a morphism f ′ : X ′ → Y ′ between smooth projective

varieties and we have a divisor Δ′ onX ′ such that f ′ : (X ′,Δ′)→ Y ′ is an lc-trivial fibration.

We can furthermore assume that the following facts hold:

1. There exists an SNC divisor Σ′ on Y ′ such that f ′ is smooth over Y ′ \Σ′.

2. X ′,Y ′,Δ′,Σ′ satisfy the standard normal crossing assumptions, and f ′ is semi-stable in

codimension 1.

3. Every fiberX ′
y of f ′ for y ∈ Y ′\Σ admits a unique holomorphic 2-form σy ∈H0(X ′

y,Ω
2
X′

y
)

which is generically nondegenerate.

4. h1,1(X ′
y)≥ 3 for y ∈ Y ′ \Σ (by blowing up X ′ further).2

2 We point out that it is important to allow negative coefficients for (Δ′)h in the canonical bundle formula
since we are blowing up X ′ further.
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Note that in this case, the local monodromies of R2f ′
∗CX′ |Y ′\Σ′ and R2mf ′

∗CX′ |Y ′\Σ′ around

Σ′ are unipotent by [20]. It is enough to show that MY ′ is semi-ample. Since the general

fibers of f : X → Y have Gorenstein canonical singularities, −(Δ′)h is effective and integral.

Hence, we are exactly in the situation in Remark 2.4(5). Hence, MY ′ is the divisor class of

the canonical extension of the lowest piece of the Hodge filtration of the variation of Hodge

structures R2mf ′
∗CX′ |Y ′\Σ′ . We denote by V(2) and V(2m) the polarizable variations of

Hodge structures R2f ′
∗CX′ |Y ′\Σ′ and R2mf ′

∗CX′ |Y ′\Σ′ .3 Then we have a natural morphism

of variations of Hodge structures

μ : SymmV(2) → V(2m).

Then we have noncanonical splittings

SymmV(2) 
 kerμ⊕ imμ

V(2m) 
 imμ⊕B,

where kerμ, imμ, and B are polarizable variations of Hodge structures (see [25, Th. 10.13]).

By Remark 2.13, kerμ and B do not have (2m,0)-part. We denote by (H(2),F •), (H,F •), and

(H(2m),F •) the filtered vector bundles associated with the variations of Hodge structures

V(2), imμ, and V(2m). Denote by H(2),H, and H(2m) the canonical extensions of H(2),H,

and H(2m), respectively. Since B does not have a (2m,0)-part, we get

F 2mH
 F 2mH(2m).

We also have F 2mH 
 (F 2H(2))⊗m by Lemma 3.1 below and since kerμ does not have

a (2m,0)-part. Then [10, Th. 2.10] immediately implies that F 2H(2) is semi-ample, and

therefore F 2mH(2m) is semi-ample as well. Since MY ′ is a divisor class of this line bundle,

we are done.

Lemma 3.1. Let Y be a smooth complex manifold, and let Σ be an SNC divisor on

Y. Let V be a polarizable variation of Hodge structures of weight 2 on Y \Σ, with Hodge

numbers

h2,0 = h0,2 = 1, and hp,q = 0 if p < 0 or p > 2.

Suppose that V has unipotent local monodromies along Σ. Let H and H′ be the filtered vector

bundles associated with the variations of Hodge structures V and SymmV, respectively.

Denote by H and H′ the canonical extensions of H and H′, respectively. Then we have

(F 2H)⊗m 
 F 2mH′.

