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Predicting and perhaps mitigating against rare, extreme events in fluid flows is an important
challenge. Due to the time-localised nature of these events, Fourier-based methods prove
inefficient in capturing them. Instead, this paper uses wavelet-based methods to understand
the underlying patterns in a forced flow over a 2-torus which has intermittent high-energy
burst events interrupting an ambient low-energy ‘quiet’ flow. Two wavelet-based methods
are examined to predict burst events: (i) a wavelet proper orthogonal decomposition
(WPOD) based method which uncovers and utilises the key flow patterns seen in the
quiet regions and the bursting episodes; and (ii) a wavelet resolvent analysis (WRA)
based method that relies on the forcing structures which amplify the underlying flow
patterns. These methods are compared with a straightforward energy tracking approach
which acts as a benchmark. Both the wavelet-based approaches succeed in producing better
predictions than a simple energy criterion, i.e. earlier prediction times and/or fewer false
positives and the WRA-based technique always performs better than WPOD. However,
the improvement of WRA over WPOD is not as substantial as anticipated. We conjecture
that this is because the mechanism for the bursts in the flow studied is found to be largely
modal, associated with the unstable eigenfunction of the Navier–Stokes operator linearised
around the mean flow. The WRA approach should deliver much better improvement over
the WPOD approach for generically non-modal bursting mechanisms where there is a lag
between the imposed forcing and the final response pattern.
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1. Introduction

Intermittent extreme events, characterised by a sudden increase in observables like energy
or dissipation, are frequently encountered in both natural and engineering fluid flow
systems. Some examples include extreme weather events (e.g. Neelin et al. 1998), rogue
waves in the ocean (e.g. Dysthe, Krogstad & Müller 2008) and high dissipation events in
turbulent flows (e.g. Chandler & Kerswell 2013; Yeung, Zhai & Sreenivasan 2015). These
events can have significant impacts. Understanding the mechanisms that generate such
events, and predicting them, are therefore active areas of research (Farazmand & Sapsis
2019b; Sapsis 2021). For instance, Donzis & Sreenivasan (2010) analysed direct numerical
simulation (DNS) data to identify the observables that act as precursors to the intermittent
events. In another work, Babaee & Sapsis (2016) used data to identify time-dependent
orthonormal bases that characterise the transient instabilities in a system, which were
then used to forecast extreme events (Farazmand & Sapsis 2016). However, working
with time-dependent modes can become computationally expensive, and therefore a
variational framework that identified static structures responsible for the extreme events
was formulated by Farazmand & Sapsis (2017, 2019b). By tracking these identified
structures, methods to predict and control the burst events were introduced (Blonigan,
Farazmand & Sapsis 2019; Farazmand & Sapsis 2019a). A graph theoretic approach that
uses clustering algorithms to find a hierarchy of coherent structures in intermittent flows
has also been used (Schmid, García-Gutierrez & Jiménez 2018). More recently, the use of
machine learning to identify and control extreme events has also gained popularity (e.g.
Wan et al. 2018; Guth & Sapsis 2019; Pyragas & Pyragas 2020; Qi & Majda 2020; Doan,
Polifke & Magri 2021; Racca & Magri 2022; Rudy & Sapsis 2022; Fox, Constante-Amores
& Graham 2023). Another method, and one that is of more direct relevance to the
current work, is the use of a variation of proper orthogonal decomposition (POD), called
conditional-POD, to identify the dominant structures that are responsible for intermittent
events (Schmidt & Schmid 2019).

Due to the time-localised nature of intermittent events, the Fourier basis is generally
inefficient at characterising them. Wavelets are better adapted for this purpose, which
suggests that wavelet-based methods could potentially provide another class of techniques
for understanding and predicting intermittent events. Wavelets have found application
in the analysis of turbulent signals since the early 1990s (e.g. Farge & Rabreau 1988;
Meneveau 1991; Farge 1992). Since then, they have found varied applications in turbulence
such as, for instance, extraction of the coherent and incoherent parts of a turbulent flow
field (e.g. Farge, Pellegrino & Schneider 2001; Farge et al. 2003; Farge, Schneider &
Devynck 2006) and development of simulation methods using wavelet-based numerical
algorithms and turbulence models (see review by Schneider & Vasilyev 2010). Wavelet
coefficients have also been used for detecting pipe bursts in water distribution systems
(Srirangarajan et al. 2013) and predicting rogue waves (Bayındır 2016). Data-driven
decomposition techniques based on wavelets have been introduced by Floryan & Graham
(2021) to generate a hierarchical orthogonal basis for a flow and by Ren, Mao & Fu (2021)
to extract the different dominant scales in a flow. Recent studies by Gupta et al. (2022),
Krah et al. (2022) and Barthel & Sapsis (2023) have used wavelet analysis along with POD
for identifying coherent structures in intermittent flows. In a parallel line of work, Ballouz,
Dawson & Bae (2023a) and Ballouz et al. (2023b) extended the extensively used resolvent
analysis technique to incorporate a temporal wavelet basis, thereby broadening the scope
of the analysis.

In the current work, we aim to contribute towards understanding and predicting
intermittent high-energy events in fluid flows by employing wavelet-based methods.
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Wavelet-based prediction of burst events in a 2-D flow

A two-dimensional (2-D) Kolmogorov flow at a Reynolds number of 40, forced by
a sinusoidal body force with wavenumber 4, is considered. This flow is temporally
characterised by a persistent quiet region that is intermittently interrupted by high-energy
burst events (e.g. Chandler & Kerswell 2013; Page, Brenner & Kerswell 2021). To
understand the temporal characteristics of the flow, we first project it onto a wavelet
basis. Two wavelet-based methods will then be used to analyse the flow: (i) wavelet-based
proper orthogonal decomposition (WPOD) to distinguish the dominant flow patterns of the
quiet region and burst events and (ii) wavelet-based resolvent analysis (WRA) to identify
forcing structures that generate the quiet region and burst events. The identification of
these flow patterns poses a question: Can these patterns be utilised to predict oncoming
burst events? We will therefore explore whether tracking the flow patterns obtained from
WPOD (wavelet-based prediction method 1) and from WRA (wavelet-based prediction
method 2) enables prediction of oncoming burst events. The predictions will be compared
with those obtained from the more straightforward approach of tracking the energy of the
flow.

We find that both the WPOD-based and the WRA-based methods give better predictions
when compared with the energy-based method, i.e. earlier prediction times and/or fewer
false positives. Additionally, the WRA-based method outperforms the WPOD-based
method. This improvement, however, is not as significant as initially expected. Energy
amplification in the flow considered here is likely caused by normal-mode mechanisms,
where the amplification arises due to the system being excited at a frequency close
to its eigenvalue (Trefethen et al. 1993). This could potentially explain the prediction
performance observed here (see § 6). There is therefore a future need to assess how the
prediction performance changes for flows governed by non-normal energy amplification
mechanisms, where we can expect a lag between the forcing and the final response pattern.

The outline of the rest of this manuscript is as follows. We first introduce the 2-D
Kolmogorov flow in § 2. The aim thereafter is to decompose the flow into the quiet
region and the burst events. The efficiency of the wavelet basis in achieving such a
decomposition is shown in § 3.4, and this is compared with the efficiency of the Fourier
basis in § 3.1. Thereafter, in § 4, we probe the underlying flow patterns in this intermittent
flow using WPOD. Predictions of the burst events obtained by tracking these WPOD
modes (WPOD-based prediction method) are then studied in § 4.5. These predictions are
compared with those obtained from a straightforward energy-tracking approach. Following
this, in § 5 we use WRA to distinguish the structures that force the quiet region and burst
events. Predictions obtained from tracking these forcing structures (WRA-based prediction
method) are then compared with those obtained from the WPOD-based and energy-based
methods in § 5.5. Following this, in § 6 we will look at a more detailed comparison of
the performances of the prediction methods and also implications for future work. A final
discussion follows in § 7.

2. Two-dimensional Kolmogorov flow

In this section, we consider the 2-D Kolmogorov flow. We will first discuss the linearised
Navier–Stokes equations that describe the flow (§ 2.1), and thereafter consider the data
obtained from the DNS of this flow (§§ 2.2 and 2.3).

2.1. Linearised Navier–Stokes equations
The intermittent flow that we use as our example in this work is the incompressible 2-D
Kolmogorov flow. The two dimensions are denoted by x and y, respectively. The domain
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is doubly periodic, with size Lx in the x-direction and Ly in the y-direction. The flow is
forced in the x-direction by a sinusoidal body forcing of the form ζ sin(2πnỳ/Ly), where
ζ is the amplitude of the forcing per unit mass of fluid, n is the wavenumber of the forcing
and ỳ indicates the dimensional y-coordinate. The mean velocity is U( y)î, where (î, ĵ) are
unit vectors in the (x, y) directions. The mean is here defined over the x-direction and time.
Additionally, it is symmetrised in the y-direction (why such a symmetrisation is required
is discussed in § 2.3). The fluctuations of velocities around this mean are denoted by u and
v in the x and y directions, respectively. Pressure is denoted by p and time by t. The length
scale Ly/2π and time scale

√
Ly/2πζ are used to non-dimensionalise the system. The

non-dimensional number that characterises this system is the Reynolds number, defined as
Re := (

√
ζ/ν)(Ly/2π)(3/2), where ν is the kinematic viscosity. Here, we consider a flow

with n = 4, Re = 40 and Lx = Ly = 2π, which is a regime characterised by intermittent
burst events as will be discussed in § 2.2.

The non-dimensional equations linearised around the mean state (U( y), 0) are

∂u
∂t

+ U
∂u
∂x

+ v
∂U
∂y

î + ∇p − 1
Re

∇2u = u · ∇u − u · ∇u︸ ︷︷ ︸
f

, ∇ · u = 0, (2.1a,b)

where u = (u, v). The nonlinear terms of the equation u · ∇u − u · ∇u are hereafter
represented by a forcing term f = ( fx, fy), where fx and fy represent the forcing to the
x and y momentum equations, respectively.

Using the incompressibility condition and taking the curl of (2.1a), we obtain the
vorticity (ω) form of the equation as

∂ω

∂t
+

[
U

∂

∂x
− 1

Re
Δ − U′′Δ−1 ∂

∂x

]
ω = F, (2.2)

where ω := ∂v/∂x − ∂u/∂y and F := ∂fy/∂x − ∂fx/∂y. Let us consider a Fourier
transform in the homogeneous x-direction. The one-dimensional (1-D) discrete Fourier
transform of ω gives

ω(x, y, t) =
(Nx/2)∑

kx=−(Nx/2)

ω̃( y, t; kx) exp(ikxx), (2.3)

where ·̃ represents the 1-D Fourier transform, kx is the streamwise wavenumber
non-dimensionalised by Ly/2π and Nx is the number of grid points used to discretise
the x-direction. Similarly, if F̃ is the 1-D Fourier transform of F, we obtain the following
equation:

˙̃ω( y, t; kx) + Aω̃( y, t; kx) = F̃( y, t; kx), (2.4)

where (̇) denotes the derivative in time. The matrix A contains the finite-dimensional
discrete approximations of the linearised momentum equation from (2.2) in terms of the
1-D Fourier transforms with ∂/∂x replaced by ikx.

