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RECURSIVE COLORINGS OF HIGHLY 
RECURSIVE GRAPHS 

HENRY A. KIERSTEAD 

0. Introduction. One of the attractions of finite combinatorics is its 
explicit constructions. This paper is part of a program to enlarge the 
domain of finite combinatorics to certain infinite structures while 
preserving the explicit constructions of the smaller domain. The larger 
domain to be considered consists of the recursive structures. While 
recursive structures may be infinite they are still amenable to explicit 
constructions. In this paper we shall concentrate on recursive colorings 
of highly recursive graphs. 

A function / : Nk —> Ny where N is the set of natural numbers, is 
recursive if and only if there exists an algorithm (i.e., a finite computer 
program) which upon input of a sequence of natural numbers it, after a 
finite number of steps, outputs f(n). A subset of Nk is recursive provided 
that its characteristic function is recursive. For a more thorough definition 
of recursive functions and recursive relations see [10]. A graph G — (V,E) 
is recursive if and only if V and E are recursive sets. (We are treating 
the edge set E as a symmetric relation.) A recursive coloring of G is a 
recursive function/ such t h a t / \ V is a coloring of G. If / \ V is a ^-color­
ing then we say that G is recursively ^-colorable. Recursive edge colorings 
and recursively &-edge colorable are defined similarly. We shall use the 
adjectives "algorithmically", "effectively" and "recursively" inter­
changeably. 

A ^-colorable recursive graph may not be recursively ^-colorable. In 
fact, Bean [1] has shown that there is a 2-colorable recursive graph 
which is not recursively ^-colorable for any finite k. This negative result 
motivated him to make the following crucial definition. A graph 
G = (F, E) is highly recursive if and only if it is recursive and there is a 
recursive function è such that for every vertex v Ç V, v is adjacent to 
exactly 8(v) other vertices. The significance of this definition is two-fold. 
Firstly, it assures that every vertex has only finitely many neighbors. 
Secondly, it allows us to algorithmically determine this finite subset of 
neighbors. If G is just recursive, then for any vertex w Ç V we can 
algorithmically determine whether w is a neighbor of v and we can 
systematically search the vertices of V for neighbors of v, but since there 
are infinitely many candidates for neighbors of v and we do not know 
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how many neighbors v has, we will never know when we have found them 
all. On the other hand, if G is highly recursive we need only search until 
we have found 8(v) neighbors of v. Schmerl [11] improved a result of 
Bean [1] by showing that every ^-colorable highly recursive graph is 
recursively 2k — 1-colorable and if k ^ 2 then there is a ^-colorable 
highly recursive graph that is not recursively 2k — 2-colorable. This 
theorem suggests a classification of highly recursive graphs according to 
the ratio of the number of colors required to recursively color them to 
the number of colors required to color them. 

In this paper we investigate the recursive colorability of various 
classes of highly recursive graphs. There are three main results. The first 
is the general technique for constructing recursive colorings that is 
developed throughout the paper. The finitary nature of the problem is 
emphasized by Lemma 1.1 which reduces all recursion theoretic con­
siderations to a condition on finite subgraphs. The latter two results are 
the following applications of this method. 

THEOREM 2.1. Every perfect, k-colorable, highly recursive graph is 
recursively k + 1-colorable. 

THEOREM 4.1. Every k-edge colorable, highly recursive graph is recursively 
k + 1-edge colorable. 

Theorem 2.1 is generalized to nearly perfect graphs is Section 3. 

Notation. Let G = (V, E) be a graph and X a set (of colors). A 
function / : V —* X is an X-coloring of G provided that for each x f l , 
f~l(x) is an independent set of vertices. Similarly/: E —> X is an X-edge 
coloring of G provided that for each x f l , f"1^) is an independent set 
of edges. We shall identify the natural number n with the set {0, . . . , 
n — 1} and often refer to w-colorings. x(G:)[resp. x'(G)] is the least n 
such that G is w-colorable [resp. n-edge colorable]. Xr(G)[resp. x/(G)] is 
the least n such that G is recursively w-colorable [resp. n-edge colorable]. 
The degree 8G(v) of a vertex v is the number of vertices adjacent to v in G. 
If G is clear from the context we shall drop the subscript. The degree 
A(G) of a graph is m a x ^ 7 àG(v). A complete subgraph is a set of vertices 
that are pairwise adjacent. The maximum k such that G has a complete 
subgraph of cardinality k is denoted by œ(G). Let X C V. 

