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Abstract

The classical secretary problem for selecting the best item is studied when the actual values
of the items are observed with noise. One of the main appeals of the secretary problem is
that the optimal strategy is able to find the best observation with a nontrivial probability
of about 0.37, even when the number of observations is arbitrarily large. The results are
strikingly different when the qualities of the secretaries are observed with noise. If there
is no noise then the only information that is needed is whether an observation is the best
among those already observed. Since the observations are assumed to be independent
and identically distributed, the solution to this problem is distribution free. In the case of
noisy data, the results are no longer distribution free. Furthermore, we need to know the
rank of the noisy observation among those already observed. Finally, the probability of
finding the best secretary often goes to 0 as the number of observations, n, goes to ∞.
The results heavily depend on the behavior of pn, the probability that the observation
that is best among the noisy observations is also best among the noiseless observations.
Results involving optimal strategies if all that is available is noisy data are described and
examples are given to elucidate the results.
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1. Introduction

The classical ‘best-choice secretary problem’is surprising in that there is a rule which enables
finding the best secretary with nonzero probability even if the number of secretaries that are
considered is arbitrarily large. But, what happens if the qualities of the secretaries at the time
of decision are known only subject to noise? In this paper we prove various aspects of this
problem. First, the optimal rule when there is no noise is no longer optimal when measurements
are made with noise. Second, in many cases the probability of finding the best secretary goes
to 0, albeit slowly, as the number of secretaries, n, increases. Third, the results are sensitive to
distributional assumptions, unlike the classical secretary problem, and there are distributions
for which the probability of finding the best goes to the same limit as in the noiseless case, and
other distributions where the probability goes to 0 as n goes to ∞.
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In the classical best-choice secretary problem the underlying assumption is that ranks are
sequentially obtained from n independent and identically distributed (i.i.d.) continuous random
variables, Xi, i = 1, . . . , n. This total number, n, is called the horizon and is assumed known.
Only the relative ranks,

RR(Xi) :=
i∑

j=1

1{Xi≤Xj },

are observed. The goal is to maximize the probability of picking the Xi that are maximal,
i.e. the i for which the absolute rank

AR(Xi) :=
n∑

j=1

1{Xi≤Xj }

equals 1. The well-known optimal solution is to let a certain number, N(n), go by, and pick
the first item thereafter, i > N(n), for which RR(Xi) = 1. If no such i exists, stop at n

anyway. It is well known that N(n)/n tends to e−1 as n → ∞, and that the optimal probability,
Wn, of picking the best tends to e−1 as n → ∞. See, e.g. Gilbert and Mosteller (1966) or
Samuels (1991) with generalizations in Bruss (2000) and Gnedin (2007). When applying this
rule, it suffices to know whether the present item is relatively best, i.e. if RB(Xi) = 1, where
RB(Xi) = 1 if RR(Xi) = 1 and RB(Xi) = 0 otherwise. Clearly, the solution to this classical
problem is distribution free.

In the present paper we consider the case where the relative ranks are not those of the Xis
themselves, but of i.i.d. Yis, where Yi = Xi + εi , and the εi are i.i.d. noise (or error) variables,
independent of the Xis. The goal is the same as before, that is, to maximize the probability of
selecting the i for which the X value is maximal. The optimal rule, and the optimal probability
of picking the best Xi are no longer distribution free. Denote the optimal probability when the
RR(Yi) are known by Wn(X, ε), where n is the known horizon, and the optimal probability of
selecting the best when only the RB(Yi) are known by W ∗

n (X, ε).
If we use the classical rule on the noisy data then, clearly, there is a probability that goes to

e−1 of finding the best Yi as n → ∞. However, if we find the best Y , have we found the best X,
which is what is desired? The difference between the classical secretary problem (i.e. without
noise) and the noisy secretary problem heavily depends on the value of pn, where

pn = pn(X, ε) = P
(

arg max
i≤n

Xi = arg max
i≤n

Yi

)
, (1.1)

i.e. pn is the probability that the location of the maximal X is the same as the location of the
maximal Y . The behavior of pn, as mentioned above, is crucial to the values of Wn(X, ε) and
W ∗

n (X, ε).
Our main results concerning the identification of the best X from noisy data are the

following.

(S1) For any X and ε, if the observed values are the RB(Yi) only, W ∗
n (X, ε) ≥ Wnpn.

(S2) If only the RBs are observed, the optimal value N(n, X, ε) after which one should pick
the first item for which RB(Yi) = 1 satisfies N(n, X, ε) ≤ N(n), i.e. one should stop
earlier than in the classical case.

(S3) If the RR(Yi) are sequentially available, it is no longer optimal to base the stopping rule
on the RB(Yi)s only.
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Noisy secretary problem 823

Some of the results depend on the probability that the best X in n items is the mth
best Y . To this end, for any i, let

pnm = P(AR(Yi) = m | AR(Xi) = 1)

= P(AR(Xi) = 1 | AR(Yi) = m)

=
n∑

i=1

P([AR(Xi) = 1] ∩ [AR(Yi) = m]). (1.2)

(S4) The optimal rule, which can in principle be found by backward induction once pnm is
determined, is of the following form. There exist integer values 1 ≤ k1 ≤ · · · ≤ kn = n,
not necessarily distinct, such that one should stop with the smallest i such that i < kj

and RR(Yi) < j .

(S5) limn→∞ Wn(X, ε) = 0 if and only if limn→∞ pn(X, ε) = 0.

Results (S1)–(S5) are proved in Section 4.
In the next section we consider the important example whereX and ε are normally distributed.