2.2. Direct numerical simulation data
To obtain the DNS data for the 2-D Kolmogorov flow, we used the pseudo-spectral code
as used in Chandler & Kerswell (2013). We consider the flow at a Reynolds number Re =
40 and forcing frequency n = 4. The DNS was run on a grid with Nx = 256 points in
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Figure 1. (a) The time series of D(t)/Dlam from the full data is shown in grey for a sample time interval.
Additionally, the time series obtained from just the streamwise wavenumbers of |kx| ≤ 3 is shown in black.
Burst events, defined as times when D(t)/Dlam > 0.15, are shown as the red-shaded regions, with dashed black
vertical lines indicating the beginnings of the burst events. (c–g) The vorticity field at the five time instances
t1–t5 indicated in (a) are also shown, where the contours indicate positive (red) and negative (blue) vorticity,
respectively. The colour limits are kept the same across the five time snapshots. In (b) the mean profile obtained
from the data (black line) is compared with the symmetrised mean profile (red line).

the x-direction and Ny = 257 points in the y-direction. Figure 1(a) shows the time series
of total dissipation D(t) := 〈ω, ω〉x,y normalised by the laminar dissipation rate Dlam :=
Re/(2n2). Here, 〈a, b〉x,y denotes the inner product

∫ Lx
0

∫ Ly
0 b∗(x, y, t)a(x, y, t) dx dy. The

time series represented by the grey line is obtained from the full dataset. On the other hand,
the time series in black is obtained by retaining only the smallest streamwise wavenumbers
with |kx| ≤ 3. The black line follows the grey line reasonably well, thereby suggesting
that the |kx| ≤ 3 modes are responsible for the dominant dynamics in the flow. Example
snapshots of the flow at the five times denoted in figure 1(a) are shown in figure 1(c–g),
where the red and blue contours represent the positive and negative vorticity fluctuations,
respectively. Here again, we observe the presence of large-scale structures in the flow,
further confirming that the smallest wavenumbers dominate the flow dynamics. This is
consistent with the observations in Page et al. (2021). For the rest of this manuscript, we
therefore project the full DNS data onto the |kx| ≤ 3 modes, and use the truncated data
for the POD and resolvent-based analyses. This truncation using a Fourier transform is not
essential for the work that follows, but just allows us to expedite the computations.

Considering the burst events, if we define them as times when D(t)/Dlam ≥ 0.15 (Page
et al. 2021), then they are indicated by the red-shaded regions in figure 1(a) (the vertical
black dashed lines therefore indicate the beginnings of these burst events). Throughout
the manuscript, we use this criterion of D(t)/Dlam ≥ 0.15 to define burst events, and also
D(t)/Dlam ≤ 0.1 to identify regions that are assured to be quiet. Changing these numbers
for D(t)/Dlam will impact the quantitative values obtained. However, we are here interested
only in the relative differences between the prediction methods, and we can expect these
trends to remain insensitive to this change. Appendix C confirms that these relative trends
are not impacted by this definition of the burst event.
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2.3. Symmetrisation of the mean profile
Let us briefly consider the mean velocity profiles U( y) obtained from this flow, where the
mean is defined over the x-direction and time. The converged mean profile is expected to
follow two symmetries: (i) a shift-and-reflect symmetry S : U( y) → −U( y + π/4) and
(ii) a rotational symmetry R : U( y) → −U(−y). Chandler & Kerswell (2013) investigated
the mean profiles obtained from 105 time units of the flow, and observed that even
this was not long enough to obtain a converged mean profile that shows the expected
symmetries. The black line (which is asymmetric when investigated closely) in figure 1(b)
represents the mean computed from 16 800 snapshots of data. This obtained mean does not
follow the symmetries. Therefore, as done in Chandler & Kerswell (2013), here, we use
a symmetrised mean profile U( y) which is extracted from the asymmetric mean obtained
from the DNS Ua( y) as

U( y) := 1
2n

2n−1∑
m=0

S−mU†(Smy), where U† := 1
2

[Ua( y) + R−1Ua(Ry)]. (2.5)

Here, n = 4. The definitions of the symmetry operations follows from before as R−1 :
U( y) → −U(−y), Sm : U( y) → (−1)mU( y + mπ/4) and S−m : U( y) → (−1)mU( y −
mπ/4), where 0 ≤ m ≤ (2n − 1). The red line in figure 1(b) shows U( y), and this
symmetrised mean will be used for the rest of this work.

3. Decomposing the flow into quiet regions and burst events

Both the WPOD-based and WRA-based prediction methods that will be introduced later
depend on the identification of flow structures that exist in the quiet region and the burst
events. To identify such structures, it is necessary to first decompose the flow into the quiet
region and the burst events.

3.1. Decomposing the flow: Fourier bases
In this section, we use the Fourier basis for decomposing the flow into the quiet region and
the burst events. Looking ahead, isolating the time-localised burst events using the global
Fourier basis may prove to be inefficient. Therefore, the aim of this section is to provide
motivation for moving towards using a wavelet basis.

We are interested in analysing a burst event, and require multiple realisations of such
events. Consider Ne realisations of the burst event, each containing Nt time snapshots
of vorticity ω(x, y, t) spaced apart by time dt. Each of the Ne realisations is therefore
T = Ntdt long. Here, to obtain one such realisation of the burst event, the start of a
burst event Tb is first identified using the condition D(t)/Dlam ≥ 0.15. The realisation of
the burst event is then taken to be Tb − 100 ≤ t ≤ Tb + 100. (The reasons for choosing
such time-windows, instead of the more generally used consecutive time blocks, will
become apparent when considering the energy of the wavelet coefficients in figure 4 of
the next section.) For the DNS dataset considered here, we split the data to obtain Ne = 50
realisations of the burst event, with each realisation having Nt = 200 and dt = 1, and
therefore T = 200. It is ensured that no two realisations of the burst event have more than
50 % overlap.

1003 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1080


Wavelet-based prediction of burst events in a 2-D flow

10–1 100

107

108

109

1010

Eω

3 frequencies

104 frequencies

100 120 140 160 180 200 220 240 260 280 300

Time

0

0.2

D
(t)

/D
la

m

Ω

(a)

(b)

Figure 2. (a) The ensemble-averaged Fourier spectrum is shown in black, and the frequencies used to
reconstruct the quiet region and the burst event, separately, are shaded in blue and red, respectively. (b) The full
data (for kx = 0, 1, 2, 3) (black) are compared with the reconstructions of the quiet region (blue) and the burst
event (red) using the shaded frequencies in (a). For comparison, the grey dashed-dot line shows the sum of the
blue and the red lines.

Let us now consider the Fourier transform of the vorticity ω(x, y, t) in time

ω(x, y, t) =
Nt−1∑
Ω=0

ω̆(x, y;Ω) exp(i(2π/T)Ωt), (3.1)

where (·̆) here represents the temporal Fourier transform. The corresponding Fourier
spectrum is Eω(Ω) = [

∫ 2π

0

∫ 2π

0 ω̆ω̆∗ dx dy]Ne , with (·)∗ representing complex conjugate.
Here, [·]Ne represents an averaging across the Ne different realisations of the burst event.
Figure 2(a) shows the obtained Fourier spectrum. To isolate the quiet region and the burst
events, we use distinct sets of frequencies. The blue-shaded frequencies in figure 2(a)
are used for the quiet region, and the red-shaded frequencies for the burst event. Let us
denote the reconstruction of the data using this truncated Fourier basis as ωr(x, y, t).
Figure 2(b) shows the time series of the reconstructions 〈ωr, ωr〉x,y/Dlam of the quiet
region in blue and the burst event in red. These reconstructions are compared with the
full data 〈ω, ω〉x,y/Dlam in black.

The number of modes required for isolating the different regions is identified by
defining an error ε(t) in the projection of ωr(x, y, t) onto ω(x, y, t), where ε(t) := 1 −
〈ωr, ω〉x,y/〈ω, ω〉x,y. Let [·]t denote averaging in time. The blue-shaded frequencies in
figure 2(a) ensure that [ε(tq)]t < 0.2 where tq is defined as the times t when D(t)/Dlam ≤
0.1, i.e. the quiet region. Similarly, the red-shaded frequencies in figure 2(a) ensure that
[ε(tb)]t < 0.4, where tb is defined as the times t when D(t)/Dlam ≥ 0.15, i.e. the burst
event. The numerical values of [ε(tq)]t < 0.2 and [ε(tb)]t < 0.4 simply ensure that the
dominant frequencies (or wavelets, as in the next section) are included, and changing the
values does not significantly impact any of the discussions in this work (see Appendix C).

From figure 2(b), we find that the Fourier basis is not able to efficiently isolate the
burst event, because the red line does not go to zero in the quiet regions of the flow.
Additionally, we require a significant number of frequencies to reconstruct the burst event.
This is expected since we are trying to represent a localised event using the Fourier basis
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Figure 3. Schematic showing (a) the Fourier basis and (b) the discrete wavelet basis of Daubechies 1. The
vertical dashed-dot lines in (b) demarcate the different levels of the wavelet basis, and will be used again in
figure 5(a) when plotting the energy of the wavelet coefficients.

that is global. In order to remedy these problems, in the next section we will explore using
a localised basis – wavelets – for this purpose.

3.2. Daubechies 1 wavelet basis and wavelet transform
We now employ a wavelet basis to capture the burst events. The discrete Daubechies 1
(DB1) wavelet, which is also referred to as the Haar wavelet, will be used for a majority
of this work. The only exception is Appendix B, where for a different choice of wavelets,
that of Daubechies 2, we see that the discussions in this work remain similar.

To obtain a wavelet basis Θnw(t), we first make a choice of the wavelet corresponding
to nw = 1, i.e. Θ1(t), which is the mother wavelet. For the Daubechies 1 wavelet basis
used in this work, the mother wavelet is a step function, as shown in the first panel of
figure 3(b). The mother wavelet covers the entire time domain, and here we denote this
mother wavelet as belonging to level 1 of the wavelet basis. To get level 2 of this wavelet
basis, the mother wavelet is compressed by half. Now we need two wavelets to cover the
entire domain, and these are shown as nw = 2 and nw = 3 in figure 3(b). Level 3 consists
of the mother wavelet compressed by a factor of four, and then repeated four times to cover
the domain. This level is shown as nw = 4–7 in figure 3(b). The vertical black dashed-dot
lines in figure 3(b) demarcate the different levels of the wavelet transform. Throughout this
manuscript, we use such vertical black dashed-dot lines to demarcate the levels. (It should
be noted that, in practice, there is a level 0 corresponding to nw = 0 that contains the lowest
frequencies of the data that are not included in the other levels. In more technical terms,
the wavelet transform for N = 200 includes the ‘detail coefficients’ from 7 levels of the
transform as well as the ‘approximation coefficient’ from level 1 (see Daubechies 1988).)
We see that, when considering wavelets, there are two factors that are important: (i) the
compression of the wavelet, which is related to the concept of frequency in the Fourier
domain and (ii) the location of the wavelet in time.

Similar to the Fourier transform in § 3.1, we obtain a wavelet transform of ω(x, y, t) as

ω(x, y, t) =
Nw∑

nw=0

ω̂(x, y; nw)Θnw(t), (3.2)

where (·̂) represents the transform onto the basis Θnw , which is here the wavelet
basis. The energy of the wavelet coefficients can then be obtained as Eω(nω) =
[
∫ 2π

0

∫ 2π

0 ω̂ω̂∗ dx dy]Ne . It should be noted that the Θnw(t) used in this work is real
valued. However, since it is a complete basis, it provides a basis for both real-valued and
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Figure 4. (a) The ensemble-averaged energy of the wavelet coefficients is shown for the case when ensembles
are chosen as consecutive time blocks. (b) A different strategy for choosing ensembles is also illustrated, where
the window is chosen such that a burst lies at the centre of it.

complex-valued data. This is relevant when we later consider the wavelet transform of the
1-D Fourier-transformed (in the x-direction) data.

A wavelet transform requires a choice of boundary conditions and throughout this
manuscript, periodic boundary conditions have been used. The WPOD described later
gives similar results for other physically relevant boundary conditions, such as symmetric
and reflecting boundary conditions.