N[X] = {v 6 V: (v} x) 6 E for some x G X) \J X. 

For i G N, N*[X] is defined inductively by 

N°[X] = X and Ni+l[X] = # [# ' [* ] ] . 

If U is a set of vertices of G then E(U) = E C\ U2. If i f is a graph then 
E(H) is the set of edges of H. If U is a subset of V we shall sometimes 
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identify [/with the subgraph (£7, E(U)) of F induced by U. In particular 
we shall write œ(U) and X(U) for œ(U, E(U)) and X(U, E(U)). 

1. Recursive colorings. Let G = (F, £) be a highly recursive graph 
and U SL finite subset of V. If we are to construct a recursive ^-coloring 
of G we must irrevocably assign colors to the vertices of U before we 
have considered infinitely many of the vertices of G. Thus based on 
information only about some finite induced subgraph (W, E(W)) of G 
containing U, we must specify a ^-coloring / 0 of U such that f0 can be 
extended to a ^-coloring of G; moreover we must be able to recognize 
how to make this extension. The following definition and lemma make 
these ideas more precise. 

Definition 1.0. Let G = ( V, E) be a graph. A coloring of U (resp. E(U)) 
is said to be d, a-prudent if it can be extended to an «-coloring of Nd[U] 
(resp. E(Nd[U])) that uses only X(G) (resp. x'(G)) colors on Nd[U] - U 
(resp. E(Nd[U]) - E(U)). 

LEMMA 1.1. Let G — (F, E) be a highly recursive graph. Suppose there 
exist natural numbers d and a such that whenever Nd[U] C W C V and f 
is a d, a-prudent coloring of U (resp. E(U)) then f can be extended to a 
d, a-prudent coloring of W (resp. E(W)). Then Xr(G) (resp. Xr (G)) ^ «• 

Proof. We prove the lemma only for vertex colorings because the proof 
for edge colorings is analogous. Let L[U] = Nd[U]. Since G is highly 
recursive, for any finite subset U C V we can effectively compute L[U]. 
Thus, since any function on U into a has only finitely many extensions 
to L[U] whose range is contained in a, we can effectively determine 
whether a function on U is d, a-prudent by checking each extension to 
L[U]. Similarly, if / is a d, a-prudent coloring of U, W is a. finite subset 
such that L[U] C W C V, and g is a function on W, we can effectively 
determine whether g is a d, a-prudent extension off. Finally, given t h a t / 
has a dy a-prudent extension to TF, we can effectively construct such an 
extension. 

Let (vi\ i 6 co) be an effective enumeration of V. Let f/0 = {*>o},/o be 
a x(G)-coloring of i[Z7o], and / 0 = fol Uo. Thus /o is a d, a-prudent 
coloring of Uo. Now arguing inductively, suppose that we have a uniform 
algorithm for determining Ut and/* such that/* is a d, a-prudent coloring 
of Ui, Ut is finite, and {z>0, . . . vt} C Uf. Set Ui+i = L[Uj] U {vi+i}. 
Ui+i is finite and can be calculated algorithmically. By the hypothesis 
of the lemma there is a d, a-prudent coloring of Ui+i which extends ft. 
Thus by our opening remarks we can effectively construct such a d, 
a-prudent coloringfi+i of Ui+\. L e t / = Ui^Nft. f is a recursive function 
on F since to determine f(vt) we need only carry out the algorithm for 
constructing ft and observe the value of fi(vt). Clearly / is an a-coloring 
of V. 
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Lemma 1.1 reduces the recursion theoretic problem of producing a 
recursive a-coloring of F to a finite graph theoretic problem. In the 
remainder of the paper whenever we show that a highly recursive graph 
is a-colorable we will use Lemma 1.1. 

2. Perfect graphs. We begin our development of a method for 
recursively coloring highly recursive graphs by applying Lemma 1.1 to 
perfect graphs. 

Definition 2.0. A graph G is perfect if and only if xC^O = u(H) for 
every induced subgraph H of G. 

