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Abstract
This study presents a novel 4-DOF two-limb gripper mechanism with a simple design that offers high adaptability
for different objects. The mechanism integrates a three-finger end effector and employs a 2-DOF driving system in
both serial kinematic chains mounted on the base, addressing performance problems caused by moving actuators.
First, the architecture of the gripper mechanism is described, and its mobility is verified. Next, the inverse and
forward kinematic problems are solved, and the Jacobian matrix is derived to analyze the singularity conditions.
The inverse and forward singularity surfaces are plotted. The workspace is investigated using a search method, and
two indices, manipulability and dexterity, are studied. The proposed manipulator’s parameters are optimized for
improved dexterity. The novel gripper mechanism has high potential for grasping different types of parts within a
large workspace, making it a valuable addition to the field of robotics.

1. Introduction
Parallel manipulators are commonly used in industrial applications due to the merit of high stiffness,
carrying capacity, precision, and low movement inertia [1]. Lower-mobility manipulators have attracted
extensive attention from scholars because of their simpler structures, lower manufacturing cost, and
larger workspaces when compared to 6-DOF manipulators [2–4]. Among lower-mobility manipulators,
SCARA motion parallel manipulators, which include three translations in space plus one rotation around
a given axis, are preferred for tasks such as material handling, surface mounting, parts assembly, and
pick-and-place [5–7].

The Delta robot is the most well-known manipulator that outputs three translations [8], and numerous
Delta-based SCARA motion manipulators have been proposed. The common structural feature of these
Delta-based manipulators is that four identical limbs connect the base and the rigid moving platform,
such as H4 [9], I4 [10], and Par4 [11]. Xie [12] introduced a high-speed parallel robot with Schönflies
motion and analyzed kinematic issues. Salgado synthesized a novel 3T1R (T denotes translation and R
denotes rotation) fully parallel manipulator using only lower kinematic pairs in ref. [13]. Apart from
Delta-based manipulators, many novel SCARA motion manipulators have been designed with different
kinematic performances. Tian [14] designed a generalized parallel mechanism for 3T1R motion with
the characteristics of partially decoupling motion. Zhao [15] investigated a 3T1R manipulator and opti-
mized its workspace. Alvarado [16] presented the kinematics and dynamics analysis of a 4-PRUR (P is
prismatic joint, R is rotational joint, and U is universal joint) parallel manipulator using screw theory
and the principle of virtual work. Other novel architectures have been proposed for SCARA motion in
the literature [17–20].
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The manipulators with simple structures mainly offer the advantages of low manufacturing cost and
large workspace. Some two-limb architectures have been presented in the literature [21–25]. However,
only one actuated joint in each limb is fixed to the base, which causes an increase in moving mass when
the manipulator moves. It is well known that all actuators should be mounted on the base for better
dynamic performance.

Human-like hands [26–35] have the ability to perform dexterous manipulations, but they require com-
plex and sophisticated drive systems and sensors, which can lead to high cost and difficulty in design
and control. Suction gripping devices [36–38] have been developed for grasping objects in cluttered and
narrow spaces, but they can be unstable at high speeds, accelerations, or payloads due to their soft mate-
rial and variable contact area. Several grasping mechanisms based on parallel mechanisms have been
proposed that offer high stiffness, accuracy, and load/weight ratio. Jin [39] designed a novel dexterous
hand using three parallel mechanisms as fingers, while Tian [40] synthesized a redundant reconfigurable
generalized parallel mechanism capable of grasping objects, and Wang [41] proposed a generalized par-
allel mechanism with a configurable moving platform suitable for grasping larger or heavier objects.
However, these parallel mechanism-based grasping mechanisms have complex structures, which can
make control difficult.

Based on previous studies and tests, it has been identified that the simplicity of the architecture is
crucial for effective manipulator design. Therefore, in this paper, we propose a novel two-limb architec-
ture with a small number of lower kinematic pairs to address these requirements. Our approach involves
constructing a gripper mechanism based on a two-limb 3T1R mechanism with an integrated three-finger
end effector. According to our previous work in ref. [42], a 2-DOF driving system is used, and all actu-
ators are mounted on the base to avoid the issue of a large moving mass caused by moving actuators.
In Section 2, we use screw theory to verify the DOF characteristics of the proposed manipulator. In
Section 3, we solve the inverse and forward kinematic issues. Subsequently, in Section 4, we evaluate
the performance of the proposed manipulator in terms of its workspace, singularity, manipulability, and
dexterity. We optimize the parameters of the proposed manipulator for improved dexterity in Section 5.
Finally, we draw a conclusion in Section 6.

2. Description and mobility of the gripper mechanism
The proposed novel two-limb gripper mechanism is depicted in Fig. 1, consisting of two serial kinematic
chains that connect the base and the end effector. The 2-DOF driving system is employed in both serial
kinematic chains to achieve a compact design, as is shown in Fig. 2. The 2-DOF driving system is a
PR-drive system, where the prismatic joint and the revolute joint are parallel to each other. The input
rotation around the axis perpendicular to the u-direction is transformed by a worm gear drive system to
a rotation around the u-direction. The translational direction and rotational angle of the output link are
denoted by u and θ , respectively, and are controlled by two actuators. A revolute joint is used to connect
the two serial kinematic chains, and the three-finger device is mounted on the revolute joint. By rotating
the screw, the opening and closing of the three-finger end effector can be achieved.