3.3. Burst centred windowing
Before looking at the energy of the wavelet coefficients, let us briefly discuss the choice
of the Ne realisations of the burst event. Generally, to obtain the different ensembles for
ensemble averaging, we split the available data into several consecutive data blocks of
equal length, and compute the spectrum for each of these ensembles. The spectra are then
averaged across the ensembles. The energy of the wavelet coefficients obtained from such
consecutive ensembles is shown in figure 4(a). Within each of the levels (indicated by
the vertical dashed-dot lines), we see that there are no noticeable trends, and peaks are
notably absent. This absence of peaks can be explained by recalling that the location in
time is important when considering wavelets. In this case, for each ensemble, the burst
events occur at different locations in time and therefore appear at different nw.

To remedy this, we here adopt the alternative windowing strategy that was briefly
mentioned in § 3.1 and is depicted in figure 4(b). A realisation of the burst event is defined
using the start of a burst event Tb as Tb − 100 ≤ t ≤ Tb + 100, where Tb is identified using
the condition D(t)/Dlam ≥ 0.15 (note, time is here non-dimensionalised by

√
Ly/2πζ ).

As in § 3.1, here, we consider Ne = 50 realisations of the burst event, each containing
Nt = 200 time snapshots of vorticity ω(x, y, t) spaced apart by time dt = 1. The spectrum
obtained from this new windowing strategy is shown in figure 5(a). From the red-shaded
regions of the spectrum in figure 5(a), we observe clear peaks that are present because of
the burst events. In the next section, we will more clearly show that these peaks correspond
to the burst events.
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Figure 5. (a) The ensemble-averaged energy of the wavelet coefficients is shown in black, and the wavelets
used to reconstruct the separate regions in (b) are shaded in different colours: the 8 wavelets for the quiet
region are shaded in blue and the 39 wavelets for the burst event are in red. The vertical dashed lines indicate
the different levels of the wavelet transform (see figure 3). (b) The full data for kx = 0, 1, 2, 3 (black) are
compared with the reconstructions (using the shaded frequencies in (a)) of the quiet region (blue) and the burst
event (red). For comparison, the grey dashed-dot line shows the sum of the blue and the red lines.

3.4. Decomposing the flow: wavelet bases
The number of levels present in the spectrum is determined by the length of the time
window (here T = 200) and the type of wavelet used (here DB1). In figure 5(a) there are
8 levels that are demarcated by the vertical dashed-dot lines. We here use distinct sets of
wavelets to isolate the quiet region and the burst events. The first 3 levels will be used to
reconstruct the quiet region, and these are shaded in blue. Next, 20 % of the most energetic
modes in levels 4–8 will be used to reconstruct the burst event, and these are shaded in
red (Appendix C shows the insensitivity of the results presented to this specific choice of
20 % of the wavelets). As in § 3.1, the number of wavelets used to reconstruct the flow is
chosen such that the error [ε(tq)]t < 0.2 and [ε(tb)]t < 0.4 (see § 3.1 for the definition of
the error metric). Let us denote the data reconstructed using a truncated wavelet basis as
ωr(x, y, t). Figure 5(b) shows the time series of the reconstructions 〈ωr, ωr〉x,y/Dlam of the
quiet region in blue and the burst event in red. The reconstructions are compared with the
full data 〈ω, ω〉x,y/Dlam in black. We observe that isolating the quiet region and the burst
events is approximately possible using wavelets.

In comparing the wavelet-based reconstruction in figure 5(b) with the Fourier-based
reconstruction in figure 2(b), three observations stand out. Firstly, and most importantly,
wavelets are able to isolate the burst events better than the Fourier basis. To understand
why, let us turn our attention to the relatively small magnitude (relative to the burst
events) oscillations in the quiet region of the flow. When considering the Fourier basis,
the same Fourier frequencies contribute both to these quiet oscillations and the burst
events. However, since these oscillations occur at different locations in time relative to
the burst events, the wavelet basis is able to produce reconstructions of the burst event
uncontaminated by the quiet oscillations. Secondly, to reconstruct the burst event, fewer
wavelets are required in comparison with Fourier frequencies: 39 wavelets as opposed
to 108 (54 positive) Fourier frequencies. Finally, from figure 5(b) we see that wavelets
are able to isolate a single burst event, in contrast to the Fourier-based reconstruction in
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Wavelet-based prediction of burst events in a 2-D flow

figure 2(b) where both the burst events are captured equally. Therefore, isolating single
burst events, when there are multiple similar events present in a time window, is only
possible using the wavelets bases.

We can therefore conclude that wavelets are better at isolating burst events. Using
wavelets, we are able to obtain a signal of the burst event that is uncontaminated by the
oscillations in the quiet region. Additionally, wavelets enable a lower-order representation
of the burst event by requiring fewer wavelets (than Fourier frequencies) to reconstruct the
burst event. In the next section, we will therefore concentrate on using the wavelet basis to
probe the flow patterns active in the quiet region and the burst events.

4. Prediction method 1: WPOD based

Proper orthogonal decomposition, introduced by Lumley (1967, 1970), is a common
technique employed to find the flow patterns that are energetically dominant. In this
section, we consider two POD-based methods that use a wavelet basis: (i) WPOD (§§ 4.1
and 4.2) and (ii) its variation composite-WPOD (§ 4.3). The aim of these methods is the
identification of the coherent structures in an intermittent flow. Here, a coherent structure
is defined as a flow pattern that maintains a significant degree of correlation with itself
over a range of space and time (Robinson 1991). After identifying the flow patterns, we
use them to predict the burst events (§§ 4.4 and 4.5).

4.1. A description of WPOD
Many adaptations of POD, tailored for various classes of problems, are found in the
literature (for instance, see reviews by Taira et al. (2017) and Rowley & Dawson (2017) and
references therein). We are here interested in finding structures that are coherent in space
and time, and a recently introduced POD-based technique for this purpose is spectral-POD
(SPOD) (Towne, Schmidt & Colonius 2018). In this method, the flow is first projected
onto a Fourier basis. Thereafter, a POD is performed at each Fourier frequency that gives
coherent structures at that particular frequency. These structures are coherent in space due
to the properties of POD and coherent in time since they are Fourier modes. However, in
§ 3.4, we saw that a wavelet basis is better at characterising intermittent flows. Therefore,
instead of a SPOD, here we use a WPOD. Using this method we obtain structures that
are coherent in space, and both coherent and localised in time since they are wavelet
coefficients.

Before describing WPOD, to provide context, let us briefly consider the regular POD.
In this case, we have velocity fields q(x, y, t) = (u(x, y, t), v(x, y, t)) for a range of time.
(For POD, we are required to choose a norm that is maximised to obtain the POD modes.
Kinetic energy is a physically relevant norm, and choosing velocity as data, instead of
vorticity, ensures that the kinetic energy is used as the POD norm.) The POD modes
φi(x, y) give an orthogonal basis for q(x, y, t), such that the 1st POD mode captures the
largest variance of the data, the ith POD mode captures the ith largest variance, and so
on. In other words, if Epod

i is the projection of the data q(x, y, t) onto the ith POD mode,
φi(x, y)

Epod
i = [|〈q(x, y, t),φi(x, y)〉x,y|2]t

〈φi(x, y),φi(x, y)〉x,y
, (4.1)

then Epod
i > Epod

i+1 . Here, as before, [·]t denotes averaging in time, 〈a, b〉x,y denotes the inner

product
∫ Ly

0
∫ Lx

0 b∗(x, y, t)a(x, y, t) dx dy and |·| represents absolute value. The problem
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of finding POD modes reduces to finding the eigenvalues of the correlation matrix QQ∗
where Q is a matrix with columns containing q(x, y, t), i.e. the 1st column of Q is q(x, y, t1)
and the ith column is q(x, y, ti). The eigenvectors of QQ∗ are equivalently the left singular
vectors of the matrix Q, and therefore the problem can be solved by performing a singular
value decomposition (SVD) of the data matrix Q.

Rather than finding the coherent structures in the entire flow using POD, we are
interested in finding the coherent structures at particular wavelets. Let us therefore consider
wavelet-POD. For this, first consider the Ne different realisations of the burst event (see
§ 3.3 for how each realisation is chosen from the data). From these Ne realisations, consider
one realisation ne, where now 1 ≤ ne ≤ Ne. At this ne, we have the data q(x, y, t; ne) =
(u(x, y, t; ne), v(x, y, t; ne)). A wavelet transform of this neth realisation of the burst event
will give us q̂(x, y; nw, ne) = (û(x, y; nw, ne), v̂(x, y; nw, ne)), where û and v̂ represent the
wavelet transform of u and v. Therefore, for each wavelet nw, and from each realisation of
the burst event ne, we have the state vector q̂(x, y; nw, ne). If we now concentrate on just
one wavelet nw, we have Ne data vectors q̂(x, y; nw, 1 : Ne).

The objective now is to find basis vectors φ̂i(x, y; nw) such that

q̂(x, y; nw, ne) =
Ne∑
i=0

ai(nw, ne)φ̂i(x, y; nw). (4.2)

For each nw, the equivalent of the POD energy in (4.1) now becomes

Ewpod
i (nw) = [|〈q̂(x, y; nw, ne), φ̂i(x, y; nw)〉x,y|2]ne

〈φ̂i(x, y; nw), φ̂i(x, y; nw)〉x,y
, (4.3)

where Ewpod
i (nw) ≥ Ewpod

i+1 (nw). It should be noted that, unlike in (4.1) where the averaging
is over time, in (4.3) the averaging is across the Ne different realisations of the burst event
(denoted by [·]ne). If we consider the WPOD modes across all nw and pick the dominant
mode, i.e. the mode with maximum energy across nw, then the projection that is maximised
is

max
nw

(Ewpod
1 (nw)) = [|〈q(x, y, t; ne),φ1(x, y, t)〉x,y,t|2]ne

〈φ1(x, y, t),φ1(x, y, t)〉x,y,t
, (4.4)

where 〈a, b〉x,y,t denotes the inner product
∫ T

0

∫ Ly
0

∫ Lx
0 b∗(x, y, t)a(x, y, t) dx dy dt. Here,

φi(x, y, t) represents the WPOD mode φ̂i(x, y; nw) in time, i.e. φi(x, y, t) is an inverse
wavelet transform of φ̂i(x, y; nw). Similar to POD, for WPOD we perform a SVD of the
data matrix Q̂nw , where columns of Q̂nw are the data q̂(x, y; nw, 1 : Ne). The ith left singular
vector is the ith WPOD mode, and the square of the ith singular value is the corresponding
WPOD energy Ewpod

i (nw) (4.3).