Proof. We fix a polarization on V and denote the Hermitian metric on H by h. We have

the induced metric h′ on H′. Note that there is a canonical isomorphism (F 2H)⊗m 
F 2mH′

between line bundles on Y \Σ. Fix local coordinates z1, . . . , zn on an open subset Ω⊂ Y such

that Ω
 {(z1, . . . , zn) ∈ Cn : |zi|< 1} and Σ∩Ω is given by the equation z1 · · ·zl = 0. Since

V and SymmV both have unipotent local monodromies, we have the following description

3 We point out that we should first fix a relatively ample class for f ′ : X ′ → Y ′ to give a polarization
on the variations of Hodge structures V(2) and V(2m) due to a subtlety of signs in the polarization for
primitive and non-primitive parts, but this does not cause a problem throughout the argument.
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of the local sections of F 2H and F 2mH′ using the estimation of Hodge norms by [27, §6]:

Γ(Ω,F 2H) =

{
s ∈ Γ(Ω\Σ,F 2H) : ‖s‖2h =O

(
l∏

i=1

| logzi|Ni

)
for some Ni > 0

}
,

Γ(Ω,F 2mH′) =

{
s′ ∈ Γ(Ω\Σ,F 2mH′) : ‖s′‖2h′ =O

(
l∏

i=1

| logzi|N
′
i

)
for some N ′

i > 0

}
.

Since ‖s⊗m‖2h′ = ‖s‖2mh , the isomorphism (F 2H)⊗m 
 F 2mH′ extends to (F 2H)⊗m 

F 2mH′.

We give a similar lemma which can be proven along the same lines as the previous lemma.

This will be used in the next section.

Lemma 3.2. Let Y be a smooth complex manifold, and let Σ be an SNC divisor on Y.

Let V1, . . . ,Vr be polarizable variations of Hodge structures of weight w1, . . . ,wr, respectively.

Assume that V1, . . . ,Vr have unipotent local monodromies along Σ. Suppose that the Hodge

numbers for Vi satisfy

hwi,0 = h0,wi = 1, and hp,q = 0 if p < 0 or p > wi.

Let H1, . . . ,Hr, and H be filtered vector bundles associated with V1, . . . ,Vr, and V1⊗·· ·⊗Vr,

respectively. Denote by H1, . . . ,Hr, and H′ their canonical extensions. Then we have

Fw1H1⊗·· ·⊗FwrHr 
 Fw1+···+wrH′.

§4. Proof of Theorem 1.5

We give a proof of Theorem 1.5.

Proof of Theorem 1.5. We first consider the case when the general fiber is smooth. By

resolving singularities, we can assume that X and Y are both smooth, and the geometric

generic fiber has trivial first Chern class. By Theorem 2.10, after taking a generically finite

base change of Y, we can assume that there are algebraic fiber spaces h : W → Y , p : A→
Y,{qj : Yj → Y }aj=1,{rk : Zk → Y }bk=1 satisfying the following conditions:

1. h factors as W
g−→X

f−→ Y , where g is a generically finite morphism.

2. There exists an SNC divisor Σ on Y such that f,h,p,qj , rk are smooth over Y ◦ = Y \Σ.
3. Over Y ◦, the fiber spaces p,qj , rk’s are families of abelian varieties, irreducible

hyperkähler manifolds, and Calabi–Yau manifolds, respectively.

4. Denote the inverse images of Y ◦ by W ◦, A◦, Y ◦
j , and Z◦

k . Then there is an isomorphism

W ◦ 
A◦×Y ◦ Y ◦
1 ×Y ◦ · · ·×Y ◦ Y ◦

a ×Y ◦ Z◦
1 ×Y ◦ · · ·×Y ◦ Z◦

b

over Y ◦.

5. The variations of Hodge structures Rdimhh∗CW◦ ,Rdimpp∗CA◦ ,Rdimqjqj∗CY ◦
j
, and

Rdimrkrk∗CZ◦
k
have unipotent local monodromies around Σ.

By Proposition 2.8, it is enough to show that the moduli part MW/Y associated with

h : W → Y is semi-ample. Applying the Künneth formula, the realization of the moduli

part as the canonical extension of the lowest piece of the Hodge filtration, and Lemma 3.2,
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we get

MW/Y =MA/Y +

a∑
j=1

MYj/Y +

b∑
k=1

MZk/Y ,

where MA/Y ,MYj/Y , and MZk/Y are the moduli parts associated with the fiber spaces p,qj ,

and rk, respectively. By [10, Th. 5.1] and Theorem 1.1, we know that MA/Y and MYj/Y are

semi-ample. Hence, Conjecture 1.3(1) in relative dimension ≤ n implies Conjecture 1.4(1)

in relative dimension n.