This example elucidates (S1)–(S4) above and (R1) below. As is apparent from the above list of
results and will be even more apparent from the example, the pn(X, ε) values play an important
role. These values are also of intrinsic interest. Hence, we discuss pn(X, ε) in Section 3.
Denote the distribution of X by F with density f and the distribution of ε by G with density g.
We show that the following statements hold.

(R1) Suppose that sup{x : F(x) < 1} = ∞, and that the limx→∞ f (x + d)/f (x) exists for
all d > 0. Then a necessary and sufficient condition for limn→∞ pn(X, ε) = 0 for all
distributions G is that limx→∞ f (x + d)/f (x) = 0 for every fixed d.

(R2) If sup{x : F(x) < 1} = c < ∞ then limn→∞ pn = 0 for all G.

(R3) For any given F , there exists a distribution G such that limn→∞ pn(X, ε) = 0.

(R4) There exist distributions F and G such that limn→∞ pn(X, ε) = 1.

(R5) The pn(X, ε) values are not necessarily monotone in n.

Additional examples are given in Section 5. Because noise (or error) is often assumed to be
normal, special attention is given to the case where G is normal. The examples include cases
with exponential and Pareto with parameter 1 distributions, and the case where both F and G

are normal.

2. Normal–normal example

In order to illustrate the results, we consider the case where Xi ∼ N (0, ρ2) and Yi = Xi +εi ,
where εi ∼ N (0, 1 − ρ2) and all the Xi and εi are independent. Hence, the concomitant
variable Yi (cf. David and Nagaraja (2003)) is N (0, 1) and the correlation between X and Y

is ρ.
There are two kinds of result mentioned in the introduction that we need to consider. First

we consider the behavior of pn, the probability that the index for which Yi is maximum agrees
with the index for which Xi is maximum. Since a normal distribution satisfies the condition
that limx→∞ f (x + d)/f (x) = 0 for all d , pn goes to 0 (see (R1)). The results in Table 1,
calculated by simulation with 10 000 replications, show how pn varies as a function of n and ρ.
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Table 1: The probability that the observation with the largest X value also yields the largest Y value.

n
ϕ

10 50 100 1000 10 000

0.5 0.291 0.138 0.107 0.044 0.018
0.6 0.353 0.191 0.155 0.076 0.039
0.7 0.423 0.261 0.222 0.125 0.073
0.8 0.519 0.360 0.324 0.210 0.151
0.9 0.647 0.512 0.481 0.370 0.303

Table 2: The probability that the index for which the best X value is attained yields a Y value that is mth
absolute best. Here n = 10 000 and ρ = 0.9.

m 1 2 3 4 5 6 7 8 9 10
pnm 0.303 0.137 0.083 0.065 0.050 0.036 0.032 0.028 0.022 0.018

It is interesting to note how sensitive pn is to ρ. In fact, in Ledford and Tawn (1998) it was
shown that

lim
n→∞ Dnpn =

(
�

(
1

1 + ρ

))2

, (2.1)

where Dn = (1 − ρ2)1/2{(4π log n)ρn1−ρ}1/(1+ρ).
Second we illustrate by simulation what occurs with a secretary-like decision rule, which

depends on pnm (see (1.2)), the probability that the mth largest Y corresponds to the observation
with the largest X value. In Table 2 we present simulation results for pnm using 10 000
replications. If we employed the secretary rule, with N(n) = n/e, n = 10 000, and ρ = 0.9,
we would find the largest X, observing only RB(Yi), with a probability of 0.138, as compared
to Wn of approximately e−1 = 0.368, the value if there was no noise (or, equivalently, ρ = 1).
The probability of 0.138 is greater than Wnpn = 0.303e−1 = 0.112. The reason is that the
secretary rule, when it stops at the relative best Y , might be stopping at an observation that is,
say, the second best Y in absolute rank. The second best absolute rank of Y has a probability
of 0.137 of being the observation with best X. This would add to the probability that the rule
chooses a Y with the best X; in fact, the probability of 0.138 − 0.112 = 0.026 is attributable to
stopping at a Y which ultimately is not the best Y , but corresponds to the X which is the best.

As mentioned in (S2), choosing N(n) = n/e in the secretary-like rule might not be the
best choice. In fact, it is stated that the value of N(n, X, ε) ≤ N(n). In the present example,
N(10 000, X, ε) = 2 740 < 3 678 = 10 000/e. When n = 10 000 and ρ = 0.9, the optimal
secretary-like rule has probability 0.141 of finding the best X.

In order to show that the secretary rule is not necessarily optimal when there is noise, as
mentioned in (S4), we consider n = 5 items. The optimal classical secretary rule on the Y

values has N(5) = 2 (i.e. two items are allowed to pass before selection). This results in
stopping at the ith best Y with respective probabilities 13

30 , 7
30 , 4

30 , 3
30 , and 3

30 . On the other
hand, if we apply the same rule, but also stop at the next to last item if it is either the relative
best or second best, then this results in stopping at the ith best Y with respective probabilities
12
30 , 9

30 , 5
30 , 2

30 , and 2
30 . These probabilities are derived by simple calculation.

The five probabilities for each of the cases need to be weighted by the probability that the
ith best Y corresponds to the best X. We find the respective probabilities when ρ = 0.5 to be
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0.4110, 0.2490, 0.1675, 0.1104, and 0.0621. These probabilities are found by simulation with
ten million replications to ensure accuracy. Finally, the optimal secretary rule finds the best X

with probability 0.2758 as compared to 0.2785 if we stop with relative rank of two on the next
to last observation, conditional on not having stopped earlier.

3. Probability that the best concomitant observation is the best observation

In this section we prove (R1)–(R5).
Let X1, . . . , Xn and ε1, . . . , εn be independent random variables, where the Xis are i.i.d.

with distribution F , and the εi are i.i.d. with distribution G. Let Yi = Xi + εi . Our interest is
in the behavior of pn given in (1.1).