4.2. The WPOD-based analysis of the 2-D Kolmogorov flow

Figure 6(a) shows the WPOD energies Ewpod
i (nw) (4.3) as a function of wavelet nw. In other

words, each vertical line in figure 6(a) corresponds to the WPOD obtained at that particular
nw. Let us first focus on the wavelets responsible for the quiet region shaded in blue, i.e.
the first three levels of the wavelet transform. Notably, only these lower levels show any
appreciable low-rank behaviour, i.e. within these levels the first few WPOD modes capture
significantly more energy than the higher modes. Low rankness in the WPOD spectrum
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Figure 6. (a) The WPOD spectrum is shown as a function of wavelet nw. The energies of the first 10 WPOD
modes are shown. The vertical dashed-dot lines demarcate the levels of the wavelet transform. The shaded
regions represent the wavelets that are responsible for the quiet region in blue and the burst event in red. The
first 5 WPOD modes are shown for two different wavelets: (b–f ) nw = 2 responsible for the quiet region marked
by the blue vertical line in (a) and (g–k) nw = 22 responsible for the burst event marked by the red vertical line
in (a).

suggests that there is an energetically dominant mechanism that is responsible for the quiet
region of the flow. To probe this further, let us now look at the WPOD modes at nw = 2 in
figure 6(b–f ). The WPOD modes 1 and 2, as well as modes 3 and 4, are shifted versions of
the same mode, a result of the inherent symmetries in the flow. (While symmetries can be
incorporated into the POD modes, the instantaneous fluctuations of the flow do not adhere
to these symmetries, and so we present modes without symmetrisation). Together, modes
1 and 2 account for 77 % of the energy at this nw. Crucially, these first two modes closely
resemble the unstable eigenfunction obtained from the Navier–Stokes equations linearised
around the mean flow (see Appendix A). This indicates that this unstable eigenfunction is
mainly responsible for the quiet region of this flow. This is consistent with the observations
in Farazmand & Sapsis (2017), where they employed an alternative strategy to capture this
unstable eigenfunction, and used it to predict the burst events. Moving on to modes 3 and
4, while these modes are energetically significant, they capture less energy compared with
modes 1 and 2. Together they capture 19 % of the energy at this nw. Structurally, modes 3
and 4 capture shearing motions.
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Let us now turn our attention to the wavelets responsible for the burst event. These
wavelets are shaded in red in figure 6(a). One initial observation is that there is no
significant low rankness at a majority of these wavelets. This lack of low rankness
generally suggests that there is no one dominant mechanism that is responsible for the
burst event. To investigate these modes further, consider the WPOD modes at nw = 22
in figure 6(g–k). Notably, the first 4 WPOD modes in the burst event are structurally
similar to the modes in the quiet region. Additionally, we observe that modes 2–4, while
being similar to the unstable eigenfunction, are fragmented versions of this eigenfunction.
It should be noted that, this fragmentation of the modes is more apparent for certain nw
in the burst region (for instance, it is not as clearly apparent for nw = 12 in level 4).
Therefore, for a more conclusive illustration of these fragmented modes, we will consider
composite-WPOD modes in the next section.

From these observations, we can hypothesise that the shearing motions are responsible
for disrupting the flow due to the unstable eigenfunction. Intermittently, this shearing
disrupts the flow enough to cause a burst event. While a WPOD analysis can suggest
that such a mechanism causes the burst events, to conclusively show this, we need to
do a dynamic mode decomposition (Schmid 2022) analysis that identifies the relevant
instabilities of the flow generated by the unstable eigenfunction. However, this falls beyond
the scope of the current manuscript.

4.3. Coherent structures in quiet and burst regions – a composite-WPOD analysis
In this section, we introduce composite-WPOD. Instead of identifying structures at specific
wavelets nw as done for WPOD in the previous section, in composite-WPOD we identify
the coherent structures for a set of wavelets {nw1, nw2, . . .}. This is important since, from
§ 3.4 we know that, rather than individual wavelets, sets of wavelets contribute to the quiet
region and the burst events. For example, to find modes for the quiet region, we need
modes that represent the set of wavelets nq = {nq

w1, nq
w2, . . . nq

wNq
} that are responsible for

the quiet region (represented by the blue-shaded values of nw in figure 6a). We therefore
use a composite version of the WPOD used in § 4.1.

In § 4.1, to obtain the WPOD modes, we computed the SVD of a data matrix Q̂nw . The
columns of Q̂nw were taken to be the data q̂(x, y; nw, 1 : Ne), such that the 1st column
corresponds to q̂(x, y; nw, 1), the ith column to q̂(x, y; nw, i), and so on. Here, we instead
consider the data matrix P̂ that contains coefficients at all the nw that is contained in nq

such that

P̂ = [q̂(x, y; nq
w1, 1), . . . , q̂(x, y; nq

w1, Ne), . . . q̂(x, y; nq
wi, 1), . . . , q̂(x, y; nq

wi, Ne), . . .].
(4.5)

In effect, to obtain P̂, we horizontally stack all the Nq number of Q̂nw that correspond to
the nw in nq, i.e. P̂ = [Q̂nq

w1
, Q̂nq

w2
, . . . , Q̂nq

wi
, . . .]. The SVD of P̂ will give us the dominant

structures that are responsible for the set of wavelets nq.
We denote the composite-WPOD energies for wavelets nq, obtained as the square

of the singular values of P̂, as Eq
i . In other words, Eq

1 is the energy of the dominant
composite-WPOD mode that captures the dynamics across the set of wavelets nq. (To
clarify the notation for the POD norms used in this section, we used Epod for the POD
norm, Ewpod for the WPOD norm and E for the composite-WPOD norm.) The first few
such composite-WPOD modes for the set of wavelets nq are shown in figure 7(a–d).
The percentage energy captured by the mode is also shown in the figure. Similarly,

1003 A5-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
80

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1080


Wavelet-based prediction of burst events in a 2-D flow

x x x

10 %

x

17 % 16 % 14 % 12 % 3 %

0 π 2π

x
0 π 2π 0 π 2π

0 π 2π 0 π 2π 0 π 2π 0 π 2π

2π

x x x x

10 %

0 π 2π 0 π 2π 0 π 2π 0 π 2π

2π
(a) (b) (c) (d)

Q
u
ie

t

17 % 16 % 14 % 12 % 3 %

0 π 2π 0 π 2π 0 π 2π

(e) ( f ) (g) (h) (i)

( j) (k) (l) (m) (n)

–ω ω

B
u

rs
t

10 20 30 40 50 60

i
0

0.2

0.4

0.6

0.8

1.0

(o)

Figure 7. The first few composite-WPOD modes are shown for two different sets of wavelets: (a–d) wavelets
responsible for the quiet region marked by the blue-shaded region in figures 6(a) and 6(e–n) wavelets
responsible for the burst event marked by the red-shaded regions in figure 6(a). The titles of these plots show
the percentage energy captured by the mode computed as 100 × Eq

i /
∑M

j=0 Eq
j for the quiet region, and similarly

for the burst events. (o) Also shown is the cumulative contribution of the first i modes to the total energy for
the quiet regions computed as (

∑i
j=0 Eq

j )/(
∑Mq

j=0 Eq
j ) (blue line, circle markers) and the burst events computed

as (
∑i

j=0 Eb
j )/(

∑Mb
j=0 Eb

j ) (red line, square markers).

composite-WPOD modes can be obtained for the wavelets nb that contribute to the burst
events, and here we denote the WPOD energies of these modes as Eb

i . The first 10 among
these WPOD modes for the burst event are shown in figure 7(e–n). Figure 7(o) shows
the cumulative contribution of the first i modes to the total energy. In other words, the
blue line in figure 7(o) shows (

∑i
j=0 Eq

j )/(
∑Mq

j=0 Eq
j ), where Mq = Ne × Nq is the total

number of composite-WPOD modes obtained for the set of wavelets nq for the quiet region.
The red line shows the same quantity for the Mb = Ne × Nb composite-WPOD modes,
corresponding to the set of wavelets nb for the burst event. In this study Ne = 50, Nq = 8
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and Nb = 39 (see figure 5a), and therefore Mq = 400 and Mb = 1950. The horizontal
dashed-dot line in figure 7(o) indicates 95 %.

Let us first focus on the quiet region. From the blue line in figure 7(o) we see that the
curve very quickly approaches the dashed-dot line indicating 95 %. The first four modes
capture most of the energy of the flow. These four modes are shown in figure 7(a–d), and
they can be compared with their counterparts in figure 6(b–e). We note that the leading
modes obtained from both WPOD versions are similar. Consistent with the observations
from figure 6, composite-WPOD modes 1 and 2 correspond to the unstable eigenfunction
and modes 3 and 4 represent shearing motions in the y-direction. (The modes in figure 7
exhibit greater convergence compared with those in figure 6 due to the inclusion of data
from a collection of nw, thereby increasing the input data used.)

Now consider the burst region. From the red line in figure 7(o), we see that the increase
in total energy is more gradual. The first four modes, shown in figure 7(e–h), still capture
a considerable part of the energy. Structurally, these four modes resemble the modes
in the quiet region. This is consistent with the observation in § 4.2, and shows that the
dominant modes in the quiet region persist during the burst events as well. In effect, this
flow cannot be precisely divided into the quiet region and the burst events. However, going
back to figure 7(o), the red line shows a very slow increase, and many suboptimal modes
are required to reach 95 % energy (the horizontal dashed-dot line). Therefore, although
these suboptimal modes (i.e. mode 5 and onward) each contribute very little energy, large
numbers of them together play a significant role in the burst events. A few of these modes
are shown in figure 7(i–n). The leading among these modes appear to be modified, here
sheared, versions of the unstable eigenfunction (see for example figures 7(i), 7( j) and 7(k)).
This is also consistent with the observations in § 4.2. Notably, such fragmented and sheared
versions of the unstable eigenfunction are modes that are typical to the burst events.

4.4. Tracking composite-WPOD modes in a time series
So far, we have identified coherent structures that exist in the quiet region and the burst
events. In this section, we track these coherent structures in a time series obtained from the
flow. In other words, we are interested in analysing how the contributions of these coherent
structures to the flow evolve with time. This will pave the way for the discussion in the next
section (§ 4.5), where we will use these coherent structures to introduce the WPOD-based
method for predicting the burst events.

We have two sets of composite-WPOD modes: (i) let Lq represent the set of Mq = Ne ×
Nq number of composite-WPOD modes corresponding to the quiet region with the jth
mode in Lq having WPOD energy Eq

j and similarly (ii) let Lb represent the set of Mb =
Ne × Nb modes for the burst event with energies Eb

j . Consider the modes φq
j (x, y) ( j =

1, . . . , Mq) from Lq. Now consider a time series q(x, y, t) obtained from flow, where q =
(u, v) is the state vector. Note that q(x, y, t) can be a time series of arbitrary length with
any number of burst events occurring at any point in time. Additionally, q(x, y, t) could lie
outside the time window used to obtain the Ne realisations of the burst event for WPOD
(as required for the problem of predicting the burst events in the next section). At each
time t, we aim to assess the presence of the structures φq

j (x, y) in the flow field q(x, y, t).
For this, we first compute Eqj(t), which is the magnitude of energy shared between a mode
φ

q
j (x, y) and q(x, y, t) as

Eqj(t) :=
∫

ky

∫
kx

|FTxy(q)(kx, ky; t)FTxy(φ
q
j )(kx, ky; t)∗|2 dkx dky. (4.6)
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Figure 8. (a) Tracking coherent structures for the quiet region using γ q (blue line). Two components of γ q

are also shown: γ
q
1:2(t) (�) and γ

q
3:4(t) (�). (b) Also shown are the mean-removed and normalised profiles of

D(t)/Dlam, γ
q
1:2(t) and γ

q
3:4(t) for the time window indicated by the grey-shaded box in (a).

Here, FTxy(·) represents the 2-D Fourier transform in the spatial directions, and kx and ky
are the wavenumbers in the x and y-directions, respectively. We normalise Eqj(t) using (i)
Ejj := 〈φq

j ,φ
q
j 〉x,y which is the energy of φq

j (x, y) and (ii) Eqq(t) := 〈q, q〉x,y which is the
energy of q(x, y, t).