The architecture of the novel three-finger end effector architecture is illustrated in Fig. 3. The gripper
comprises of a palm, an end part, three sliders, three fingers, six revolute joints, and six prismatic joints.
The three fingers are arranged symmetrically, allowing for the symmetrical movement of the fingers.
Taking one finger branch as an example, the finger is connected to the slider via a revolute joint, while
the slider has a connection with the end part, forming the prismatic joint simultaneously. The linear
movement of the finger is achieved by the prismatic joint between the finger and palm. The palm and
end part are connected by a revolute joint, which permits the relative rotation between them. For the
mechanism, the end part can output rotational motion, which is also the input motion for the gripper.
Thus, the rotation of the end part can be utilized to control the opening and closing of the gripper.

Figure 4 presents the kinematics of the gripper, where the joints and components are expressed in
the same color as in the 3D model. The dotted line denotes the initial state in which configuration the
angles between the lines LP and PQ and PQ and LQ are represented by γ0 and γ1, respectively. γ is the
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Figure 1. Two-limb gripper mechanism.
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Figure 3. Gripper architecture.
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Figure 4. Kinematics of the gripper.

Figure 5. Geometric scheme of the manipulator.

rotational angle of the end part. During the design procedure, the angles γ0 and γ1 as well as the length
of MP can be specified. According to the geometric relationship, the length of MN can be calculated by
the following equation:

|MN| = |PQ| sin (γ0 − γ )

sin (π − γ0 + γ + γ1)
(1)

Then, the length of NP can be obtained by:

|NP| = |MP| cos (γ0 − γ )+ |MN| cos (π − γ0 + γ + γ1) (2)

Thus, the opening distance, that is, the length of LN, can be computed by:

|LN| = |LP| − |NP| (3)

The geometric scheme of the two-limb mechanism is presented in Fig. 5. To facilitate the kinematic
study, at the intersection point between the guide rails of the active prismatic joint A1 and A2, the origin
O is established as the reference point for the global coordinate system. The Z-axis coincides with the
direction of joint A1, and the Y -axis is directed along the movement of joint A2. The end effector is
equipped with a moving coordinate system, aligned such that its x-, y-, and z-axes run parallel to the X-,
Y -, and Z-axes of the fixed coordinate system, respectively. The angle θ1 is measured from the dotted
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line parallel to the X-axis to A1B1, while θ2 is determined from the dotted line parallel to the Z-axis
to A2B2. θ1 and θ2 denote the input angles. Additionally, the angle φ1 is calculated from the dotted line
parallel to the short rod to the long rod of parallelogram joint, while φ2 is given by measuring from the
dotted line parallel to the short rod to the long rod of parallelogram joint. The unit vectors collinear
with the axes of different joints are labeled as sij. ψ is the rotational angle of the screw joint. It can be
observed that the first kinematic chain lies in the XOY plane, whereas the second kinematic chain lies
in the XOZ plane.

Based on screw theory [43], the properties of output motion can be explored. A generalized prismatic
joint can replace the parallelogram joint, allowing movement along the direction perpendicular to the
long rod. The branch motion-screw systems for two kinematic chains can be written as:

{
$m

1

}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

$11 = [0 0 0; 0 0 1
]T

$12 = [0 0 1; 0 0 0
]T

$13 =
[

0 0 0; − cot (φ1 + θ1)√
1 + cot2 (φ1 + θ1)

1√
1 + cot2 (φ1 + θ1)

0
]T

$14 = [0 0 1; y14 −x14 0
]T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

{
$m

2

}=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

$21 = [ 0 0 0; 0 1 0
]T

$22 = [ 0 1 0; 0 0 0
]T

$23 =
[

0 0 0;
cot (φ2 + θ2)√

1 + cot2 (φ2 + θ2)
0

1√
1 + cot2 (φ2 + θ2)

]T

$24 = [ 0 1 0; −z24 0 x24

]T
$25 = [ 0 0 1; y25 −x25 p

]T

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

where {$m
i } (i = 1, 2) is the motion-screw systems of two chains, $ij (i = 1, 2 and j = 1, 2, . . . , 5) denotes

the motion screws of joints in the two chains, and
(

xij yij zij

)T represents the position of the jth joint
in the ith limb, and p is the pitch of the helical joint. Then, the branch constraint-screws systems that are
reciprocal to motion-screw systems can be obtained as:

{
$r

1

}=
⎧⎨
⎩

$r
11 = [0 0 0; 1 0 0

]T
$r

12 = [0 0 0; 0 1 0
]T
⎫⎬
⎭ (6)

$r
2 = [0 0 0; 1 0 0

]T (7)

Note that the reciprocal screws $r
11 and $r

12 indicate that the first kinematic chain exerts two couples
parallel to the x- and y-axis on the moving platform, whereas $r

2 represents the couple parallel to the
x-axis from the second kinematic chain. The constraint-screw systems provide two constraint couples
on the platform, which limits the rotations around the x- and y-axis. A common constraint couple acting
about x-axis is obtained. Hence, the number of common constraint is 1, that is, λ= 1. Also, no redundant
constraint exists in this mechanism, that is, v = 0. According to its equivalent mechanism, the mechanism
is comprised of nine basic components and nine lower joints. Thus, the number of DOF is computed by
the modified Kutzbach–Grübler formula [44] as follows:

M = d (n − g − 1)+
g∑

i=1

fi + v = 5 (9 − 9 − 1)+ 9 = 4 (8)
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Figure 6. Vector notation for the kinematic modeling.

where d is the order of the mechanism, d = 6 − λ, n denotes the number of basic components, g rep-
resents the number of joints, fi indicates the DOF of ith joints, and v is the number of redundant
constraints.