Let Xn
(1) ≥ Xn

(2) ≥ · · · ≥ Xn
(n) be the order statistics of X1, . . . , Xn. Let Yn

[j ] = Xn
(j) + ε∗

j ,
where the ε∗

j are i.i.d. and a random permuation of ε1, . . . , εn. The variables Yn
[j ] are called the

concomitant random variables, i.e. the random variable Yi that ‘belongs to’ Xn
(j).

For any (cumulative) distribution H , let xH = sup{x : H(x) < 1}.
Theorem 3.1. If F is such that, for every fixed c > 0 and fixed integer k,

lim
n→∞ P(Xn

(1) − Xn
(k) < c) = 1 (3.1)

then limn→∞ pn = 0 for all G.

Proof. Let n > k, and fix c of (3.1). Then

pn = P
(
Yn[1] = max

i=1,...,n
Yi

)

< P
(
Yn[1] > max

j=2,...,k
Y n

[j ]
)

= P
(
Xn

(1) + ε∗
1 > max

j=2,...,k
(Xn

(j) + ε∗
j )

)
. (3.2)

We will show that, for any δ > 0 and sufficiently large n, pn < δ. Let x0 be such that
G(x0) = 1 − δ/4. Then

P
(

max
j=2,...,k

ε∗
j < ε∗

1 + c
)

≤
∫ x0

−∞
[G(x + c)]k−1g(x) dx + δ

4

< [G(x0 + c)]k−1 + 1
4δ

< 1
2δ, (3.3)

provided we choose k large enough that [G(x0 + c)]k−1 < δ/4. If xG = ∞, this is always
possible, but if xG < ∞, we may have to replace the original c by a smaller value, c0, such that
G(x0 + c0) < 1.

Now, using (3.1) with c and k satisfying (3.3), choose n sufficiently large that

P(Xn
(1) − Xn

(k) < c) > 1 − 1
2δ for all n > N(δ).

Let An denote the event {Xn
(1) − Xn

(k) < c}, and let Ān be its complement. Then, for that c
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and k, (3.2) becomes

P
(
Xn

(1) + ε∗
1 > max

j=2,...,k
(Xn

(j) + ε∗
j )

)

≤ P
(
Xn

(1) + ε∗
1 > max

j=2,...,k
(Xn

(j) + ε∗
j | An)

)
P(An) + P(Ān)

< P
(
Xn

(1) + ε∗
1 > Xn

(1) − c + max
j=2,...,k

ε∗
j

)
+ 1

2δ

= P
(
ε∗

1 + c > max
j=2,...,k

ε∗
j

)
+ 1

2δ

< 1
2δ + 1

2δ

= δ,

where we have used (3.3) in the last inequality.

Corollary 3.1. Statement (R2) holds.

Proof. If xF < ∞ then, clearly, (3.1) holds.

Theorem 3.2. A sufficient condition for limn→∞ pn(X, ε) = 0 for all G is that xF = ∞ and
that, for any fixed d > 0,

lim
x→∞ P(X ≥ x + d | X > x) = 0, (3.4)

or, equivalently,

lim
x→∞

f (x + d)

f (x)
= 0. (3.5)

Proof. We will show that (3.4) implies (3.1). For a given c and k, let d = c/(k−1). Suppose
that (3.4) holds, and let x0 be such that

P(X ≥ x + d | X > x) <
δ

2(k − 1)
for all x > x0. (3.6)

Let N be sufficiently large such that, for all n ≥ N ,

P(Xn
(k) > x0) > 1 − 1

2δ. (3.7)

Let Bn be the event {Xn
(k) > x0}. Then

P(Xn
(1) − Xn

(k) < c) = P

(k−1∑
i=1

(Xn
(i) − Xn

(i+1)) < c

)

> P

(k−1⋂
i=1

{Xn
(i) − Xn

(i+1) < d}
)

> P

(k−1⋂
i=1

{Xn
(i) − Xn

(i+1) < d}
∣∣∣∣ Bn

)
P(Bn)

>

[
1 −

k−1∑
i=1

P({Xn
(i) − Xn

(i+1) ≥ d} | Bn)

](
1 − δ

2

)
(by (3.7))

>

(
1 − (k − 1)

δ

2(k − 1)

)(
1 − δ

2

)

> 1 − δ (by (3.6)).

Since δ > 0 was arbitrarily small, (3.1) holds, and the result follows.
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Since (3.4) can be written as

lim
x→∞

1 − F(x + d)

1 − F(x)
,

we can, by l’Hôpital’s rule, take the limit of derivatives, which yields (3.5).

Theorem 3.3. Let xF = ∞ and d > 0, and assume that limx→∞ P(X ≥ x + d | X > x)

exists and is equal to a, where a > 0. Then there exists a G, and ε ∼ G, such that
lim infn→∞ pn(X, ε) > a − γ for any γ > 0.

Theorem 3.3 establishes the necessary statement (R1).