We deal with the singular case in a similar fashion. By applying Theorem 2.15 to the

geometric generic fiber Xη, we get the following diagram:

X̃η

X ′′′
η X ′′

η X ′
η Xη

π

μ1

h

μ2 μ3

such that:

1. π : X̃η →Xη is a resolution of singularities.

2. μ3 is a generically finite morphism such that

X ′
η 
Aη×

a∏
j=1

Yj,η×
b∏

k=1

Zk,η,

where A is an Abelian variety, Yj are IHS varieties, and Zk are CY varieties.

3. φj : Ỹj,η → Yj,η and ϕk : Z̃k,η → Zk,η are resolutions of singularities and

X ′′
η 
Aη×

a∏
j=1

Ỹj,η×
b∏

k=1

Z̃k,η

such that X ′′
η →X ′

η is induced by the maps φj and ϕk’s.

4. X ′′′
η is smooth and μ1 :X

′′′
η →X ′′

η is a birational morphism resolving the indeterminacy

of the rational map from X ′′
η to X̃η.

After replacing Y with a generically finite cover of Y and resolving singularities, we can

assume that Y is smooth, and there exist an SNC divisor Σ and algebraic fiber spaces

p : A → Y , {qj : Yj → Y }aj=1, {q̃j : Yj → Y }aj=1, {rk : Zk → Y }bk=1, and {r̃k : Z̃k → Y }bk=1

over Y, and a commutative diagram

X̃

X ′′′ X ′′ X ′ X Y

˜f
π

μ1

h

μ2 μ3 f

satisfying the following conditions:

1. π : X̃ →X is a resolution of singularities, and f̃ satisfies the standard normal crossing

assumptions.

2. For every point y ∈ Y \Σ, the fibers of p, qj , and rk over y are abelian varieties, primitive

symplectic varieties, and pre-CY varieties, respectively.

3. μ3 : X
′ → X is a generically finite morphism and if we denote by X ′◦, A◦,Y ◦

j ,Z
◦
k the

corresponding inverse images of Y ◦, then we have an isomorphism
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X ′◦ 
A◦×Y ◦ Y ◦
1 ×Y ◦ · · ·×Y ◦ Y ◦

a ×Y ◦ Z◦
1 ×Y ◦ · · ·×Y ◦ Z◦

b

over Y ◦.

4. μ2 is a birational morphism from a smooth projective variety X ′′, and if we denote the

inverse images of Y ◦ similarly, we have an isomorphism and a commutative diagram

X ′′◦ A◦×Y ◦ Ỹ ◦
1 ×Y ◦ · · ·×Y ◦ Ỹ ◦

a ×Y ◦ Z̃◦
1 ×Y ◦ · · ·×Y ◦ Z̃◦

b

X ′◦ A◦×Y ◦ Y ◦
1 ×Y ◦ · · ·×Y ◦ Y ◦

a ×Y ◦ Z◦
1 ×Y ◦ · · ·×Y ◦ Z◦

b ,

�

μ2

�

where the right vertical map is induced by the morphisms φj : Ỹj → Yj and ϕk : Z̃k →Zk

over Y such that for each point y ∈ Y ◦, the morphisms φj and ϕk, restricted to the

fibers over y, give resolutions of singularities.

5. μ1 is a birational morphism, h is a generically finite morphism, and f̃ ◦h satisfies the

standard normal crossing assumptions.

6. The variations of Hodge structures Rdimpp∗CA◦ , Rdim q̃j q̃j∗C˜Y ◦
j
, Rdim r̃k r̃k∗C ˜Z◦

k
,

Rdim ˜f f̃∗C ˜X◦ , and Rdim ˜f (f̃ ◦h)∗CX′′′◦ have unipotent local monodromies along Σ.