Based on the analysis, the mechanism is a Schönflies motion generator if the three-finger end effector
is removed. The rotation around the z-axis here is utilized to control the opening and closing of the three-
finger end effector. Therefore, the whole DOF of the gripper mechanism remains at 4, which include
three translational motions and grasp operation. Due to the structural restrictions in the motion, the
geometry relationship between the joints remains unchanged, resulting in a noninstantaneous DOF.

3. Kinematics
The mechanism after removing the three-finger end effector possesses three translations in space plus
one rotation around a given axis. The pose variables of the end effector can be given by x[ x y z ψ ]T.
The input variables of the four actuators are provided by q[ q1 q2 θ1 θ2 ]T. The vector notation for
the kinematic modeling of its equivalent simplified mechanism is presented in Fig. 6. The length of
links are defined as AiBi = li1, BiCi = li2, CiDi = li3, and D1E1 = l14. The vector loop closure equations
are utilized for both position and velocity analysis. Two equations can be obtained:{

q1w + l11a1 + l12b1 + l13c1 + l14d1 = k

q2v + l21a2 + l22b2 + l23c2 + pψw = k
(9)

where the vectors are defined as follows:
w = [ 0 0 −1 ]T, v = [ 0 1 0 ]T, k = [ x y z ]T, a1 = c1 = [ cos θ1 − sin θ1 0 ]T,

b1 = [ sin (φ1 + θ1) cos (φ1 + θ1) 0 ]T, d1 = [ sin θ1 cos θ1 0 ]T, a2 = [ sin θ2 0 cos θ2 ]T,

b2 = [ cos (φ2 − θ2) 0 sin (φ2 − θ2) ]T, c2 = [ 1 0 0 ]T.

Further, Eq. (9) can be simplified as:⎧⎪⎨
⎪⎩

l11 cos θ1 + l12 sin (φ1 + θ1)+ l13 cos θ1 + l14 sin θ1 = x

−l11 sin θ1 + l12 cos (φ1 + θ1)− l13 sin θ1 + l14 cos θ1 = y

−q1 = z

(10)
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⎧⎪⎨
⎪⎩

l21 sin θ2 + l22 cos (φ2 − θ2)+ l23 = x

q2 = y

l21 cos θ2 + l22 sin (φ2 − θ2)− pψ = z

(11)

Based on the results presented in Eqs. (10) and (11), it can be concluded that the output translation
along the z-axis is a function of the input variable q1, while the output translation along the y-axis is
dependent on the input variable q2. These equations demonstrate that the proposed manipulator exhibits
partial decoupling of input–output motions, which facilitates precise control and enhances accuracy.

3.1. Inverse kinematic problems
For inverse kinematic problems, the positon of the end effector x[ x y z ψ ]T is given, and the input
variables q[ q1 q2 θ1 θ2 ]T need to be computed.

Squaring both sides of the first two equations in Eq. (10) yields
g1 = g2 cos θ1 − g3 sin θ1 (12)

where g1 = l2
11 + l2

13 + l2
14 + 2l11l13 + x2 + y2 − l2

12, g2 = 2(l11x + l13x + l14y), g3 = 2( − l14x + l11y + l13y).
Hence, the input variable θ1 can be derived as:

θ1 = 2 arctan

(
−g3 ±√−g2

1 + g2
2 + g2

3

g1 + g2

)
(13)

Similarly, by squaring both sides of the first and the last equations in Eq. (11), an equation is
obtained:

s1 = s2 cos θ2 − s3 sin θ2 (14)

where s1 = l2
21 + l2

23 + x2 + z2 + (pψ)2 − l2
22 + 2pzψ − 2l23x, s2 = 2l21(pψ + z), s3 = 2l21(l23 − x).

Then, the input variable θ2 is computed:

θ2 = 2 arctan

(
s3 ±√−s2

1 + s2
2 + s2

3

s1 + s2

)
(15)

Since the two inputs of two prismatic joints can be obtained directly due to partial decoupling motion,
the input parameters can be found as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

q1 = −z

q2 = y

θ1 = f1 (x, y)

θ2 = f2 (x, z,ψ)

(16)

3.2. Direct kinematic problems
For direct kinematic problems, the input parameters q[ q1 q2 θ1 θ2 ]T are known, and the aim is to
determine the coordinates of the end effector x[ x y z ψ ]T.

Squaring both sides of the first two equations in Eq. (10) yields

m1 = −x2 + m2x (17)

where m1 = l2
11 + l2

13 + 2l11l13 + l2
14 + y2 − l2

12 − 2l14y cos θ1 + 2(l11 + l13)y sin θ1, m2 = 2[(l11 + l13)
cos θ1 + l14 sin θ1].

Consequently, the position along the x-coordinate can be derived as:

x = 1

2

(
m2 ±

√
−4m1 + m2

2

)
(18)
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Squaring both sides of the first and the last equations in Eq. (11) yields

n1pψ + (pψ)2 = n2 (19)

where n1 = 2z − 2l21 cos θ2, n2 = l2
22 + 2l23x − l2

21 − l2
23 − x2 − z2 − 2l21(l23 − x) sin θ2 + 2l21z cos θ2.