Proof of Theorem 3.3. Fix γ > 0, and let δ = γ /(1 + a). There exists an x0 such that
P(X ≥ x + d | X > x) ≥ a − δ for all x > x0. Since Xn

(2) goes to ∞ with probability 1 as
n → ∞ (and it is stochastically increasing in n), there exists an N and an x1 > x0 such that
P(Xn

(2) > x1) ≥ 1 − δ for all n > N . Let ε have a uniform distribution on [0, d]. We make use
of the following result which is straightforward to verify. Let X1, . . . , Xn be i.i.d. continuous
random variables with distribution F . Then

P(Xn
(1) ≥ x + d | Xn

(2) = x) = P(X ≥ x + d | X > x),

where X ∼ F . Hence,

pn(X, ε) = P
(
Xn

(1) + ε∗
1 > max

j=2,...,n
(Xn

(j) + ε∗
j )

)

≥ P(Xn
(1) ≥ Xn

(2) + d)

=
∫ ∞

w=−∞
P(Xn

(1) ≥ w + d | Xn
(2) = w)fXn

(2)
(w) dw

≥
∫ ∞

w=x1

P(Xn
(1) ≥ w + d | Xn

(2) = w)fXn
(2)

(w) dw

≥ (a − δ) P(Xn
(2) > x1)

≥ (a − δ)(1 − δ)

> a − γ.

In Section 5 we consider two examples, Examples 5.1 and 5.2, where F has an exponential
distribution. Depending on G, limn→∞ pn = 0 or lim infn→∞ pn > 0. The exponential
distribution is of special interest because

P(X > x + d | X > x) = e−d ,

i.e. it is independent of x, and, thus, can be considered as a borderline case. For many well-
known distributions, if (3.4) fails, the limit on the left-hand side of (3.4) will be 1.

To show (R3), we need the following lemma.

Lemma 3.1. For any continuous distribution F and Xi i.i.d. distributed F , there exists a
distribution H and i.i.d. Zi , independent of the Xis, distributed as H , such that

lim
n→∞ P(Xn

(1) > Zn
(1)) = 0. (3.8)
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Proof. We will first prove the statement when F is the uniform distribution on [0, 1]. Then,
for any continuous H ,

P(Xn
(1) > Zn

(1)) = n

∫ 1

0
[H(x)]nxn−1 dx.

Now let H(x) = 1 − (1 − x)1/2 for 0 ≤ x ≤ 1. We will show that (3.8) holds. We have

P(Xn
(1) > Zn

(1)) = n

∫ 1

0
[1 − (1 − x)1/2]nxn−1 dx = 2n

∫ 1

0
(1 − y)n(1 − y2)n−1y dy, (3.9)

where we have made the change of variable y = (1 − x)1/2. The right-hand side of (3.9) equals

2n

∫ n−2/3

0
(1 − yn)(1 − y2)n−1y dy + 2n

∫ 1

n−2/3
(1 − y)n(1 − y2)n−1y dy

< 2n

∫ n−2/3

0
y dy + 2n

∫ 1

n−2/3
(1 − y)n dy

= n−1/3 + 2n

n + 1
(1 − n−2/3)n+1. (3.10)

The first term on the right-hand side of (3.10) clearly tends to 0. The last term is less than
2(1 − n−2/3)n = 2[(1 − 1/m)m]√m, where m = n2/3, which also goes to 0, since the value in
the bracket is arbitrarily close to e−1. This proves (3.8) for F uniformly distributed on [0, 1].

To generalize, add asterisks to all of the previous variables, i.e. X∗
1, X∗

2, . . . , Z∗
1 , Z∗

2 , . . . ,
and H ∗, and note that H ∗ has all of its mass on [0, 1]. Now consider any continuous F , and its
inverse F−1. Let Xi = F−1(X∗

i ) and Zi = F−1(Z∗
i ). Then the Xis are i.i.d. with distribution

F and the Zi are i.i.d. with distribution H(x) = H ∗(F (x)). But, since F−1(x) is monotone
increasing, clearly,

P(Xn
(1) > Zn

(1)) = P(X∗n
(1) > Z∗n

(1))

and (3.8) follows.

Theorem 3.4. For any F , there exists G such that limn→∞ pn(X, ε) = 0.

Proof. If xF < ∞, the result follows from Corollary 3.1. Thus, assume that xF = ∞.
We first consider P(Xi ≥ 0) = 1. Note that ε∗

i is the ε that is associated with the ith
largest Xi . Then Yn[1] = Xn

(1) + ε∗
1 . We choose G so that ε∗ > 0. We want to show that

pn := P(Y n[1] = maxj=1,...,n Yj ) → 0. Now

P
(
Yn[1] > max

j=2,...,n
Y n

[j ]
)

= P
(
Xn

(1) + ε∗
1 > max

j=2,...,n,
(Xn

(j) + ε∗
j )

)

≤ P
(
Xn

(1) + ε∗
1 > max

j=2,...,n
ε∗
j

)

= P(Xn
(1) > εn−1

(1) − ε∗
1)

≤ P(Xn
(1) > εn

(1) − 2ε∗
1), (3.11)

where we have used Xj ≥ 0 in the first inequality, and ε∗
1 ≥ 0 and εn

(1) ≤ εn−1
(1) + ε∗

1 in the
second inequality. Consider Zi of Lemma 3.1. Since Xn

(1) → ∞ almost surely as n → ∞, it
follows that Zn

(1) → ∞, and we may take Zi ≥ 0. Let δ > 0. For a proper choice of G, we
will show that pn < δ for all sufficiently large n. Let εi = 2Zi , where Zi satisfies (3.8), let
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z0 be a constant such that P(4Zi > z0) < δ/4, and let n be so large that P(Zn
(1) < z0) < δ/4.

With these choices, the inequality in (3.11) can be continued:

P(Xn
(1) > 2Zn

(1) − 4Zin) <
δ

4
+ P(Xn

(1) > 2Zn
(1) − z0)

<
δ

4
+ P(Zn

(1) ≤ z0) + P(Xn
(1) > Zn

(1))

<
2δ

4
+ P(Xn

(1) > Zn
(1)).