Note that MX/Y =M
˜X/Y =MX′′′/Y =MX′′/Y by Proposition 2.8 and Remark 2.3. Note

that

MX′′/Y =MA/Y +
a∑

j=1

M
˜Yj/Y

+
b∑

k=1

M
˜Zk/Y

=MA/Y +
a∑

j=1

MYj/Y +
b∑

k=1

MZk/Y .

We already know that MA/Y and MYj/Y are semi-ample. Therefore, Conjecture 1.3(2) in

relative dimension ≤ n implies Conjecture 1.4(2) in relative dimension n.

Remark 4.1. Note that we used wider classes of varieties when we passed from the

properties of the geometric generic fiber to those of the general fiber. This is because the

definitions of IHS and CY in [15, Def. 1.3] have a condition on the reflexive Hodge numbers

for every étale in codimension 1 cover, which involves a priori infinite data. It is also not

clear how to use the description of IHS and CY using holonomy groups in the sense of [15,

Prop. 12.10] since one should choose an abstract field isomorphism C 
 k(η) in order to

perform such a decomposition in the proof of Theorem 1.5. It would be interesting if one

could overcome this technical point.
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support and helpful discussions. The author would also like to thank Osamu Fujino and

Stefano Filipazzi for useful comments and answering his questions.

References

[1] F. Ambro, Shokurov’s boundary property, J. Differ. Geom. 67 (2004), no. 2, 229–255.
[2] K. Ascher, D. Bejleri, H. Blum, K. DeVleming, G. Inchiostro, Y. Liu and X. Wang, Moduli of boundary

polarized Calabi–Yau pairs, preprint, arXiv:2307.06522, 2023.
[3] W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains,

Ann. of Math. 2 (1966), no. 84, 442–528.
[4] A. Beauville, Variétés Kähleriennes dont la première classe de Chern Est nulle, J. Differ. Geom. 18

(1983), no. 4, 755–782.
[5] A. Beauville, Symplectic singularities, Invent. Math. 139 (2000), no. 3, 541–549.

https://doi.org/10.1017/nmj.2024.22 Published online by Cambridge University Press

https://arxiv.org/abs/2307.06522,
https://doi.org/10.1017/nmj.2024.22


14 H. KIM

[6] A. Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem,
J. Differential Geom. 6 (1972), 543–560.

[7] A. Corti, editor, Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and Its
Applications, Vol. 35, Oxford University Press, Oxford, 2007.

[8] S. Druel, A decomposition theorem for singular spaces with trivial canonical class of dimension at most
five, Invent. Math. 211 (2018), no. 1, 245–296.

[9] S. Filipazzi, On a generalized canonical bundle formula and generalized adjunction, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 21 (2020), 1187–1221.

[10] O. Fujino, A canonical bundle formula for certain algebraic fiber spaces and its applications, Nagoya
Math. J. 172 (2003), 129–171.

[11] O. Fujino, Fundamental properties of basic slc-trivial fibrations I, Publ. Res. Inst. Math. Sci. 58 (2022),
no. 3, 473–526.

[12] O. Fujino and Y. Gongyo, On the moduli b-divisors of lc-trivial fibrations, Ann. Inst. Fourier (Grenoble)
64 (2014), no. 4, 1721–1735.

[13] O. Fujino and S. Mori, A canonical bundle formula, J. Differ. Geom. 56 (2000), no. 1, 167–188.
[14] T. Fujita, Zariski decomposition and canonical rings of elliptic threefolds, J. Math. Soc. Japan 38

(1986), no. 1, 19–37.
[15] D. Greb, H. Guenancia, and S. Kebekus, Klt varieties with trivial canonical class: Holonomy, differential

forms, and fundamental groups, Geom. Topol. 23 (2019), no. 4, 2051–2124.
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