The coherence γ q(t) between q(x, y, t) and the modes in Lq can now be defined as

γ
q
j (t) = Eqj(t)

Eqq(t)Ejj
, γ q(t) =

Mq∑
j=1

⎛
⎝ Eq

i∑Mq
j=0 Eq

j

⎞
⎠ γ

q
j (t). (4.7a,b)

Here, γ
q
j (t) is the coherence between a point in the time series from the flow q(x, y, t)

and the jth composite-WPOD mode in Lq. The value of γ
q
j (t) is bounded in the range 0 ≤

γ
q
j (t) ≤ 1, with 0 indicating no coherence between φq

j (x, y) and q(x, y, t) and 1 indicating
perfect coherence. Hence, γ q(t) is the weighted average of the coherence across the Mq
different modes in Lq, weighted by the fraction of energy that each mode contributes to the
energy of the quiet region. The value of γ q(t) therefore also lies between 0 and 1, where 0
indicates that the modes in Lq are not present in q(x, y, t) at that time t and 1 indicates that
the modes in Lq are the only structures present in q(x, y, t). Similarly, we can also define
γ b(t) as the average coherence of q(x, y, t) with structures in Lb. It should be noted that,
the actual value of γ q(t) and γ b(t) do not hold physical significance. Instead, our interest
is in the trends of γ q(t) and γ b(t) over time. Let us first consider γ q(t) for a sample time
series. Figure 8(a) displays γ q(t) in blue, along with the time series of D(t)/Dlam in black.
To obtain a smoother curve, the average of γ q(t − 2), γ q(t − 1) and γ q(t) is computed
at each time t. Similar averaging is also later carried out for γ b(t) (at each time t1, only
values t ≤ t1 are used for this averaging). Looking at γ q(t) we observe that: (i) within the
quiet region, γ q(t) remains relatively high and (ii) γ q(t) plummets down when burst events
occur. It is evident that γ q(t) exhibits distinctive changes in its trends during a burst event.
This is consistent with the observations in the literature that shows that the occurrence of
a burst event is correlated with how near or far the flow is from equilibrium solutions of
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Figure 9. Tracking coherent structures for the burst events using γ b (red line). Two components of γ b are
also shown: γ b

1:4(t) (�) and γ b
5:Nb

(t) (�).

the flow (Farazmand 2016; Page et al. 2021). Looking ahead to the problem of predicting
the burst events, γ q(t) should, therefore, become a valuable tool.

To further probe this, figure 8(a) also shows two components of γ q(t): (i) γ
q
1:2(t), which

shows the weighted average of the coherence of just the first two modes in Lq, i.e. the
unstable eigenfunction (modes in figure 7a,b) and (ii) γ

q
3:4(t), which is the weighted

average coherence of modes 3 and 4, i.e. the shearing motions. (modes in figure 7c,d).
The first significant observation is that γ

q
1:2(t) closely follows the trends of γ q(t). This is

not surprising given that, together, modes 1 and 2 capture more than 70 % of the energy of
the quiet region (as seen in figure 7). Therefore, we can say that the trends of γ q(t) are most
significantly impacted by the flow due to modes 1 and 2, i.e. the unstable eigenfunction.
The second noteworthy observation is that γ

q
3:4(t) tends to move out of phase with γ

q
1:2(t).

This becomes more evident in figure 8(b) where mean-removed and normalised profiles
of D(t)/Dlam, γ

q
1:2(t) and γ

q
3:4(t) are shown. The curves are vertically shifted in order

to make the trends clearer. From this figure, we see that, when D(t)/Dlam increases, the
presence of the flow due to the unstable eigenfunction (γ q

1:2(t)) decreases and that of the
shearing structure (γ q

3:4(t)) increases. This observation provides additional support to our
initial hypothesis that the shearing motions disrupt the flow generated by the unstable
eigenfunction, thereby increasing dissipation.

Let us now examine γ b(t) for the same time series. Figure 9 shows γ b(t) in red alongside
the time-series of D(t)/Dlam in black. Upon comparing γ b(t) with γ q(t) in figure 8(a),
the first apparent observation is that the trends between them are strikingly similar. This
observation is consistent with the earlier finding from figure 7, that nearly 60 % of the
energy of the burst events is captured by modes that are present in the quiet region.
Looking ahead to the problem of predicting the burst events, this similarity between
γ q(t) and γ b(t) brings the unfortunate conclusion that the trends of the full γ b(t) may
not be useful for prediction. However, our earlier observations showed the existence of
suboptimal structures that are unique to the burst events (see figure 7). Presumably, these
structures exhibit trends dissimilar to γ q(t). The question, therefore, is whether we can
identify a component of γ b(t) that has predictive value?

To explore this further, figure 9 also shows two components of γ b(t): (i) γ b
1:4(t)

computed using just the first four modes in Lb, i.e. the modes that resemble those from
the quiet region (modes in figure 7e–h) and (ii) γ b

5:Nb
(t) computed using modes 5 and

onward (the first few of these modes are those in figure 7i–n). Two observations become
immediately apparent. Firstly, as expected, γ b

1:4(t) follow trends similar to the full γ b(t)
as well as γ q(t). Secondly, and also more interestingly, γ b

5:Nb
(t) increases during the burst

event. This again shows that these suboptimal modes are unique to the burst events. Again
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Figure 10. Predictions of the burst events obtained using the WPOD-based method for three separate time
series from DNS. The green-shaded regions indicate the identified burst regions, where the predictor λ (grey
line) goes below the defined threshold value, i.e. λ < 0.95λt. The vertical green lines mark the onset of these
burst regions, and therefore represent the predictions of the burst event obtained from the WPOD-based method.
Predicted times are compared with the black dashed vertical lines that indicate the predictions obtained from
the energy-based method.

looking ahead to the problem of predicting the burst events, these observations show that,
although the full γ b(t) may not be helpful in identifying the burst events, the distinctive
trends of γ b

5:Nb
(t) during the burst event will be. (Note, Appendix C shows that it is

possible to predict the burst events using just γ q(t), ignoring the trends of γ b(t). However,
incorporating the trends of γ b

5:Nb
(t) does improve the obtained predictions.)

4.5. Obtaining WPOD-based predictions of burst events
In this section, to predict burst events, we use the distinctive trends of γ q(t) and γ b

5:Nb
(t)

identified in the previous section. For this purpose, a predictor λ = γ q(t) − γ b
5:Nb

(t) is
defined. The average of λ(t − 2), λ(t − 1) and λ(t) is computed at each time t. Figure 10
shows D(t)/Dlam along with the evolution of λ for three different time windows. The time
window in figure 10(a) was included among the Ne = 50 realisations of the burst events
that were used for computing the WPOD modes, while the time windows in figures 10(b)
and 10(c) fall outside these Ne realisations. In other words, while the data in figure 10(a)
fall within the ‘training dataset’, figures 10(b) and 10(c) fall outside this training data, and
will therefore serve to illustrate the generalisability of the prediction method discussed
here. Since we are interested in the trends of λ, and not the magnitudes, we here consider
normalised λ (normalised by the minimum and maximum values obtained within a time
window t = 0–15 000).

From figure 10, we see that λ decreases during burst events. Consequently, we designate
a threshold λt, and values of λ below λt will be identified as burst events. To calculate λt,
we begin by computing the mean of λ minus the variance, where both these statistics are
calculated for time instances that correspond to the quiet regions (i.e. when D(t)/Dlam ≤
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0.1) in the range t = 0–15 000. The threshold λt is set to be 0.95 times this mean minus
the variance. (The impact of varying this coefficient 0.95 to other values will be discussed
in § 6.1.) The green-shaded regions in figure 10 mark the times when λ < λt, and the solid
green vertical lines mark the beginnings of these regions. A majority of these green-shaded
regions correspond to burst events. The green vertical lines are therefore the predictions
of the burst events obtained using this WPOD-based method.

To assess the prediction performance, the obtained prediction times are here compared
with those obtained from a more straightforward strategy of tracking the energy of the
flow. In this case, the predictor becomes λ = −D(t)/Dlam (where the negative sign makes
comparison with the wavelet-based predictors more straightforward). Again, the average
of λ(t − 2), λ(t − 1) and λ(t) is computed at each time t. Using the same procedure as
for the WPOD-based method, a threshold is computed as 0.95 times the mean of λ minus
the variance computed for the quiet region in the range t = 0–15 000. The vertical black
dashed lines in figure 10 indicate the beginnings of the time windows where the predictor
goes below the threshold value. These lines therefore represent the predictions obtained
from tracking the energy of the flow, which can directly be compared with the predictions
obtained from the WPOD-based method in green.

From figure 10, we see that the WPOD-based method is able to predict the burst
events well. However, for this chosen threshold, we obtain false positives, i.e. predictions
of oncoming burst events in the absence of such events (e.g. t ≈ 18 325 in figure 10c).
When compared with the energy-based method, the WPOD-based method does seem to
give improved prediction times (see, for instance, t ≈ 17 235 and t ≈ 18 355 in figure 10).
However, we also seem to obtain more false positives from the WPOD-based method.

To quantify the prediction performance, we should consider predictions over long time
windows. Here we take a time window of length T = 20 000 and dt = 1 outside the
Ne realisations used for WPOD (i.e. outside the ‘training dataset’), which contains 133
burst events. We compute three quantities. First, the average prediction time τ , which
is computed as the difference between the obtained prediction time and the time when
the burst begins, i.e. when D(t)/Dlam ≥ 0.15. (Note, τ is shown in units of

√
Ly/2πζ .)

Second, the percentage of predictions that are false positives, denoted by FP%. A false
positive is here defined as a prediction where D(t)/Dlam of the flow does not go above
0.15. Third, the percentage of false negatives, denoted by FN%. These are instances
when the method does not identify a region with D(t)/Dlam ≥ 0.15 as a burst event.
Both FP% and FN% are represented as a percentage of the total number of predictions
of the burst event obtained from the method. For the WPOD-based method τ = 1.06,
FP% = 20 and FN% = 2, which can be compared with the values for the energy-based
method τ = 0.36, FP% = 13 and FN% = 0. The WPOD-based method has difficulty in
capturing burst events that persist for less than 1–2 time units, and these contribute to the
very small number of false negatives obtained. From these numbers, we can conclude that
the WPOD-based method is capable of predicting burst events with improved prediction
times compared with the more straightforward method of tracking energy, albeit with the
possibility of slightly increased number of false positives and false negatives.

5. Prediction method 2: wavelet-resolvent analysis based

Up to this point, our focus has been on the coherent structures in the flow. We now shift
our attention to the forcing that generates these coherent structures. This will thereafter
pave the way for the discussion on the WRA-based prediction method, where we will use
the obtained forcing to predict the burst events. To identify this forcing, we use resolvent
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analysis. Within the resolvent analysis framework, the nonlinear terms of the linearised
Navier–Stokes equations are considered to be a forcing to the linear equations (e.g. Hwang
& Cossu 2010; McKeon & Sharma 2010; Moarref et al. 2013; Towne, Lozano-Durán &
Yang 2020; Morra et al. 2021). Using this method, we obtain a complete basis that can be
used to represent the flow. Additionally, the method also gives a forcing, i.e. the nonlinear
terms, that force the linearised equations to generate the coherent structures.

Conventionally, the resolvent analysis framework is established using a Fourier
transform in time. However, here, for precise decomposition of the flow into the quiet and
burst regions, we need to use a wavelet basis (see § 3.4). Consequently, to obtain forcing
structures for the quiet and the burst regions, we need to use wavelet-based resolvent
operators. While a substantial amount of literature considers the Fourier-based resolvent
analysis, studies that concentrate on the WRA are limited and very recent (Ballouz et al.
2023a,b). The next section introduces the resolvent operator for a broader range of bases,
which includes the Fourier and wavelet bases.