Now, by (3.8) we can choose n sufficiently large that the last term is less than δ/4; thus, pn < 3
4δ

for all sufficiently large n.
If Xi can take on negative values, but is bounded from below by some c < 0, shift Xi by c

to obtain X̂i = Xi − c ≥ 0. Let Ŷj = X̂j + εj . Then

p̂n := P
(
Ŷ n[1] > max

j=2,...,n
Ŷ[j ]

)

= P
(
X̂n

(1) + ε∗
1 > max

j=2,...,n
(X̂(j) + ε∗

j

)

= P
(
Xn

(1) − c + ε∗
1 > max

j=2,...,n
(X(j) + ε∗

j ) − c
)

= P
(
Xn

(1) + ε∗
1 > max

j=2,...,n
(X(j) + ε∗

j )
)

= pn.

But, X̂i ≥ 0, so if the εi are chosen so that p̂n → 0, the same εi will do for the original Xi ,
and pn < 3

4δ for all sufficiently large n.
Now consider the Xi which are not bounded below. Choose n sufficiently large so that

P(Xn
(1) < c) < δ/4. On {Xn

(1) ≥ c} we may replace Xi by X̃i = max(Xi, c), which are
bounded, and obtain pn < δ/4 + 3δ/4 = δ.

Note that Theorem 3.4 establishes (R3). Statement (R4) is established through Example 5.4
below where F(x) = (1 − x−1) 1{x>1} and G is N(0, 1). Statement (R5) also follows from
Example 5.4.

4. Results for the noisy secretary problem

In this section we prove or illustrate the five results, (S1)–(S5), stated in the introduction.
There are two versions of the secretary problem in the presence of noise. In one problem we
only observe whether a noisy observation is the relative best Y . In the other problem we observe
RR(Yi), that is, the relative rank of the noisy observation amongst those observed so far. It is
important to note that if we observed Xi , or, equivalently, there was no noise, then there would
not be a distinction between these two problems. If there is no noise then it is obvious that we
should not stop if an observation is not the relative best.

Result (S1) relates the probability of finding the best X in the two versions of the problem,
that is, knowing RB(Xi) as compared to knowing RB(Yi). Result (S2) considers the rule that
only uses RB(Yi). Specifically, let a certain number of observations go by and then stop at the
first i such that RB(Yi) = 1. The main finding is that it is optimal to let fewer observations
go by when the data are noisy than in the classical secretary problem (where it is optimal to
let approximately n/e observations go by). Result (S3) indicates that the two versions of the
problem do not necessarily have the same solution. This is shown by an example.
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In the last two results we consider the problem where the relative ranks of the noisy data are
available. An algortihm that produces the optimal solution for this problem, based on dynamic
programming, is described in the discussion of (S4), which largely parallels the treatment in
Ferguson (2008). Finally, it is shown that the probability of finding the best X goes to 0 when
and only when limn→∞ pn(X, ε) = 0. This is in contrast to the classical secretary problem
where the probability of choosing the best X goes to e−1. The results that follow depend on

qnijk = P(AR(Yi) = k | RR(Yi) = j) (4.1)

for 1 ≤ j ≤ i and j ≤ k ≤ n + j − i. This probability, which is negative hypergeometric,
requires that the first i items include j − 1 of the observations that have absolute rank of at
most k − 1 and the remaining i − j items from among those with absolute rank exceeding k.
Hence,

qnijk =
(
k−1
j−1

)(
n−k
i−j

)
(
n
i

) .

This is given in Ferguson (2008, Chapter 2, p. 2.4).
In order to show that (S1) holds, suppose that we use the simple classical rule which

maximizes the probability of finding the maximal Y . The probability of finding the maximal Y

is Wn. The probability that this is also the maximal X is pn. In addition, this rule may pick a Y

value which turns out not to be the maximal Y , but could still be the Y value that corresponds
to the maximal X, i.e. Yn[1]. Thus, with this rule, we achieve a value which is at least Wnpn. As
this rule may not be optimal (see (S2)), an optimal rule may achieve an even higher value.

To show that (S2) holds, we consider optimal rules subject to the assumption that we know
only whether an observation is the relative best. These rules can be characterized by an integer
S(n) which allows us to state that the stopping time is the first time that RB(Yi) = 1 for
i > S(n). This is akin to the elegant result in Bruss (2000), who showed how to obtain the
secretary rule by summing odds. The difference here is that we do not observe the variables Ii

which indicate whether we have a relative record among the X values at the ith observation.
Rather we observe the noisy data, which indicates whether we have a relative record among the
Y values. We prove the following theorem that relates the best secretary rule in the classical
problem to that in the noisy problem.

Theorem 4.1. Let N(n) be the number of observations in the classical secretary rule such
that we stop the first time, i, that i > N(n) and RB(Xi) = 1. The optimal value N(n, X, ε)

after which we should pick the first item for which RB(Yi) = 1 in the noisy case satisfies
N(n, X, ε) ≤ N(n).

Let S∗(n) = N(n, X, ε) denote the optimal stopping rule in the noisy case, which depends
on the horizon, n, and the distributions of X and ε. Let N(n) ≈ n/e be the analog to S∗(n) in the
classical secretary rule, which is based on RB(Xi). Then Theorem 4.1 shows that S∗(n) ≤ N(n)

and, hence, when there is noise, we should stop no later than when there is no noise.

Proof of Theorem 4.1. Consider the rule in the noisy case where S (for 1 ≤ S ≤ n − 1)
items are allowed to go by and we stop at the first i > S for which RB(Yi) = 1 (otherwise,
stop at n anyway). Let

rin = P(AR(Xi) = 1 | RB(Yi) = 1) =
n−i+1∑
k=1

qni1kpnk, (4.2)
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where qni1k is given in (4.1) and pnk is given in (1.2). Hence, the probability that this rule
chooses the best X is

P(S) :=
n∑

i=S+1

1

i

S

i − 1
rin,

where the 1/i term is the probability that Yi has a relative rank of 1 and S/(i − 1) is the
probability that the best in the first i − 1 observations is among the first S items (so that one
does not stop before the ith observation).