Thus, the output rotation angle is calculated by:

ψ = ±n1 +√n2
1 + 4n2

2p
(20)

In summary, based on the above analysis, the position coordinates and the orientation of the end
effector can be obtained as: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x = F1 (q2, θ1)

y = q2

z = −q1

ψ = F2 (q1, q2, θ1, θ2)

(21)

3.3. Velocity analysis
Based on the forgoing kinematic analysis, differentiation on both sides of Eq. (16) with respect of time
yields

Kxẋ = Kqq̇ (22)

The Jacobian J can be obtained by:

J = K−1
q Kx (23)

where

ẋ = [ ẋ ẏ ż ψ̇ ]T, q̇ = [ θ̇1 θ̇2 q̇1 q̇2 ]T, Kx =

⎡
⎢⎢⎣

a11 a12 0 0
a21 0 a23 a24

0 1 0 0
0 0 −1 0

⎤
⎥⎥⎦ ,

Kq =

⎡
⎢⎢⎣

b11 0 0 0
0 b22 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

with
a11 = 2x − 2 cos θ1(l11 + l13) − 2 sin θ1l14, a12 = 2y − 2 cos θ1l14 + 2 sin θ1(l11 + l13),

a21 = −2x + 2l23 + 2l21 cos θ2, a23 = 2pψ − 2z − 2l21 sin θ2, a24 = 2pz + 2pl21 sin θ2 − 2pψ ,

b11 = 2((l11 + l13)y − l14x) cos θ1 + 2((l11 + l13)x + l14y) sin θ1,

b22 = 2pψ l21 cos θ2 + 2l21 (l23 − x) sin θ2 − 2l21z cos θ2

Thus, the velocity equation of the proposed manipulator can be obtained as:

Jẋ = q̇ (24)

4. Performance evaluation of the gripper mechanism
Evaluating performance is an essential aspect of mechanical design. Some kinematic metrics are used
to evaluate manipulator performance, such as singularity, workspace, manipulability, and dexterity. By
analyzing these indices, designers can synthesize and construct manipulators that exhibit improved per-
formance for practical applications. The Jacobian matrix and its properties, such as the determinant,
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Figure 7. Screws in the mechanism.

eigenvalues, and condition number, serve as the basis for evaluating performance indices, making it an
indispensable tool for analyzing the motion. Thus, the Jacobian matrix should be derived first.

4.1. Jacobian and singularity analysis
The Jacobian matrix plays a critical role in analyzing the singular configurations of a parallel manipulator
by connecting the end effector velocity with the joint velocity. In this study, screw theory-based method
[45] is used to solve the Jacobian matrix.

Singular configurations within the workspace of a parallel mechanism can limit its performance, as
these configurations may cause a change in DOF of the mechanism, allowing the end effector to move
even though all actuators are locked. This is undesirable in practical applications, and it can affect manip-
ulability and control accuracy. Therefore, a manipulator should not only avoid singular configurations
but also maintain a safe distance from the region close to singularity to ensure better kinematic perfor-
mance and control. When the manipulator approaches a singular configuration, the relationship between
the input motion and output motion distorts, leading to difficulty in control. Thus, singularity analysis
is important for better kinematic performance and control of a manipulator.

The screws associated with the joints in the mechanism are presented in Fig. 7. The instantaneous
twist of the end effector can be given as $p = [ wT vT ]T, where w = [ 0 0 wz ]T and v = [ vx vy vz ]T

are referred to the angular velocity and linear velocity of the end effector, respectively. The detailed
expression can be obtained by using the linear combination of all joints in each limb:

$P = q̇1$11 + θ̇1$12 + w13$13 + ψ̇$24 (25)

$P = q̇2$21 + θ̇2$22 + w23$23 + w24$24 + ψ̇$25 (26)

in which $ij indicates the unit screw associated with the jth joint in the ith limb, q̇i is the linear velocity
of the actuated prismatic joints, while θ̇i, wij and ψ̇ denote the angular velocity of the actuated revolute
joints, passive revolute joints, and screw joint, respectively.
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The screws can be given as:

$i1 = [0T sT
i1

]T
$i2 = [ sT

i2 oAT
i × sT

i2

]T
$i3 = [0T sT

i3

]T
$14 = [ sT

14 0
]T

$24 = [ sT
24 oCT

2 × sT
24

]T (27)

in which s11 = s12 = s14 = [ 0 0 1 ]T, s21 = s22 = s24 = [ 0 1 0 ]T,

s13 =
[

− cot (φ1 + θ1)√
1 + cot2 (φ1 + θ1)

1√
1 + cot2 (φ1 + θ1)

0
]T

,

s23 =
[

cot (φ2 + θ2)√
1 + cot2 (φ2 + θ2)

0
1√

1 + cot2 (φ2 + θ2)

]T

.