5.1. Resolvent operator
To define the resolvent operator, we start with the Fourier-transformed linearised
Navier–Stokes equations that were laid out in (2.4) and reproduced here

˙̃ω( y, t; kx) + Aω̃( y, t; kx) = F̃( y, t; kx). (5.1)

Let us consider the basis vectors Θnw(t). We can write ω̃ in terms of its projection onto
this basis as (Farge 1992)

ω̃( y, t; kx) =
Nw∑

nw=1

ˆ̃ω( y; kx, nw)Θnw(t), (5.2)

where

ˆ̃ω( y; kx, nw) =
∫ T

0
ω̃( y, t; kx)Θ

∗
nw

(t) dt. (5.3)

We can similarly obtain the coefficients ˆ̃F( y; kx, nw) of F̃( y, t; kx). Here, T is the length
of the time window used. For the case considered here, T (here T = 200) is the length of
a realisation of the burst event that we used for WPOD (see § 3.3). Please note that, for
the rest of this manuscript, just to simplify notation, we replace the notation (̂·̃) with (·̂)
and also denote nw as a subscript. In other words, we use ω̂nw( y; kx) and F̂nw( y; kx) to

represent ˆ̃ω( y; kx, nw) and ˆ̃F( y; kx, nw), respectively.
The basis Θnw(t) is chosen such that it is complete and orthonormal, i.e.∫ T

0 Θ∗
mw

Θnw dt = δnwmw , where δnwmw is the Dirac delta function. The basis could, for
instance, be the Fourier basis, where Θnw(t) = exp i(2π/T)nwt, or as will be considered
here, the wavelet basis discussed in § 3.2. In terms of these transforms, the linearised
equations in (5.1) become

Nw∑
nw=1

ω̂nw( y; kx)

(
dΘnw(t)

dt

)
+ A

Nw∑
nw=1

ω̂nw( y; kx)Θnw(t)

=
Nw∑

nw=1

F̂nw( y; kx)Θnw(t). (5.4)
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Here, Nw is the number of wavelet coefficients obtained from the wavelet transform
(determined by the type of wavelet chosen and the number of time instances Nt chosen
for the time window). The bases vectors Θnw(t) are not guaranteed to be continuous or
differentiable. For instance, the discrete Daubechies 1 wavelet that we use (see § 3.2) is
discontinuous and not differentiable. To consider the formulation in terms of the most
general bases, including discontinuous ones, we re-write (5.4) in terms of the integrals of
the bases Θnw(t), therefore giving us

Nw∑
nw=1

ω̂nw( y; kx)Θnw(t) + A
Nw∑

nw=1

ω̂nw( y; kx)

(∫ t

0
Θnw(t′) dt′

)

=
Nw∑

nw=1

F̂nw( y; kx)

(∫ t

0
Θnw(t′) dt′

)
. (5.5)

Since the bases are complete, the integral of a particular basis vector can be written as a
linear superposition of all basis vectors, i.e.

∫ t
0 Θnw(t′) dt′ = ∑Nw

mw=1 cnwmwΘmw(t), where
cnwmw are scalar coefficients. This gives

Nw∑
nw=1

ω̂nw( y; kx)Θnw(t) + A
Nw∑

nw=1

ω̂nw( y; kx)

⎛
⎝ Nw∑

mw=1

cnwmwΘmw(t)

⎞
⎠

=
Nw∑

nw=1

F̂nw( y; kx)

⎛
⎝ Nw∑

mw=1

cnwmwΘmw(t)

⎞
⎠ . (5.6)

Using the orthogonality of the basis vectors, the equation is now rewritten as

ω̂nw( y; kx) + A
Nw∑

mw=1

cnwmwω̂mw( y; kx) =
Nw∑

mw=1

cnwmwF̂mw( y; kx). (5.7)

If we were dealing with the Fourier-based equations cnwmw = inwδnwmw . The summations
in (5.7) thereby drop off, giving independent equations for each nw. This is not true for the
case of all bases, such as a wavelet bases, where the response at one particular wavelet Θnw
cannot be isolated from the responses at the other wavelets. In matrix form, this equation
will therefore become⎡

⎢⎢⎣
ω̂1( y; kx)
ω̂2( y; kx)
ω̂3( y; kx)

...

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

A 0 0 . . .

0 A 0 . . .

0 0 A . . .
...

...
...

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c11I c12I c13I . . .

c21I c22I c23I . . .

c31I c32I c33I . . .
...

...
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
Ā( y,nw;kx)

⎡
⎢⎢⎣

ω̂1( y; kx)
ω̂2( y; kx)
ω̂3( y; kx)

...

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

c11I c12I c13I . . .

c21I c22I c23I . . .

c31I c32I c33I . . .
...

...
...

⎤
⎥⎥⎦

︸ ︷︷ ︸
B̄( y,nw;kx)

⎡
⎢⎢⎢⎣

F̂1( y; kx)

F̂2( y; kx)

F̂3( y; kx)
...

⎤
⎥⎥⎥⎦ . (5.8)
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We are considering the discretised equations with Ny number of grid points in the
y-direction and Nw wavelets. The matrix A in (5.8) is therefore of size Ny × Ny and
I represents an identity matrix of the same size. The projection coefficients cnwmw are
scalars. The matrices Ā( y, nw; kx) and B̄( y, nw; kx) are therefore of sizes (NwNy) ×
(NwNy), and the vectors ω̂ = [ω̂1, ω̂2, . . . ω̂Nw] and F̂ = [F̂1, F̂2, . . . F̂Nw] are each of size
NyNw. Using these definitions, we can write the wavelet-based linearised equation as

ω̂( y, nw; kx) + Ā( y, nw; kx)ω̂( y, nw; kx) = B̄( y, nw; kx)F̂( y, nw; kx). (5.9)

To obtain the state-vector q̂( y, nw; kx) = (û( y, nw; kx), v̂( y, nw; kx)), we introduce an
output matrix C̄ such that

q̂( y, nw; kx) = C̄( y, nw; kx)ω̂( y, nw; kx). (5.10)

The matrix C̄ can also be used to ‘mask’ the resolvent. For instance, in the upcoming
sections, we will compute the responses at specific values of nw. By selectively including
and excluding rows of the matrix C̄ , we can mask the response such that we obtain
responses exclusively at a particular nw as in § 5.2, or to obtain responses at specific sets of
nw as in § 5.3. It should be noted that, similar to this, the matrix B̄ can be used to mask the
forcing to the resolvent operator. However, in the present study, we do not mask the forcing.
This is because, while we are interested in responses at specific values of nw that we can
separately trace back to the quiet region or the burst events, we do not have a physical
argument for restricting the forcing similarly. In the wavelet resolvent, the response at a
particular nw can be forced by all other nw.

From this point, the procedure to obtain the resolvent operator follows McKeon &
Sharma (2010). Rearranging (5.9) gives us

q̂( y, nw; kx) = C̄[W 1/2(I + Ā)−1W −1/2]B̄︸ ︷︷ ︸
H̄( y,nw;kx)

F̂( y, nw; kx). (5.11)

Here H̄( y, nw; kx) represents the resolvent operator. If a non-uniform grid is used to
discretise y, the weight matrix W will contain the weights corresponding to the grid. In
this study, we employ a Fourier grid with N = 51 grid points, resulting in W = I . As for
the WPOD (see § 3.2), here the Daubechies 1 wavelets serve as the basis vectors Θnw , with
a time window of T = 200 and a time step of dt = 1. A similar wavelet-based operator as
that obtained in (5.11) has recently also been used in Ballouz et al. (2023a,b).

5.2. The WRA response and forcing modes
Singular value decomposition is used to analyse the resolvent operator, H̄( y, nw; kx)

H̄( y, nw; kx) =
NyNw∑
i=1

ψ i( y, nw)σiφi( y, nw). (5.12)

The singular values are arranged in increasing order such that σi ≥ σi+1. The left singular
vectors ψ i( y, nw) represent the resolvent response modes and the right singular vectors
φi( y, nw) represent the resolvent forcing modes. Essentially, the forcing φi( y, nw), when
put through the resolvent operator, yields a response ψ i( y, nw) amplified by σi. Both
ψ i( y, nw) and φi( y, nw) are functions of y and the wavelets nw. The most amplified
response is ψ1( y, nw) corresponding to σ1, and the corresponding most sensitive forcing
direction is φ1( y, nw).
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Figure 11. First five resolvent response modes (a–e) at nw = 2 that contribute to the quiet region, and ( f –j)
at nw = 22 that contribute to the burst region, are shown. The titles show the fraction of energy (at that nw)
captured by the respective mode, computed as σ 2

i /
∑

j σ
2
j (rounded off to eight decimal places for a–e).

First, let us consider resolvent response modes at specific values of nw. To obtain these
modes, we can selectively mask specific rows of the output matrix C̄ (see (5.10)). For the
resolvent, we need to choose a wavenumber in the x-direction kx. The dominant modes
in this flow have kx = 1 (see figure 7). Therefore, in figure 11, we show resolvent modes
at kx = 1. (The shearing motions in figure 7 can be obtained as kx ≈ 0 modes, which are
not shown here for the sake of brevity.) Figure 11 shows the resolvent response modes
for two values of nw: (i) nw = 2 that corresponds to the quiet region and (ii) nw = 22
that corresponds to the burst event. The percentages in the title of the figure represent the
fraction of energy (at that nw) captured by the respective mode ψ i( y, nw) computed as
σ 2

i /
∑

j σ
2
j .

Consider the modes from the quiet region in the first row of figure 11. The first resolvent
mode captures almost the full energy at this nw (the percentage is rounded off to eight
decimal places). The mode corresponds to the unstable eigenfunction of the linearised
Navier–Stokes equations (see Appendix A) (Chandler & Kerswell 2013). Crucially, when
compared with the first row of figure 6, the first resolvent mode resembles the first WPOD
mode. In § 4.4, we found that this first WPOD mode dominates the dynamics of the quiet
region in DNS. Therefore, for the quiet region, we can conclude that the model is able to
predict the dominant structure. Additionally, the model also recognises the significance of
this structure, as indicated by the mode capturing almost all the energy at this nw.

Now consider the modes for the burst event in the second row of figure 11. The first
resolvent mode for this nw is the same as for the quiet region, representing the unstable
eigenfunction and capturing the majority of the energy at this nw. A similar trend was
apparent when considering the WPOD modes in figure 6, where we found that the same
modes as in the quiet region were also dominant for the burst event, and captured 60 % of
the energy of the burst events. In the case of the resolvent modes, however, the quiet region
mode captures almost the full energy. Examining the structure of the suboptimal resolvent
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modes, inclined and fragmented versions of the unstable eigenfunction are apparent,
reminiscent of the WPOD modes. For instance, compare figure 7( j) with 11(g). Therefore,
for the burst events, the suboptimal resolvent modes do capture the relevant structures.
However, the model is not able to identify the significance of these suboptimal modes, as
suggested by the percentage of energy captured by them.

5.3. Reconstructing DNS data using WRA modes
Our purpose in introducing the resolvent here is to find the forcing structures, i.e. the
structures in the nonlinear terms, that produces the quiet region and burst events. Studies
have used the Fourier-based resolvent operators to find the underling forcing structures
that are important in a flow (e.g. Towne et al. 2015; Karban et al. 2022). The right and
left singular vectors of the resolvent, φi and ψ i, form complete bases. Consequently, any
response q̂, and any forcing F̂, that is obtained from data (here from DNS) can be expressed
in terms of these basis vectors as

F̂ =
NyNw∑
i=1

χiφi, χi =
Nw∑

nw=1

∫ Ly

0
F̂nw( y; kx)(φi)nw( y) dy

q̂ =
NyNw∑
i=1

χiσiψ i, χiσi =
Nw∑

nw=1

∫ Ly

0
q̂nw

( y; kx)(ψ i)nw( y) dy,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.13)

where (φi)nw( y) and (ψ i)nw( y) are just representing the components of φi( y, nw) and
ψ i( y, nw) at a particular nw. Therefore, given DNS data q̃( y, t; kx), we first obtain the
wavelet coefficients q̂nw

( y; kx) through a wavelet transform, and thereafter compute χiσi
by projecting the wavelet coefficients onto the resolvent response modes ψ i( y, nw).
A reduced-order description of the flow can then be obtained by reconstructing the data
using a truncated basis

q̂approx =
N1∑
i=1

χiσiψ i, (5.14)

where N1 is the number of modes that are retained in the truncated data. The approximate
data qapprox are then obtained from an inverse wavelet transform in time and an inverse
Fourier transform in the x-direction.