Let r∗
in = nrin/i. This implies that

P(S) = S

n

n∑
i=S+1

r∗
in

i − 1
.

Consider

P(S + 1) − P(S) = S + 1

n

n∑
i=S+2

r∗
in

i − 1
− S

n

n∑
i=S+1

r∗
in

i − 1

= S + 1

n

n∑
i=S+2

r∗
in

i − 1
− S

n

( n∑
i=S+2

r∗
in

i − 1
+ r∗

S+1,n

S

)

= 1

n

( n∑
i=S+2

r∗
in

i − 1
− r∗

S+1,n

)
.

The above expression is nonnegative if and only if

n∑
i=S+2

1

i − 1

r∗
in

r∗
S+1,n

≥ 1.

Note that, for the classical secretary problem, r∗
in = 1.

If we can show that r∗
in decreases as i increases then the optimal S must necessarily be

smaller than the corresponding value for the classical secretary problem, as desired. Note that
pnk does not depend on i, and, as i increases, the number of terms in (4.2) decreases. Hence,
it is sufficient to show that nqni1k/i decreases in i for any n and k. But, qni11 = i/n since we
need the best Y to be among the first i items. In general, for k > 1,

qni1k =
(
n−k
i−1

)
(
n
i

) .

Hence,
qni1k

i/n
= (n − k)!

(n − 1)!
(n − i)!

(n + 1 − i − k)! .
The above expression clearly decreases in i for any k > 1 and n.

We now provide an example that shows that (S3) holds, that is, it is better to stop in some
cases with RR(Yi) > 1. The smallest number of observations for which this can occur is n = 4,
where it might be better to take the third observation if it is second best among the first three Y

values. We present such an example below, involving exponential random variables.
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Example 4.1. (The solution based on RR is better than the solution based on RB.) Let Xi be
i.i.d. exponential with µ = 1, and let εi be i.i.d. exponential with µ = c, where µ is the mean.
Let Y 3[i] = X3

(i) + ε∗
i . We want to show that it is better to stop at n = 3 if RR(Y3) = 2. To this

end, we consider
γci = P(Y 3[1] = Y 3

(i)) for i = 1, 2, 3.

Specifically, since there is a 3
4 chance that the best X in four observations is among the first

three observations, we need to show that 3γc2/4 > 1
4 or γc2 > 1

3 .

We need the following lemma.

Lemma 4.1. Let c be the mean in the exponential distribution of the εs. Then

γc1 = 1 + 2c2

3(2c + 1)(c + 2)
− c(4c + 1)

2(2c + 1)(c + 1)
,

γc2 = c(4c + 1)

2(2c + 1)(c + 1)
− 4c2

3(2c + 1)(c + 2)
,

γc3 = 2c2

3(2c + 1)(c + 2)
.

Before we prove the lemma we observe that if c = 3 then γc1 = 133
280 , γc2 = 99

280 , and
γc3 = 48

280 . Since γc2 is approximately 0.353 57 > 1
3 , this is an example where it is better to

stop at n = 3 if we observe the second largest Y value from among the first three Y values. The
largest value that γc2 can achieve is 0.362 75. This occurs when c = 5.535.

Proof of Lemma 4.1. We begin with γc3 as it is the easiest and highlights the argument. The
probability of interest is

P([X3
(1) + ε∗

1 < X3
(2) + ε∗

2] ∩ [X3
(1) + ε∗

1 < X3
(3) + ε∗

3]).
First note that since the Xi are i.i.d. standard exponential random variables, we can express the
resulting order statistics as X3

(3) = E3, X3
(2) = E3 + E2, and X3

(1) = E3 + E2 + E1, where the
Ei are independent exponential random variables with mean 1/i. In order to evaluate the above
probability, consider the two events A(x, y) = {X3

(2)+ε∗
2 > X3

(1)+ε∗
1 | ([ε∗

1 = x]∩[E1 = y])}
and, similarly, B(x, y) = {X3

(3) + ε∗
3 > X3

(1) + ε∗
1 | ([ε∗

1 = x] ∩ [E1 = y])}. First, A(x, y)

and B(x, y) are independent conditional on E1. This follows since X3
(1) − X3

(2) = E1 and
X3

(1) − X3
(3) = E1 + E2; hence, A(x, y) depends only on ε∗

2 , x, and y, and B(x, y) depends
only on E2, ε∗

3 , x, and y. Second, P(A(x, y)) = e−(y+x)/c and

P(B(x, y)) =
∫ ∞

v=0
e−(y+x+v)/c2e−2v dv = 2ce−(y+x)/c

2c + 1
.

Therefore,

γc3 = 2c

2c + 1

∫ ∞

x=0

∫ ∞

y=0
e−2(y+x)/ce−x 1

c
e−y/c dy dx = 2c2

3(2c + 1)(c + 2)
.

To obtain γc1, we use a similar argument. Hence,

γc1 =
∫ ∞

x=0

∫ ∞

y=0
P(A(x, y)) P(B(x, y))e−x 1

c
e−y/c dy dx.

Finally, γc2 = 1 − (γc1 + γc3).
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In (S4), the method for finding the optimal rule when relative ranks are observed is described.
The optimal rule, which can in principle be found by backward induction, is of the following
form. There exist integer values 0 ≤ k1 ≤ · · · ≤ kn = n not necessarily distinct such that we
should stop on the smallest i satisfying RR(Yi) ≤ ki . The obvious way to proceed, which we
programmed, is by backward induction. Once we determine pnm by simulation, the backward
induction, which we outline below, is distribution free.