To eliminate certain passive joint screws, we use the theory of reciprocal screws. Specifically, when
locking the actuated prismatic in the first limb, a screw denoted as $r11 can be identified that is reciprocal
to all screws but $11. This screw is parallel to the axes of $12 and $14 and simultaneously perpendicular
to the axis of $13:

$r11 = [sT
r11oCT

1 × sT
r11

]T (28)

After locking the actuated revolute joint in the first limb, a screw can be found as $r12 that is reciprocal
to all screws besides $12. This screw intersects with $14 and is parallel to the normal direction of the plane
determined by the vectors s11 and s13:

$r12 = [sT
r120
]T (29)

Taking the orthogonal products of both sides of Eq. (25) with (28) and (29) in turn yields

$T
r11$P = q̇1$T

r11$11 (30)

$T
r12$P = θ̇1$T

r12$12 (31)

When locking the actuated prismatic joint in the second limb, a screw denoted as $r21 can be identified
that is reciprocal to all screws apart from $21. This screw is parallel to the axes of $22 and $24 and
simultaneously perpendicular to $23:

$r21 = [sT
r21oCT

2 × sT
r21

]T (32)

After locking the actuated revolute joint in the second limb, a screw can be found as $r22 that is
reciprocal to all screws but $22. This screw intersects with $24 and $25 simultaneously and is parallel to
the normal direction of the plane determined by the vectors s21 and s23:

$r22 = [sT
r22oCT

2 × sT
r22

]T (33)

Taking the orthogonal products of both sides of Eq. (26) with (32) and (33) in turn yields

$T
r21$P = q̇2$T

r21$21 (34)

$T
r22$P = θ̇2$T

r22$22 (35)
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Based on the above analysis, Eqs. (30), (31), (34), and (35) can be rewritten in matrix form:⎡
⎢⎢⎢⎢⎢⎣

$T
r11

$T
r12

$T
r21

$T
r22

⎤
⎥⎥⎥⎥⎥⎦ $P =

⎡
⎢⎢⎢⎢⎢⎣

$T
r11$11

$T
r12$12

$T
r21$21

$T
r22$22

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

q̇1

θ̇1

q̇2

θ̇2

⎤
⎥⎥⎥⎥⎦ (36)

Equation (36) can also be expressed in a general form as:
Jx$P = Jqq̇ (37)

where Jx =

⎡
⎢⎢⎢⎢⎢⎣

$T
r11

$T
r12

$T
r21

$T
r22

⎤
⎥⎥⎥⎥⎥⎦ , Jq =

⎡
⎢⎢⎢⎢⎢⎣

$T
r11$11 0 0 0

0 $T
r12$12 0 0

0 0 $T
r21$21 0

0 0 0 $T
r22$22

⎤
⎥⎥⎥⎥⎥⎦ , q̇ =

⎡
⎢⎢⎢⎢⎣

q̇1

θ̇1

q̇2

θ̇2

⎤
⎥⎥⎥⎥⎦

By analyzing the obtained Jacobian matrix, it is possible to identify singular configurations.

4.1.1. Inverse kinematic singularity
If any of the diagonal elements of the matrix Jq are zero, it can lead to the occurrence of the inverse
kinematic singularity in the mechanism. After performing calculations, the equation $T

r11$11 = $T
r21$21 = 1

can be obtained. Therefore, the inverse kinematic singularity occurs when $T
r12$12 = 0 or $T

r22$22 = 0.
Then the following relations can be obtained:

$T
r12$12 = sT

12

(
oAT

1 × sT
r12

)
(38)

$T
r22$22 = sT

22

(
sT

r22 × C2A2
T) (39)

If these three vectors s12, oA1, and sr12 are coplanar, which means that the projection of oA1 and B1C1

on the XOY plane are parallel to each other, and the mechanism moves to the singular configuration.
This is the case illustrated in Fig. 8(a). When the three vectors s22, C2A2, and sr22 are coplanar, that is,
the long rod and the short rod in the parallelogram joint form a right angle, Eq. (39) is equal to zero.
The singular configuration is depicted in Fig. 8(b).

4.1.2. Forward kinematic singularity
From Eq. (37), we can obtain

Jx =

⎡
⎢⎢⎢⎢⎣

sT
r11 oCT

1 × sT
r11

sT
r12 0

sT
r21 oCT

2 × sT
r21

sT
r22 oCT

2 × sT
r22

⎤
⎥⎥⎥⎥⎦ (40)

When the matrix Jx is rank-deficient, the forward kinematic singularity occurs. There is a zero ele-
ment in this matrix. If there are two or more zero elements in the matrix, the matrix is rank-deficient.
First, when oCT

1 × sT
r11 is equal to zero, the vectors oC1 and sr11 coincide with each other. According to

the structural limitations, this case does not exist. Second, when oCT
2 × sT

r21 is equal to zero, the vec-
tor oC2 should coincide with sr21. Similarly, due to the structural limitations, this case does not exist,
either. Finally, oCT

2 × sT
r22 vanishes, which means that the vector oC2 coincides with sr22. This is the case

illustrated in Fig. 9.
Furthermore, the inverse and forward kinematic singular surfaces in the joint space and workspace

are presented in Figs. 10 and 11 utilizing the structural parameters that were previously introduced.
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Figure 8. Inverse kinematic singular configurations: (a) case 1 and (b) case 2.

Figure 9. Forward kinematic singular configuration.