From the obtained product χiσi, we then extract χi. The N1 is chosen such that we
eliminate modes which contribute less than 0.1 % energy to any particular kx (i.e. the
eliminated modes have χiχ

∗
i σ 2

i less than 0.1 % of the energy at that kx). This χi is then
used to compute the forcing F̂approx = ∑N1

i=1 χiφi. The obtained forcing F̂approx when put
through the resolvent operator will give a response q̂approx. In other words, we can find
the component of the full forcing F̂ from DNS (i.e. the nonlinear term) that is specifically
responsible for amplifying the response q̂approx. The forcing Fapprox (in time) can then be
obtained from an inverse wavelet transform in time and an inverse Fourier transform in the
x-direction. (It should be noted that, unlike in the case of the Fourier resolvent, the forcing
obtained from the wavelet resolvent, F̂approx, does not represent a particular spatial mode
shape. Instead, F̂approx represents mode shapes at different wavelets nw. This is because,
unlike the Fourier resolvent, for the wavelet resolvent, response at a particular nw can be
forced by multiple separate wavelets simultaneously.)
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Figure 12. Values of D(t)/Dlam computed from the full vorticity data for kx = 0, 1, 2, 3 (grey line) are shown
alongside the wavelet-based decomposition of (a) the quiet region in blue and (b) the burst event in red. The
decomposed data are compared with their respective resolvent-based reconstructions (solid black lines). The
forcing Fapprox that generates these responses are also shown (dashed black lines). (The y-axis labels on the
right in both (a) and (b) correspond to the forcing.)

To obtain Fapprox specifically for the quiet region, we obtain resolvent modes for the set
of wavelets nq

w corresponding to the quiet region. The matrix C̄ can be used to mask the
resolvent so as to obtain a response solely for this particular set of wavelets. The wavelet
coefficients obtained from DNS for nq

w are then projected onto the obtained resolvent
modes. Thereafter, following the procedure above, we can obtain the forcing for the quiet
region. Similarly, we can also obtain the forcing for the burst region. An illustration of
this procedure is shown in figure 12, where figures 12(a) and 12(b) show the vorticity ω

from DNS decomposed into the quiet (blue) and the burst (red) regions, respectively. The
corresponding resolvent-based reconstructions ωapprox (black solid lines) are also shown,
where (ωq)approx and (ωb)approx represent the reconstructions of the quiet region and the
burst events, respectively. Additionally, the forcing Fapprox that generate these responses
are shown (black dashed lines) in these figures. Using WRA, we have therefore constructed
forcing (Fq)approx and (Fb)approx that separately generate the quiet region and the burst
events, respectively.

5.4. Coherent structures of the forcing
Our aim is to identify the coherent structures in the forcing that generates the quiet
region and the burst events. In order to find these coherent structures, we first
start by using the resolvent to reconstruct the flow field as illustrated in figure 12,
and thereby obtain the corresponding forcing. This reconstruction is performed for
M different realisations of the quiet region and the burst events (here M = 50).
Consequently, we obtain M realisations of resolvent-based vorticity reconstructions
(ωapprox,1(x, y, t), ωapprox,2(x, y, t), . . . , ωapprox,M(x, y, t)) and the corresponding forcing
(Fapprox,1(x, y, t), Fapprox,2(x, y, t), . . . , Fapprox,M(x, y, t)). It is important to note that,
for the reconstructions done here, kx = (0, 1, 2, 3) wavenumbers in the x-direction are
utilised. Subsequently, to extract the coherent structures, we perform a POD on the M
realisations of the forcing. This involves constructing a data matrix P

P = [Fapprox,1(x, y, t1), Fapprox,1(x, y, t2), . . . , Fapprox,1(x, y, T),

Fapprox,2(x, y, t1), Fapprox,2(x, y, t2), . . . , Fapprox,2(x, y, T), . . .]. (5.15)

A SVD of the data matrix P gives us the POD modes. We obtain such POD modes for the
quiet region and the burst events.

The top row of figure 13 shows the first few forcing POD modes obtained for the
quiet region. The titles of these figures show the percentage of energy that is captured
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Figure 13. The first few POD modes obtained from the forcing corresponding to the resolvent reconstruction
of (a–d) the quiet region and (e–i) the burst events. The titles of these plots show the percentage energy captured
by the mode computed as 100 × Eq

i /
∑M

j=0 Eq
j for the quiet region, and similarly for the burst events.

by the mode. Notably, the first two modes capture a majority of the energy, and the
modes resemble the unstable eigenfunction itself. This again suggests that the dominant
amplification mechanism is a normal-mode mechanism, where the forcing and response
modes can be expected to be structurally similar. Interestingly, modes 3 and 4 resemble
the dominant resolvent forcing to the unstable eigenfunction (see Appendix A), which
suggests that there is a second route through which the unstable eigenfunction can be
amplified. We can also obtain the forcing POD modes for the burst events, and the first
five of these modes are shown in the bottom row of figure 13. Notably, inclined structures
dominate the forcing to the burst events.

5.5. Obtaining WRA-based predictions of burst events
Now that we have identified the coherent structures in the forcing that generate the quiet
regions and the burst events, we will track them in a time series obtained from the flow.
More specifically, our interest is in analysing how the contributions of these structures to
the nonlinear terms of the flow evolve with time. We have two sets of forcing coherent
structures: (i) let Fq represent the modes corresponding to the quiet region, with each
mode φ

q
i (x, y) having POD energy Eq

i , and (ii) Fb the modes for the burst event, with each
mode φb

i (x, y) having POD energy Eb
i . Both Fq and Fb contain M × Nt modes, where

M is the number of resolvent reconstructions used (here M = 50) and Nt is the number of
time snapshots of DNS data in each realisation (here, Nt = 200). To simplify computation,
here, we ignore modes that cumulatively contribute less than 1 % energy (i.e. POD modes
k with

∑M
i=k Eq

i /
∑M

j=0 Eq
j < 0.01). At each time t, we aim to assess the presence of the

structures in Fq and Fb in the nonlinear terms F(x, y, t) obtained from the flow.
For this purpose, we follow the methodology laid out in § 4.4, with q(x, y, t) now taken

to be the nonlinear terms F(x, y, t) obtained from DNS. As explained in § 4.4, we obtain
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Figure 14. Tracking forcing structures in a time series. The evolution of γ q(t) (blue) and γ b(t) (red) obtained
by tracking forcing structures for the quiet region and the burst events, respectively, are shown. Here, D(t)/Dlam
is also shown (in black).

γ q(t), which is the weighted average of the coherence of the modes in Fq with each
point in the time series F(x, y, t). Equivalently, we also obtain γ b(t) for the modes in
Fb. (As in § 4.4, we are here interested in the trends of γ q(t) and γ b(t), and not the actual
values.) Figure 14 shows the profiles of γ q(t) and γ b(t). We see that γ q(t) and γ b(t)
follow distinctive trends during a burst event, with γ q(t) (blue line) decreasing and γ b(t)
(red line) increasing. The trends of γ q(t) and γ b(t) can therefore be used for predicting
the burst event.

Like in § 4.5, here, we define a predictor λ = γ q(t) − γ b(t). Figure 15 shows the
evolution of this predictor for three different time windows. (As in § 4.5, here, λ is
normalised by the minimum and the maximum values obtained within the time window
t = 0–15 000.) Using the same method as in § 4.5, we again choose a threshold λt. The
times when λ < λt are identified as predictions of the burst regions, and the red-shaded
regions in figure 15 denote these predictions. These prediction times are compared with the
green dashed lines, which denote the predictions obtained from the WPOD-based method
in § 4.5. First, we note that, by tracking the forcing structures, we are indeed able to obtain
predictions of the burst event. These prediction times are improvements over the WPOD
method. We also note that false positives are obtained using this method as well (e.g.
t ≈ 17 195 in figure 15). As in § 4.5, for a more accurate comparison, we compute the
average prediction time τ , the percentage of false positives FP% and the percentage of
false negatives FN%. For the WRA-based method τ = 1.88, FP% = 25 and FN% = 4
(compared with τ = 1.06, FP% = 20 and FN% = 2 for the WPOD-based method and τ =
0.36, FP% = 13 and FN% = 0 for the energy-based method). Therefore, the WRA-based
method gives improved prediction times in comparison with the WPOD-based method,
albeit with slight increases in the false positives and false negatives obtained.

6. A discussion of the predictions obtained

6.1. A comparison of the three prediction methods
The prediction methods discussed in this manuscript rely on a predictor going below a
threshold value. Therefore, the predictions will vary with this choice of the threshold. The
thresholds were chosen as 0.95 times the mean of the predictor λ minus the variance,
where these statistics were computed specifically for time instances corresponding to the
quiet regions (see § 4.5). Figure 16 illustrates how varying this coefficient 0.95 impacts
predictions obtained from the energy-based method in grey, WPOD-based method in
green and WRA-based method in red. The comparison between the methods is carried
out using the three time averaged quantities defined in § 4.5: (i) average prediction time τ
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Figure 15. Predictions of the burst events obtained using the WRA-based method for three separate time
series from DNS. The red-shaded regions indicate the identified burst regions, where the predictor λ (grey
line) goes below the defined threshold value, i.e. λ < 0.95λt. The vertical red lines mark the onset of these
burst regions, and therefore represent the predictions of the burst event obtained from the WRA-based method.
Predicted times are compared with the green dashed vertical lines that indicate the predictions obtained from
the WPOD-based method.
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Figure 16. (a) The average prediction times τ are shown as a function of the threshold of the predictors for
the energy-based method (grey), the WPOD-based method (green) and the WRA-based method (red). (b) The
percentages of the obtained predictions that are false positives FP% (solid lines) and false negatives FN%
(dashed-dot lines) are also shown for the three methods.

in figure 16(a), (ii) the percentage of false positives FP% and (iii) the percentage of false
negatives FN% in figure 16(b).

From figure 16(a), we see that, below a threshold value of approximately 1, both the
WPOD-based and WRA-based methods give better prediction times than the energy-based
method. From figure 16(b), we see that this improvement comes at the cost of a slight
increase in the number of false positives. Moving back to figure 16(a), we see that, above
this threshold of approximately 1, the energy-based method starts performing better than
the WPOD-based method, but still worse than the WRA-based method. For very high
values of the threshold, the energy-based method seems to perform better than both the
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wavelet-based methods. However, from figure 16(b) we note that this improvement in
the performance of the energy-based method comes with a jump in the number of false
positives obtained. For the very high thresholds, more than 50 % of the predictions given
by the energy-based method are false, i.e. one in two predictions are false. We can therefore
conclude that both the wavelet-based methods give a more robust prediction performance
when compared with the energy-based method. Additionally, from figure 16(a), we see
that the WRA-based method always outperforms the WPOD-based method. However, this
does come with the cost of a slight increase in the false positives. Finally, considering the
false negatives obtained, all three methods give a small number of false negatives. Both the
wavelet-based techniques have difficulty in identifying short-lived burst events that exist
for 1–2 time units. These events contribute to the false negatives obtained.