At observation i, we need to decide whether we should stop or not if RR(Yi) = j for
1 ≤ j ≤ i. If we were to stop when RR(Yi) = j then the probability that AR(Xi) = 1 is

fnij =
n−i+j∑
v=j

qnijvpnv,

i.e. fnij is the probability that Xi is the best among all of the n X observations, conditional on
Yi being the j th best from among the first i Y observations.

We need to keep track of Rni , which is the probability of getting the best X if the optimal rule
is followed from observation i and thereafter. To complete the discussion, we need to show how
Rni is determined recursively, beginning with the last observation, n, and going backwards.

Note that Rnn = 1/n. For any i, let ki be the largest j such that fnij > Rn,i+1. Then

Rni = 1

i

ki∑
j=1

fnij + Rn,i+1
i − ki

i
.

The form of the above solution, which states that the maximum RR(Yi) for which we stop
at observation i is nondecreasing in i, is intuitive. It also follows from the solution described
above since Rni is nonincreasing in i, pnj is clearly nonincreasing in j , and there exists a k0
which depends on i such that qnijk ≤ qn,i+1,j,k only when k ≤ k0. The last two statements
imply that fnij increases as i increases.

Result (S5) is straightforward. No rule can be better than the rule that finds the observation
that is best amongst the Y values with certainty. But, if limn→∞ pn(X, ε) = 0, even this rule
satisfies limn→∞ Wn(X, ε) = 0. The converse follows from (S1).

5. Examples

In this section we present four examples to illustrate interesting findings concerning the
behavior of pn. It follows from (2.1) that when X is normal and ε is normal, the probability
that the best concomitant observation is the best observation goes to 0 if ρ < 1. In Example 5.1
below we show that the probability does not go to 0 if the X distribution is exponential.

Example 5.1. (Exponential F , normal G, and lim infn→∞ pn > 0.) We want to know how
likely it is that the largest Yi has the same index as the largest Xi . Hence, we need to consider

P(Xn
(1) + ε∗

1 > Xn
(j) + ε∗

j , j = 2, . . . , n),

where the ε∗
j are i.i.d. standard normal. Let Aj = {Xn

(1) − Xn
(j) > ε∗

j − ε∗
1}. Note that Aj

depends on n, but, for ease of notation and because the value of n remains fixed in this argument,
we do not include n as a superscript. We want to show that P(A2 ∩ A3 ∩ · · · ∩ An) goes to a
constant greater than 0.

It suffices to show that P(A2∩A3∩· · ·∩An | ε∗
1 = z) goes to a constant greater than 0 as n →

∞ for any z. This is the case since P(A2 ∩A3 ∩· · ·∩An) = ∫
z

P(A2 ∩A3 ∩· · ·∩An | ε∗
1 = z)×

φ(z) dz, where φ is the density of the standard normal. Since the conditional probability in the
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integral increases in z, P(A2 ∩ A3 ∩ · · · ∩ An) ≥ P(A2 ∩ A3 ∩ · · · ∩ An | ε∗
1 = z) P(Z > z),

where Z is a standard normal random variable independent of the Eis. But,

P(A2 ∩ A3 ∩ · · · ∩ An | ε∗
1 = z) = 1 − P(B1 ∪ · · · ∪ Bn−1) ≥ 1 −

n−1∑
j=1

P(Bj ),

where Bj = {X(1) − X(j+1) ≤ ε∗
j+1 − z}.

To evaluate P(Bj ), note that, for i.i.d. exponential random variables, Ei = Xn
(i) − Xn

(i+1) are
independent exponential with mean of 1/i. Hence, P(Bj ) = P(E1 + · · · + Ej + Z ≤ −z).

It suffices to show that
∑n−1

i=1 P(Bi) < 1 as n → ∞. We use the following Chernoff bound:
P(H ≤ a) ≤ e−taM(t) for all t < 0, where M is the moment generating function of H . The
moment generating function of the random variable E1 + · · · + Ej + Z is

Mj(t) = et2/2
j∏

i=1

i

i − t
.

We now choose z = −a to be 2 and t to be −2. This implies that

P(Bj ) ≤ e−4e2
j∏

i=1

i

i + 2
= 2e−2

(j + 1)(j + 2)
.

Hence,
n−1∑
j=1

P(Bj ) ≤ 2e−2
n−1∑
j=1

1

(j + 1)(j + 2)
= e−2

(
1 − 2

n + 1

)
< 1.

We have shown that, when X and ε have normal distributions, pn goes to 0. This is
intuitive because the differences between the largest Xi values becomes arbitrarily small in
probability as n gets large. In the exponential case, however, the expected difference between
the largest and the second largest observations is 1 and, hence, the largest X values do not
become indistinguishable as in the normal case. Nevertheless, Example 5.2 below shows that,
when the distributions of X and ε are both exponential, and, hence, the error term is sufficiently
large, limn→∞ pn(X, ε) = 0.

Example 5.2. (Exponential F , exponential G, and limn→∞ pn = 0.) Assume that we observe
X1, . . . and ε1, . . . as i.i.d. exponential with equal means taken, without loss of generality, to
be 1. Let Yi = Xi + εi . Let xN = XN

(1) and yN = YN
(1). Let n > N be an observation after N .