4.2. Workspace analysis
The workspace of a manipulator is a critical evaluation metric used to assess the ability of the moving
platform to achieve different poses, which significantly influences the manipulator’s performance. One
common limitation of parallel mechanisms is their limited workspace. Generally, among manipulators
with the same DOF, a larger workspace is preferable. In this section, the reachable workspace is analyzed.
The primary factors that influence the manipulator’s workspace include the length limit of links, the
angle limit of rotational joints, and interference issues between different links and the moving platform.
It is essential to analyze the reachable workspace to optimize the manipulator’s design and ensure that
it can achieve the desired performance.

https://doi.org/10.1017/S0263574723001212 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001212


Robotica 3661

(a) (b)

Figure 10. Inverse kinematic singular surfaces: (a) in the joint space and (b) in the workspace.

(a) (b)

Figure 11. Forward kinematic singular surfaces: (a) in the joint space and (b) in the workspace.

The stroke of the first and second active prismatic joints are set to −500 mm ≤ q1 ≤ 350 mm and
150 mm ≤ q2 ≤ 1000 mm, respectively, and the rotational angles of the first and second active rotational
joints are in the range of −50 deg ≤ θ1 ≤ 35 deg and −35 deg ≤ θ2 ≤ 50 deg, respectively.

According to the structural characteristics, the rotational angles φ1 and φ2 are calculated in detail to
avoid the interference between links:

φ1 = arccos (b1c1 · v) (41)

φ2 = arccos (b2c2 · u) (42)

in which b1c1 and b2c2 are normalized vectors of vectors B1C1 and B2C2, respectively, and u and v are
unit vectors along the X- and Y -axis, respectively. The expressions for these vectors can be given by:

b1c1 = B1C1

|B1C1| , b2c2 = B2C2

|B2C2| , u = [1 0 0
]T

, v = [0 1 0
]T (43)

Therefore, the rotational angle φ1 between the long rod of the parallelogram joint and the Y -axis
should be limited to 45 deg ≤ φ1 ≤ 100 deg, and φ2 between the long rod of the parallelogram joint and
the X-axis should be in the range of −25 deg ≤ φ2 ≤ 70 deg.

For a parallel manipulator, the reachable workspace comprises the set of points that can be reached
by the end effector. Hence, based on the structure parameters in Table I, the inverse kinematic solution
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Table I. Structural parameters.

Parameters l11 l12 l13 l14 l21 l22 l23 p
Value (mm) 65 550 60 400 65 550 90 8

(a) (b)

Figure 12. Workspace: (a) in the space ( x y z ) and (b) in the space ( x ψ z ).

is employed to calculate the reachable workspace. Then, according to the limitations of q1, q2, θ1, θ2, φ1

and φ2 obtained above, the points meeting these constraints can be selected. The reachable workspaces
of the proposed mechanism are studied in the space ( x y z ) with the orientation ψ = 0 and the space
( x ψ z ) with the coordinate y = 400 mm, respectively. The workspaces are depicted in Fig. 12 using
Mathematica software. According to the kinematic analysis, the y- and z-coordinate are related to the
input variables q2 and q1, respectively. As shown in Fig. 12(a), the 3D workspace can be interpreted as
extruding the xoy plane along the z-axis, effectively illustrating the characteristic decoupling motion in
the z direction. The kinematic solution indicates that the mechanism also possesses the characteristic
of decoupling motion in the y direction. However, we acknowledge that Fig. 12(a) reveals a coupling
relationship between the displacement in the x direction and the displacement in the y direction. This
coupling is a consequence of the interaction between the actuated parameter q2 and the position along
the x-coordinate.

Additionally, Figs. 10(b) and 11(b) plot all kinematic solutions leading to singular configurations
within the manipulator’s workspace. The relationship between the reachable workspace and the inverse
kinematic singularity inside the reachable workspace is proposed in Fig. 13(a), while the relationship
between the reachable workspace and the forward singularity inside the reachable workspace is depicted
in Fig. 13(b). The green surface in both figures represents the singular surface within the reachable
workspace. To enhance the manipulator’s performance, avoiding singular loci is crucial. In future work,
the avoidance of singular loci will be investigated by planning the manipulator’s trajectory to expand its
workspace.

4.3. Manipulability
The kinematic manipulability index is used to evaluate the capability of velocity transmission of a
manipulator and can also be considered as an equivalent measure of the dexterity [46]. According to
the definition in [47], the kinematic manipulability is the square root of the determinant of JJT. The
detailed expression can be given by:

ω=
√

det
(
JJT) (44)
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(a) (b)

Figure 13. Inverse kinematic singular surface (a) and forward kinematic singular surface (b) within
the reachable workspace.

(a) (b) (c)

(d) (e) (f)

Figure 14. Kinematic manipulability for various z-value and rotational angles within the workspace.

It should be noted that the Jacobian matrix is posture-dependent, and as a result, the kinematic manip-
ulability is a local performance index. However, it provides a clear indication of whether the manipulator
is in a singular configuration. When the value of ω is close to or equal to 0, the manipulator is in or near
a singular configuration. Hence, the value of ω is desired to be greater than 0 to avoid the singular
configurations.

Based on the structure parameters, the kinematic manipulability for various z-value and rotational
angles within the workspace can be calculated. The results are presented in Fig. 14. As can be observed,
the value of kinematic manipulability is close to 0 when the end effector moves to the boundary along
the x-axis or y-axis.
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4.4. Dexterity analysis
The dexterity of a manipulator is a critical measure of its kinematic performance in pick-and-place
applications, defined as the ability to move to any position or direction and apply forces or torques in
any direction [48]. The condition number of the Jacobian matrix is used to evaluate the dexterity of
a manipulator [49,50], with a lower value indicating better dexterity. In particular, the inverse of the
condition number, which ranges from 0 to 1, is commonly used as a measure. Some studies [51–55]
have also used dexterity to evaluate the accuracy and sensitivity of a manipulator. Specifically, a higher
dexterity tends to lead to higher accuracy. Although manipulability is a related concept, dexterity is a
more appropriate measure for evaluating accuracy in many cases.