Proof of Theorem 2.1. Let d = 2X(G), L[U] = Nd[U], and a = X(G) 
+ 1. By Lemma 1.1 it suffices to show that if U and W are finite subsets 
of V such that L[U] C W and / is an a-coloring of L[U] such that 
/ \ (L[U] — U) is a x(G)-coloring, then there exists an a-coloring g of 
L[W] that extends/ \ U and is a {1, . . . , a - l}-coloring of L(W) - W. 
We shall construct g one color at a time. To describe this construction 
we need considerably more notation. 

Suppose that we have constructed g~l(i) for i < j . Let Cj = Ut<jg~l{i) 
be the set of vertices already colored. Let 

/ . = Nd~2j[U] - Cj and Oj = L[W] - (N[I,] U C,). 

This is illustrated in Figure 1. 

r l ( « ~ i) 

-L[W]-

FlGURE 1. 
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At stage j of the construction we shall specify those vertices g _ 10) to be 
colored j . The "inner portion" Iô of L[W] will be colored according t o / . 
The "outer portion" Oj of L[W] will be colored according to a new 
coloring tj chosen at stage j . These colorings will not conflict because no 
vertex in Ii is adjacent to any vertex in Oj. 

Set g-KO) = / - i ( 0 ) H / o . Arguing inductively suppose that we have 
constructed g_1(0 f° r î < j ' = a such that: 

(0) g~l{i) is independent; 

( l ) r 1 ( i ) ^ / i = / - 1 « n / < ; a n d 

(2 )«(0 , ) £a-j. 

Since G is perfect x(Oj) = w(Oy). Let /y be a {7, . . . , a — 1}-coloring of 
Oj. Set 

Clearly g - 1 (7) is independent and 

To see that the inductive hypotheses is preserved we still must check 
that to(Oj+i) ^ a — j — 1. Since the diameter of a complete subgraph 
is one, any complete subgraph contained in Oj+i is contained in Oj or 
Ij-i. Thus it suffices to show that if K is a complete subgraph of car­
dinality a — 7 that is contained in Oj or 7;_i then K is not contained in 
Oj+\. Firstly suppose K is contained in Oj. Since tjis a {7, . . . , « — 1}-
coloring of 0 ; , for some vertex v £ K, g(v) = tj(v) = 7. So » 6 C^+i and 
thus v $ Oj+i. Secondly suppose K is contained in i^_i. Since/ f (£[£/] — 
U) is a x(G)-coloring and g~l{i) C\ Ii = f~x{i) ^ It for i < j — i, 

f \ (Ij-i — U) is a {7 — 1, . . . , a — 2}-coloring. Thus for some vertex 
v Ç K,f(v) — j — 1. Since 

s-Hj - i) n /,_! = /-Hi - i) n /,_lf 

g(«0 = 7 — 1. Hence » g Oj+1. 
Finally we check that g works. By (0) g is a coloring of its domain. 

Since U — CtQ It for i < a (1) applied to j = a shows that / \ U = 
g \ U. By (2) applied to7 = a, g \ (Oa W C«) is an «-coloring of Oa U Ca. 
Since [ / W O a U C a = L[W] g is an «-coloring L[W], Finally, since 
r1®) C / o = £[tf] C ^ ^ i s a j l , . . . , « - l}-coloringofL(TF) - W. 

COROLLARY 2.2. If G is a recursive k-regular bipartite graph then 

X'(G) £ * + 1. 

Proof. Since G is ^-regular and recursive the line graph of G, /(G), is 
highly recursive. Using Hall's Theorem [6] it is easy to see that the line 
graph of a ^-regular bipartite graph is perfect and has clique size k. The 
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recursive k + 1-vertex coloring of 1(G) provided by Theorem 2.1 induces 
a recursive k + 1-edge coloring of G. 

The author originally proved Corollary 2.2 to answer a question of 
Schmerl. Then Schmerl pointed out that essentially the same argument 
could be used to prove Theorem 2.2. Manaster and Rosenstein [9] have 
constructed recursive ^-regular bipartite graphs that cannot be recur­
sively &-edge colored. Thus the bounds of Theorem 2.1 and Corollary 2.2 
are best possible. 

COROLLARY 2.3. / / G is the comparability graph of a partial ordering P 
of width w and G is highly recursive, then Xr(G) ^ w + 1. Dually, P can 
be covered by w + 1 recursive chains. 

Corollary 2.3 should be compared with Dilworth's Theorem [3] and 
the results in [7]. It is easy to construct partial orderings of width w 
whose comparability graphs are highly recursive but are not recursively 
^-colorable. 