(Appendix B shows how this prediction performance changes for a different choice of
wavelets, Daubechies 2 instead of the Daubechies 1 used here.)

6.2. Outlook
So far, we have looked at two wavelet-based methods to predict intermittent events in
a flow: (i) tracking the coherent structures obtained from WPOD and (ii) tracking the
forcing structures that generate these coherent structures through the resolvent operator.
We illustrated these methods using the 2-D Kolmogorov flow, which is governed by the
unstable eigenfunction of the linearised Navier–Stokes equations. The quiet region of this
flow is dominated by this unstable eigenfunction, and the burst events seem to happen
because of a disruption of this structure. In other words, there is a single eigenfunction
of the linearised Navier–Stokes equations that seems to govern the flow. The energy
amplification mechanism in this flow therefore is likely a normal-mode amplification
mechanism. In this scenario, the resolvent analysis should not actually be expected to give
a significant time delay between the forcing and the response.

Contrary to this, we could analyse a flow where the energy amplification occurs due to
non-normal mechanisms, such as for instance the streak generation in channel flows. In this
case, the forcing will have a time delay from the response. This is due to the transient
growth mechanisms that cause energy amplification in non-normal flows (e.g. Trefethen
et al. 1993; Schmid 2007). In this case, the WRA-based method will likely provide better
prediction times in comparison with the WPOD-based method. Comparing these methods
for non-normal flows is therefore an important future direction of work.

Applying these methods in practice in experiments would first involve finding the
dominant energetic structures or forcing structures. For instance, a calibration experiment
with good enough resolution to capture these structures or an large eddy simulation
(LES) simulation that captures the relevant dynamics can aid in this purpose. The
obtained structures can then be tracked in an experiment at a lower resolution. How
sparse these measurements can be, and what spatial regions of the flow the measurements
need to be concentrated in, are important questions to be addressed in future work.
These factors will also closely depend on the flow considered. For instance, for the
flow considered here, although 256 wavenumbers are present in the x-direction, only 7
(kx = [−3, −2, −1, 0, 1, 2, 3]) are required for the POD-based prediction.

7. Conclusions

In this study, we used wavelet-based methods to understand, and therefore predict,
high-energy intermittent bursting events in the 2-D Kolmogorov flow at Reynolds number
Re = 40 forced by a sinusoidal body forcing with wavenumber n = 4. In this regime, for
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a majority of the time, the flow remains quiet with minor oscillations in energy. This quiet
region is occasionally interrupted by intermittent high-energy burst events. The focus was
on finding distinctive flow patterns for the quiet regions and the burst events, and thereafter
track these structures to obtain predictions of oncoming burst events.

Due to the time-localised nature of the burst events, Fourier-based methods proved
inefficient at capturing them (figure 2). Consequently, we used wavelet-based methods
(figure 5). Two wavelet-based techniques were employed: (i) WPOD to distinguish the
dominant flow patterns of the quiet region and burst events (figure 7), and (ii) WRA
to identify forcing structures that generate the quiet region and burst events (figure 13).
Subsequently, coherence-based methods were used to track these structures in an evolving
time series obtained from the flow. This approach yielded two effective strategies to predict
oncoming burst events: (i) the WPOD-based method involved tracking the flow patterns
obtained from WPOD (figure 10) and (ii) the WRA-based method involved tracking the
forcing patterns obtained from WRA (figure 15). These predictions were then compared
with those obtained from the more straightforward energy-based method, which focused
on tracking the energy of the flow.

The WPOD analysis revealed three dominant flow patterns (figure 7): (i) the unstable
eigenfunction of the linearised Navier–Stokes equations that dominates the quiet region,
(ii) shearing structures, also present in the quiet region, and (iii) fragmented or distorted
versions of the unstable eigenfunction, crucial during burst events. Tracking these modes
revealed that the shearing motions move out of phase with the flow due to the unstable
eigenfunction. Moreover, the presence of the unstable eigenfunction decreases during the
burst events, while the presence of the fragmented versions of the unstable eigenfunction
increases. Based on these observations, we hypothesise that, in the 2-D Kolmogorov flow,
shearing motions distort the flow due to the unstable eigenfunction, leading intermittently
to burst events. Identifying regions where the flow due to the fragmented or distorted
eigenfunctions dominates over the flow due to the eigenfunction itself allowed us to
develop the WPOD-based method for predicting oncoming burst events.

Thereafter, using resolvent analysis, we identified the forcing structures that generate
the unstable eigenfunction, dominant in the quiet region, as well as inclined forcing
structures, dominant during the burst events. Identifying instances when the burst event
forcing structures dominate over the quiet region structures led to the development of the
WRA-based method of predicting oncoming burst events. Notably, both the WPOD-based
and the WRA-based methods were able to predict oncoming burst events and, on average,
demonstrated improved prediction times over the energy-based method. However, false
positives, where a burst event is predicted while none occurs in the flow, were observed
for both methods, with the WRA-based method more prone than the WPOD-based
method (figure 16). On the other hand, the WRA-based method gives improved prediction
times over the WPOD-based method (figure 16), thereby suggesting that tracking forcing
structures might be a more efficient prediction strategy.

The initial expectation was that the WRA-based method would greatly outperform the
WPOD-based method. However, for the 2-D Kolmogorov flow, while the WRA-based
method does yield improved predictions, the extent of these improvements is not as
substantial as initially expected. To understand the underlying reason for this, we can look
at the linear mechanisms active in the flow. The dynamics of the 2-D Kolmogorov flow
is predominantly governed by the unstable eigenvector of the linearised Navier–Stokes
equations. Consequently, the energy amplification mechanism that dominates this flow is
likely a normal-mode mechanism. As a result, the appearance of the coherent structures
in the flow, and the forcing that generates them, may occur without significant time delay.
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Figure 17. (a) The unstable eigenvector of the linearised Navier–Stokes equations is shown for kx = 1. Also
shown are the Fourier-based (b) resolvent response mode and (c) the corresponding forcing mode for a temporal
frequency of Ω = 0.

In order to evaluate the prediction methods, there is therefore a requirement to compare
the methods in flows where non-normal mechanisms are active. A natural progression to
this work, therefore, is to evaluate burst events in wall-bounded flows, that arise from the
breakdown of streaks generated by non-normal mechanisms (e.g. Jiménez 2018). We hope
to report on findings from this line of research in the near future.
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Appendix A. Unstable eigenvector of the linearised Navier–Stokes equations

Figure 17(a) shows the unstable eigenvector of the linearised Navier–Stokes equations for
kx = 1 obtained from matrix A in (2.4). The resemblance between the leading WPOD
modes obtained in figures 6 and 7 and the unstable eigenvector is evident. Additionally,
figure 17(b,c) presents the Fourier-based resolvent mode for kx = 1 at temporal frequency
Ω = 0. The leading resolvent response mode is shown in figure 17(b), and this mode is
similar to the unstable eigenvector. The corresponding leading forcing mode in figure 17(c)
therefore represents the forcing that captures the unstable eigenvector. The similarity
between this forcing mode, and the suboptimal forcing modes obtained from the WRA
method for the quiet region in figure 13 is apparent.

Appendix B. Prediction using Daubechies 2 wavelets

In this section, we reproduce the WPOD-based and the WRA-based prediction
performance results, but this time using the Daubechies 2 (DB2) wavelets, instead of the
Daubechies 1 (DB1) wavelets used in the rest of the manuscript. Figure 18 shows the
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Figure 18. The WPOD- and WRA-based predictions obtained using the Daubechies 2 wavelets (dark-coloured
lines) are compared with the predictions obtained using the Daubechies 1 wavelets (lines from figure 16
reproduced here as the lighter-coloured lines). (a) The average prediction times τ are shown as a function
of the threshold of the predictors for the energy-based method (grey), the WPOD-based method (green) and
the WRA-based method (red). (b) The percentages of the obtained predictions that are false positives FP%
(solid lines) and false negatives FN% (dashed-dot lines) are also shown for the three methods.

comparison in figure 16 for predictions using DB2. As in figure 16, two quantities are
shown in figure 18. The obtained average prediction times (denoted by τ ) in figure 18(a),
and the percentage of predictions that are false positives FP% and false negatives FN%
in figure 18(b). The lighter-coloured lines are reproductions of the corresponding lines in
figure 16 (i.e. the predictions using DB1) shown here again for comparison. Using DB2
instead of DB1, we obtain marginally improved (earlier) predictions from the WRA-based
method. Apart from that, we note that the obtained prediction performances are similar
for both DB1 and DB2. This shows that the results are fairly insensitive to the choice of
wavelets between DB1 and DB2.

Appendix C. Insensitivity of prediction methods to parameter choices

C.1. Insensitivity to the exact choice of burst wavelets
One of the aims of the current section is to show that the prediction results presented
here are not sensitive to the selection of wavelets. For a majority of this study, the first
three levels of the wavelet transform correspond to the quiet region and 20 % of the most
energetic wavelets in the remaining levels represent the burst events. The easiest way to
show the insensitivity of the results obtained to this selection, is by performing the same
prediction using all the wavelets in the quiet region as well as the burst events. In other
words, the wavelets in the first three levels still represent the quiet region, while all the
wavelets in levels 4–8 represent the burst events. This, of course, makes the problem
computationally a lot more challenging.

The orange curve in figure 19 shows the WPOD-based prediction results when using all
wavelets, which can be compared with the original WPOD-based prediction in figure 16,
reproduced here as the green line. Two quantities are shown here, the average prediction
time τ and the percentage of false positives FP%. We can see that, as per both metrics, the
performance of both the methods are similar. Therefore, choosing just the most energetic
wavelets for the burst events is the computationally more efficient method to choose.
In other words, the method is not sensitive to the choice of wavelets, as long as the most
energetic wavelets are still chosen.
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Figure 19. (a) The average prediction time τ is shown for two modifications of the WPOD-based method.
To obtain the first modified WPOD-based method (orange line), instead of choosing only the most energetic
20 % of the wavelets in the levels corresponding to burst events, all wavelets in those levels are considered.
The second modification of the WPOD-based method (blue line) is obtained by defining a predictor using γ q

alone (not including γ b). The original prediction results from the WPOD-based method, shown in figure 16,
are reproduced here for comparison (green line). (b) The percentage of the obtained predictions that are false
positives is also shown.
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Figure 20. Figure 16 is recreated here with a modified definition of the burst events as times when
D(t)/Dlam ≥ 0.17.

C.2. The WPOD-based method using only the quiet region
Additionally, here we show how the predictions obtained would vary when considering
wavelets in the quiet region alone. We therefore compare predictions obtained using just
the quiet region structures with those obtained using the original WPOD-based method.
For this purpose, we consider a modified WPOD-based method, where the predictor
simply is γ q (and does not involve γ b). The dark blue line in figure 19 shows the
performance of this predictor, which can be compared with the green line obtained for the
original WPOD-based method. We note that the prediction performance of this modified
method, based only on the quiet region, is worse than the performance obtained from the
original WPOD-based method.

C.3. Insensitivity to the definition of the burst event
Finally, the insensitivity of the results to the definition chosen for the burst event is
shown here in figure 20. In § 2.2 we choose the definition of a burst event in the 2-D
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Kolmogorov flow as times when D(t)/Dlam ≥ 0.15. In figure 16, the comparison of the
performances of the three prediction methods was done using this definition of a burst
event. Figure 20 shows the same comparison as in figure 16, but with the burst events
defined as D(t)/Dlam ≥ 0.17. As expected, although the quantitative values change, the
relative trends between the three methods remain the same between figures 16 and 20.
Since the conclusions drawn in this manuscript are based on these relative trends between
the methods, we can be confident that these conclusions are insensitive to the exact
definition of the burst event.
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