The kinetostatic conditioning index (KCI) is a posture-independent index. As defined in [56], the
expression can be given by:

KCI = 1

κmin

× 100% (45)

where κmin is the minimum condition number. When κmin is equal to 1, the KCI is 100%. Then, the
manipulator has the istropic characteristics, which means that the manipulator possesses good motion
transmission performance.

In order to evaluate the dexterity within the whole workspace, the global conditioning index (GCI)
is proposed [49]. The expression can be given by:

GCI =
∫

W
1
κ
dV

V
(46)

in which W is the whole workspace and V is the volume of the workspace.
However, different types of degrees of freedom (i.e., three translational motions and one rotation)

presents the challenge for unifying the units of each element in the Jacobian matrix and repre-
senting the physical meaning of the manipulator with the condition number. To solve this problem,
Altuzarra [57] proposed a method to normalize the nonhomogeneous Jacobian matrix using the con-
cept of characteristic length. The detailed expression of the homogeneous Jacobian matrix Jh can be
defined as:

Jh = (A 1
L
B
)

(47)

where L is the characteristic length, A represents the 4 × 3 submatrix formed by the first three columns
of J, and B denotes the 4 × 1 submatrix formed by the fourth column of J.

After normalizing the nonhomogeneous Jacobian matrix, the Jacobian matrix Jh can attain dimen-
sionally homogeneous. The isotropy condition can be given by:

JT
h Jh =

⎡
⎢⎢⎣

ATA
1

L
ATB

1

L
BTA

1

L2
BTB

⎤
⎥⎥⎦= σ 2I (48)

where σ is a nondimensional scalar and I denotes the 4 × 4 identity matrix. The manipulator is consid-
ered isotropic when the homogeneous Jacobian matrix becomes isotropic. If there is no solution to the
isotropy condition, then the manipulator is nonisotropic.

From Eq. (48), we can obtain the following relationships:

tr
(
ATA

)= 3σ 2 (49)

1

L
ATB = 0 (50)

1

L2
BTB = σ 2 (51)
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(a) (b) (c)

(d) (e) (f)

Figure 15. Reciprocal of Jacobian matrix condition number.

Then, the characteristic length can be expressed as:

L =
√

3BTB
tr
(
ATA

) (52)

The condition number κ of the homogeneous Jacobian matrix Jh can be calculated by:

κ = ‖Jh‖
∥∥J−1

h

∥∥ (53)

in which ‖ · ‖ indicates the norm of the matrix argument. It should be noted that Frobenius norm is
frame-invariant and analytic. Hence, the calculation of the condition number by means of the Frobenius
norm can be expressed as:

κ = 1

4

√
tr
(
JT

h Jh
)

tr
[(

JT
h Jh
)−1
]

(54)

Based on the structure parameters, the value of the characteristic length can be calculated as
L = 0.2171 m. The KCI is depicted in Fig. 15 with various z-values and rotational angles. According
to the analytical results, the maximum KCI over the whole workspace is observed when the end effec-
tor is located at x = 0.65 m and y = 0.5 m, indicating that the manipulator has better performance in
this position. Additionally, smaller values of KCI correspond to smaller z-coordinate magnitudes and
larger rotational angles. Conversely, the value of KCI approaches zero at the boundary of the workspace,
suggesting that the manipulator is less dexterous in these postures, and this region should be avoided.

However, to the best of our knowledge, the Jacobian matrix is configuration-dependent. The local
conditioning number varies with different postures and provides a local indication of dexterity of a
manipulator. To obtain a global measure of dexterity within the entire workspace, the GCI is calculated.
The expression in Eq. (46) is too complicated to compute the value of GCI. Furthermore, the value of
1/κ can be zero in some postures, indicating that singularity occurs in these postures. Hence, a simplified
numerical approach in ref. [48] is used to approximate the GCI value:

GCI = 1

N

N∑
i

1

κi

(55)
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where the workspace is discretized into a set of N points and κi is the value of κ at the ith point. Therefore,
the results can be calculated by researching the points within the workspace. The larger the value of GCI,
the higher the global dexterity. The GCI of the proposed manipulator can be obtained as GCI = 0.2754.

5. Parameter optimization
In the previous section, the dexterity of the proposed manipulator was studied and corresponding charts
were plotted. The optimization of the manipulator parameters was carried out to improve its dexterity
in this section, which is an essential factor in the design of manipulators. The analytical results of the
dexterity of the proposed manipulator can be used to guide the optimization of the parameters. From
the perspective of practical applications, the length of links is not determined arbitrarily. The objective
of the optimization was to find the appropriate length of links that result in improved dexterity. To
achieve this objective, the parameter-finiteness normalization method proposed by Liu [58] was used.
This method reduces the number of parameters from n to (n − 1) and defines logical bounds for each
parameter. The parameters optimization procedure makes it possible to reveal the relationship between
the dexterity and the parameters in a limited space. The process of design optimization can be described
as follows:

Step1. Identification of design parameters. According to the geometric relationship in the structure, let
l11 = l21, l12 = l22, l13 = 1.2l11, l23 = 2l21. Then, the three design parameters can be determined as l11, l12,
and l14.