3. Nearly perfect graphs. In this section we apply the technique of 
the previous section to a larger class of graphs. Notice that in the proof 
of Theorem 2.1 we used a succession of different colorings t$ to color 
L[W] - W, i.e., 

g-Kj) r\ (L[W] -w) = tr
l(j) r\ L([W] - w). 

This was possible because G was perfect. Now we are going to weaken 
the hypothesis that G is perfect. This will require that we use a fixed 
coloring on L[W] — W. 

Definition 3.0. A graph G is p-nearly perfect if and only if x(H) g o)(H) 
+ p for every induced subgraph H of G. 

Notice that a perfect graph is 0-nearly perfect. By Vizing's Theorem 
[13] the line graph of a graph is 1-nearly perfect, and more generally, the 
line graph of a multigraph of multiplicity p is ^-nearly perfect. Schmerl 
and the author [8] have shown that if G is a graph that does not induce 
K\t3 ori£5 — e (i.e., the result of removing an edge from the complete graph 
on five vertices) then G is 2-nearly perfect. The next theorem generalizes 
Theorem 2.1. 

THEOREM 3.1. If G is a p-nearly perfect highly recursive graph then 
Xr{G) ^ x(G) + p((3 + 1) + 1, where £ is the least integer k such that 

k 

£ (pi + 1) ^ «(G). 

Proof. Letd = 4/3 + 2,L[U] = Nd[U], anda = X(G) + p(fi + 1) + 1. 
By Lemma 1.1, it suffices to show that if U and W are finite subsets of V 
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such that L[U] C. W and / is an «-coloring of L[U] such that 
f \ (L[U] — U) is a x(G)-coloring, then there exists an «-coloring g that 
extends/ \ U and is a x(G)-coloring of L[W] — W. The construction of g 
will be similar to the construction in the proof of Theorem 2.1, but will 
involve the extra complication that we must use a fixed x(G)-coloring 
on L[W) - W. Fix a x(G)-coloring h of L[W] - N^+1[U). 

For any j S P, let 

J = x(G) - œ(G) + E (pi + 1). 

In particular — 1 = x ^ ) — w(G). Let 

+ 1 = x(G) + p(p + l) + 1. 

Suppose that we have constructed g~'(^) f° r i < j — 1. Let C.,- = U « ; - i 
g -1(i) be the set of vertices already colored. Let 

/ . = #«*-*>[[/] _ c„ 

Oj = L[W] - (NW+j+»[U] U C}), and 

5 , = L[W] - (N[IA V N[Oj] U C,). 

This is illustrated in Figure 2. At stage j of the construction we shall 
specify those vertices g_10' ~ 1)» ^_ 1(j ; ~ 1 + 1)> • • • £_ 1(i — 1) that 
will be colored j — 1, j — 1 + 1, . . . j — 1. The "innner portion" J, of 

Q + 2 — C/3+1 

VU 1 

-L[U]-

-L[W]-

FIGURE 2. 
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L[W] will be colored according to / and the "outer portion" 0, of L[W] 
will be colored according to h. Bj will be colored according to a new 
coloring tj chosen at stage j . These colorings will not conflict because 
their domains are sufficiently separated. 

Set 

ri(i) = ( / - i ( i ) \ J J0) U (h-'ii) r\ /o) for 0 ^ i < Ô. 

Arguing inductively suppose that at stage7 ^ 0 + 2 we have constructed 
g -1(i) for i < for i < j — 1, such that 

(0) g~x(i) is independent; 
a)j~l(i) n / t = / ^ ( i ) H J* and g-i(i) H Ok = fc-i(i) H 0*, where 

i < k; and 

(2) W(B,) ^ x(G) - r ^ o r W(B,) = 0. 

Since G is ^-nearly perfect x(Bj) S u(Bj) + P> Let tj be a {j — 1, . . . 
x(G) + A/}-coloring of Bj. Set 

g-x« = (/-'(*) r\ h) u (/rH*) n 5,) u (*-»(*) n o,) 
for all i such that j — 1 ^ i < j . Clearly g - 1 is independent and both 

rH*)n/,=/-*(*) n J, and 
g-H*) n Ot = fc-H*) n O, for all i < j . 

To see that the inductive hypothesis is preserved we still must check 
that 

co(Si+1) S x(G) - j ~ = 1 . 