Step 2. Determination of parameter design space (PDS). According to the definition in [58], the
normalization factor of the manipulator is obtained by:

D = l11 + l12 + l14

3
(56)

The three nondimensional parameters can be calculated by:

r1 = l11

D
, r2 = l12

D
, r3 = l14

D
(57)

For this proposed manipulator, the normalized parameters should be specified as:⎧⎪⎨
⎪⎩

r1 + r2 + r3 = 3

r2 � r1

r3 � r1

(58)

Then, the PDS for the proposed manipulator defined by Eq. (58) is depicted as the shaded triangle
ABC in Fig. 16(a), where all possible design parameters values are included. Figure 16(b) shows the
triangle ABC in a plan view. In the plan space, the design parameters can be expressed as:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

r1 = s

r2 =
√

3

3
t − 1

2
s

r3 = 3 −
√

3

3
t − 1

2
s

(59)

or ⎧⎪⎨
⎪⎩

s = r1

t =
√

3 (3 + r2 − r3)

2

(60)

Step 3. We identify the optimum region. Herein, let D = 400. For each set of values (s, t), there is
a set of corresponding values of design parameters (r1, r2, r3). Using the design parameters, the GCI is
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Figure 16. Parameter design space of the proposed manipulator: (a) spatial space and (b) plan view.

Figure 17. Distribution of GCI in the parameter design space.

calculated. The relationship between the dexterity and the normalized parameters in the PDS is illus-
trated in Fig. 17. It is noteworthy that the optimum region is the intersection between the dexterity chart
and the PDS. Therefore, the proposed manipulator can be studied in this finite optimal design region.

Step 4. We select a candidate from the optimal region. The optimum region in Fig. 17 contains all
possible normalized parameters for different optimal manipulators. As can be seen in Fig. 17, the GCI
has a large value in the region s ∈ [0.4, 0.5] and t ∈ [1.0, 1.1]. Thus, 10 groups of candidates are chosen
whose GCI is larger than 0.4. The values of design parameters, optimized length, and GCI are listed in
Table II.

Step 5. Check whether the optimized parameters meet the design objectives. If the optimized param-
eters can meet the design objective, then the optimal design is finished; otherwise, we return to
Step 4.

Table II shows that the first 10 group data are chosen from the optimal region, whose GCI is larger
than 0.4. The last group parameters are measured from the model of the proposed manipulator in Fig. 1.
The objective of the optimization is to find the appropriate length of links, where the proposed manipu-
lator has a better dexterity. The proposed manipulator with No. 10 optimal parameters will have better
dexterity.

6. Conclusion
This paper presents a novel two-limb gripper mechanism with an integrated three-finger end effector. The
mechanism is composed of only a small number of lower pairs and components, which simplifies manu-
facturing and installation. The simple two-limb structure also avoids interference between the limbs and
platform, providing a fairly large workspace. To address the issue of moving actuators, the mechanism
employs a 2-DOF driving system. The gripper mechanism possesses a decoupled motion property that
makes it easy to control and plan its trajectory. To enhance its industrial application, we evaluate the
performance of the proposed manipulator and optimize its parameters for improved dexterity.

In future work, we plan to analyze the stiffness and dynamic properties of the gripper mechanism.
Additionally, we will carry out trajectory planning to avoid singular loci and optimize the workspace.
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Table II. Optimized parameters and corresponding GCI.

No. s t r1 r2 r3 l11 l12 l13 l14 l21 l22 l23 GCI
1 0.42 1.05 0.42 0.61 1.97 168.00 242.49 201.60 789.51 168.00 242.49 336.00 0.4201
2 0.42 1.08 0.42 0.62 1.96 168.00 249.42 201.60 782.59 168.00 249.42 336.00 0.4089
3 0.44 1.02 0.44 0.59 1.97 176.00 235.56 211.20 788.44 176.00 235.56 352.00 0.4566
4 0.44 1.05 0.44 0.61 1.95 176.00 242.49 211.20 781.51 176.00 242.49 352.00 0.4450
5 0.46 1.07 0.46 0.62 1.92 184.00 247.11 220.80 768.89 184.00 247.11 368.00 0.4601
6 0.46 1.09 0.46 0.63 1.91 184.00 251.73 220.80 764.28 184.00 251.73 368.00 0.4520
7 0.48 1.04 0.48 0.60 1.92 192.00 240.18 230.40 767.82 192.00 240.18 384.00 0.4921
8 0.48 1.06 0.48 0.61 1.91 192.00 244.80 230.40 763.20 192.00 244.80 384.00 0.4838
9 0.50 1.03 0.50 0.59 1.91 200.00 237.87 240.00 762.13 200.00 237.87 400.00 0.4891
10 0.50 1.07 0.50 0.62 1.88 200.00 247.11 240.00 752.89 200.00 247.11 400.00 0.4951
11 0.16 2.38 0.16 1.37 1.46 65.00 550.00 60.00 400.00 65.00 550.00 90.00 0.2754
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To validate its performance, a prototype will be fabricated. These advancements will improve the
efficiency and reliability of the gripper mechanism, making it a valuable addition to the field of robotics.
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