Since the diameter of a complete subgraph is one, any complete sub­
graph contained in Bj+i is contained in Ij-\, C^-i, or Bj. Thus it suffices 
to show that u(Ij-i — Cj+i), co(0;_i — Cj+i), and œ(Bj — Cj+i) are each 
less than or equal to x(G) — j — 1. Firstly, consider Bj — C;+i. 
h \ (B3 - Cj+i) is a {j, . . . , x(G) + pj}-coloring of B , - Cj+1. Thus 

co(B, - C m ) g x(G) + £/ + 1 - J = x(G) - f=l. 

Secondly, consider Ij-i — Cj. Since 

r 1 W n /,_! = /-Hi) n /,_! for i < j-=~i, 
/ f (Jj-i n C,) is a {j - 1, . . . , x ( G ) - 1}-coloring of I ;_i H C, D 
7^_i Pi C/+i. Thus 

CO(/,_!" C,+1) g X ( G ) " J ~ . 

An analogous argument shows that 

« ( 0 , - 1 - Cj+1) ^x(G) -f=l. 

Finally we check that g works. By (0) g is a coloring in its domain. 
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Since U - Ci C h and L[W] - (L[U] U Ct) for i ^ 0, (1) applied to 
j = 0 + 1 shows that 

/ \U = g \ U and h \ L[W] -W = g\ L[W] - W. 

In particular U VJ (L[W] - £[£/]) is contained in the domain of g. Also 
L[W] - (UU (L[W] - W)) is contained in B^+2 U Cfi+2. Thus by (2) 
applied to j = /3 + 2, the domain of g is all of L[W]. 

COROLLARY 3.2. Le/ M be a highly recursive multigraph of multiplicity p. 
Then 

x/(G) g x'(G) + P(f* + 1) + 1 

where fi is the least integer k such that 

£ (# + 1) è A(G). 

4. Edge colorings. Notice that in the proof of Theorem 3.1, every time 
we used a new coloring tj we had to "waste" p colors. This did not happen 
in the proof of Theorem 2.1 since G was perfect. In the next application 
the graph is not perfect but, even so, the following weak form of the 
Vizing Adjacency Lemma will allow us to avoid wasting colors when new 
tj are used. 

LEMMA 4.0. Let G = (V, E) be a graph and S C V. If X'(G - S) = 
A(G) and no vertex in S is adjacent to any vertex in V of degree A(G), then 
X'(G) = A(G). 

Proof. See [13] or [5]. 

Proof of Theorem 4.1. Let d = 3x'(G), L[U] = Nd[U], and a = X'(G) 
+ 1. By Lemma 1.1 it suffices to show that if U and W are finite subsets 
of V such that L[U] C W and / is an «-coloring of E(L[U]) such that 
f \ (E(L[U]) — E(U)) is a x'(G)-coloring, then there exists an a-coloring 
g of E{L[W]) that extends/ \ E{U) and is a {1, . . . ,a — 1}-coloring of 
E(L[W\) — E(W). As in the proof of Theorem 2.1 we shall construct g 
one color at a time. Similar notation is needed to describe the con­
struction. 

Suppose that we have constructed g~l (i) for all i < j . Let C;- = 
U K J T 1 ^ ) be the set of edges already colored. Let Ij = N^^-^IU] 
and Ij be the partial subgraph (Ijt E{Ij) — Cf). Similarly let Oj = 
UW] - Ij and 0j be the partial subgraph (Oj} E(Oj) - Cj). Finally 
let Fjs = Ns[Ij] — Ij. Fjs is the set of vertices of Oj that are at a distance 
of at most s from some vertex in Ijm At stage j of the construction we 
shall specify those edges g~l{j) to be colored j . The "inner portion" J ô 

will be colored according to / . The "outer portion" © j will be colored 
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according to a new coloring li chosen at stage j . These colorings will not 
conflict because no edge in J i is incident to any edge in & jm 

Set g-^O) = /"HO) H E(Jo), which of course is the same as J"1®). 
Arguing inductively, suppose that we have constructed g_1(^) for 
i < j ^ a such that: 

(0) g - 1 W is independent; 
( l ) / - 1 ^ ) r\ E(It) C C, and g-i(i) H £(C7) = / - i ( i ) H £(£/) 
(2 ) X

, (0 , ) g a - J . 

Let tj be a {j, . . . , a — 1}-coloring of E(Oj). Consider the independent 
set 

Let J be a maximum independent set of edges such that 

JCJC E{L[W\) - {C} U E(U)). 

Finally let g_1(j) = / . Clearly g~l(j) is independent. Every edge of 
f -1(j) ^ E(IS) is in Cj+i and 

To see that the inductive hypotheses is preserved we still must check 
that X ' ( ^ M - I ) = a - J - !• W e n r s t show that A(<^ m ) ^ a - j - 1 
and that any two vertices in Fj+ib of degree a — j — 1 in Oj+i are 
independent. If v £ 0 ;+i — Fj+ib then ô y +x (^) ^ a. — j — 1 since 
U \ (E(Os) - Cj+1) is a {j + 1, . . . ,« - l}-coloring, / r H i ) C S^O') ^ 
E(0 , ) , and iV[{z;}] C 0 ; , So suppose v G F m

5 . Then N[{v}] C I,-i. 
Using (1) , / \ (EiJj-i) - E[U]) is a {j - 1, . . . , a - 2}-coloring. Thus 
bjj_l ^ a — j . Furthermore if dJfj_1(v) —a — j , then some edge 
incident with v is colored j — 1 by / and hence is in C;. Thus, depending 
on whether v £ Ij or v £ Oj, 

hj(v) ^ a - j - 1 or ÔQjiv) ^ a - j - 1. 

In either case, ÔQJ +1(v) ^ a — j — \ and if ôej+1(v) = a — j — 1 then 
no edge incident with v was colored j . Thus by the maximality of J and 
the generality of this argument, no other vertex in Fs

6 of degree a — j — 1 
in ^j+i can be adjacent to v. 

Now let M be the set of vertices in Fj+iA of degree a — j — 1 in 0,+i. 
No vertex in T^+i3 — Mis adjacent to any vertex of Oj — M whose degree 
in Oj+i is a — j — 1. Also tj \ (E(û;) — Cj+i) is a {j + 1, . . . , a — 1}-
coloring. Thus by Lemma 4.0 there exists a {j + 1, . . . , a — 1}-coloring 
of 

(E(Oj - M) - Cj+1) U (E(F*+i -M)- Cj+l) = E(0j+1 - M). 

Since no vertex in M is adjacent to any vertex in Oj+i of degree a — j — 1 
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in ûj+i, further use of Lemma 4.0 provides a [j + 1, . . . , a — 1}-
coloring of E(ûj+1). Thus x 'C^+i ) ^ <* - j - 1. 

Finally, we check that g is an a-coloring of E(L[W]) which extends 
f\E(U) and is a {1, . . . , « - 1} -coloring of E(L[W]) - E[W]. By (0) 
g is a coloring of its domain. By (1) g \ E(U) = / \ E(U). E(L[W]) = 
E(U)yJ E{0a). Thus by (2) applied to j = a, g is an «-coloring of 
£ ( i [ W l ) . Since 70 = L[U] C ÏF, 

g-i(0) = / - i ( 0 ) n £ ( / o ) C £ W . 

Thus g f (E(L[W]) - E{W)) is a {1, . . . , a - l}-coloring. 

One should notice that Corollary 2.2 is also a corollary of Theorem 4.1. 
By Vizing's Theorem [13] x'(G) = A{G) or A(G) + 1. M anas ter's and 

Rosenstein's example [9] shows that Theorem 4.1 cannot be improved 
when X'(G) = A(G). If X'(G) = A(G) + 1 then by Theorem 4.1 

X / (G) = A(G) + 1 or x / ( G ) = A(G) + 2. 

If A(G) = 1 or 2 then clearly x/(G) g A(G) + 1. Suppose A(G) = 3. 
Schmerl [12] has shown that Brooks' Theorem [2] is effective, i.e., if H 
is a highly recursive graph, A(H) ^ 3, and H has no complete subgraph 
of cardinality A(H) + 1, then Xr(H) S A (i l) . If G is a highly recursive 
graph with line graph H then H is highly recursive and 2(A(G) — 1) = 
A(H). Thus, for A(G) = 3, 

X/(G) = Xr(H) S A(H) = 4. 

For A(G) > 3 it is an open question whether x/(G) ^ x(G) + 1. 
Another open problem is to improve the bound provided by Corollary 
3.2 on Xr{M) where M is a multigraph. 
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