The probability that we have a record at n in at least one of the sequences X and Y is

P([Xn > xN ] ∪ [Yn > yN ]).
We want to determine

P([Xn > xN ] ∩ [Yn > yN ] | [Xn > xN ] ∪ [Yn > yN ])
= P([Xn > xN ] ∩ [Yn > yN ])

P([Xn > xN ] ∪ [Yn > yN ])
≤ P([Xn > xN ] ∩ [Yn > yN ])

max[P(Xn > xN), P(Yn > yN)] . (5.1)
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Since Xn is exponential with mean 1 and Yn is Gamma (2,1), it follows that

P(Xn > xN) = e−xN

and
P(Yn > yN) = (1 + yN)e−yN .

Furthermore,

P([Xn > xN ] ∩ [Yn > yN ]) =
∫ u=yN

u=xN

(e−u)(eu−yN ) du +
∫ ∞

u=yN

e−u du

= e−yN (yN − xN) + e−yN

= e−yN (yN − xN + 1).

For any δ > 0, let

y(δ) = min

{
y

∣∣∣∣ log(1 + y) + 1

y + 1
<

δ

2

}
.

Let N be sufficiently large so that P(Ym
(1) > y(δ)) > 1 − δ/2 for all m > N . We need to

consider two cases.

1. If e−xN > (1 + yN)e−yN , or, equivalently, eyN−xN > (1 + yN), then the right-hand side
of (5.1) is e−yN+xN (yN − xN + 1) < (log(1 + yN) + 1)/(1 + yN) < δ/2. The first
inequality in the line above follows because e−u(u + 1) is a decreasing function.

2. If e−xN ≤ (1 + yN)e−yN , or, equivalently, eyN−xN ≤ (1 + yN), then the right-hand side
of (5.1) is (yN − xN + 1)/(yN + 1) ≤ (log(1 + yN) + 1)/(1 + yN) < δ/2.

Finally, if N is sufficiently large then

P([Xn > xN ] ∩ [Yn > yN ] | ([Xn > xN ] ∪ [Yn > yN ]))
≤ P([Xn > xN ] ∩ [Yn > yN ] | {[Xn > xN ] ∪ [Yn > yN ]} ∩ [Yn

(1) > y(δ)])(1 − 1
2δ

)
+ 1

2δ

<
( 1

2δ
)(

1 − 1
2δ

) + 1
2δ

< δ.

One might conjecture that if X and ε have the same distributions then pn goes to 0 as in the
normal and exponential cases. But, if the tail of X is sufficiently fat then pn need not go to 0.
The intuition is that the largest X is likely to be a lot larger than the second largest X. This is
in essence what is shown in the following example.

Example 5.3. (Pareto F , Pareto G, and lim infn→∞ pn > 0.) Let F(x) = G(x) = 1 − 1/xα

for x ≥ 1. (Note that, for α = 1, the tail behavior of this distribution is the same as that of a
Cauchy distribution.) We want to show that lim infn→∞ pn > 0. If we can show that

P(Xn
(1) > Xn

(2) + εn
(2)) > δ (5.2)

for some δ > 0 as n → ∞, we are done. The reason for this is that if the second largest ε

coincides with the second largest X then the only other possible observation that has a higher
Y than the Y with index corresponding to the largest X is the one with the largest ε. But it is
just as likely that the index with the largest X and the index with the largest ε has the largest
Y value.
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Let Xα
i = 1/Ui , where the Ui are i.i.d. uniform (0,1), and, similarly, let εα

i = 1/Vi , where
Vi , are i.i.d. uniform (0,1).

We will show that lim P(Xn
(1) −Xn

(2) > (n+1)/2) > 0 and that lim P(εn
(2) < (n+1)/2) > 0

from which (5.2) follows. However,

P

(
[Xn

(1) > (n + 1)1/α] ∩
[
Xn

(2) <

(
n + 1

2

)1/α])

= P

([
Un

(n) <
1

n + 1

]
∩

[
Un

(n−1) >
2

n + 1

])

= n

[
1

n + 1

(
1 − 2

n + 1

)n−1]

→ e−2,

where Un
(i) is the ith largest uniform that generates X(n+1−i). Note that

(n + 1)1/α −
(

n + 1

2

)1/α

= (n + 1)1/α

c
,

where c = 21/α/(21/α − 1). Finally, since P(εn
(2) < ((n + 1)/c)1/α) is P(V n

(n−1) > c/(n + 1)),
which goes to (c + 1)e−c, where V n

(i) is the ith largest uniform that generates εn
(n+1−i), we are

done.

It is somewhat intuitive that, as n increases, the probability that the observation with the
largest X value also has the largest Y value decreases. However, this is not necessarily the case.
In fact, Example 5.4 below says more. The above probability in Example 5.4 goes to 1 as n

goes to ∞.

Example 5.4. (Pareto F , normal G, and limn→∞ pn = 1.) Let X1, . . . , Xn be i.i.d. with
f (x) as in Example 5.3 and α = 1, that is, F(x) = 1 − 1/x for x ≥ 1. Assume that we
observe Yi = Xi + εi , where ε1, . . . , εn are i.i.d. and normally distributed. We claim that
P(Xn

(1) − Xn
(2) ≥ zn) → 1 as n → ∞, where zn = n1−δ for any δ > 0.

Since the maximum of n normally distributed random variables is of the order (log n)1/2 for
large n, the above claim states that the observation with the largest X value must also have the
largest Y value with a probability tending to 1.

Proof of the claim. Let Xn
(i) = 1/Un

(n+1−i). Then

P(Xn
(1) − Xn

(2) ≥ zn) = P

(
1

Un
(n)

− 1

Un
(n−1)

≥ zn

)

= P

(
1

Un
(n)

≥ zn + 1

Un
(n−1)

)

= P

(
Un

(n) ≤ Un
(n−1)

1 + znU
n
(n−1)

)

=
∫ 1

t=0
P

(
U(n) ≤ Un

(n−1)

1 + znU
n
(n−1)

∣∣∣∣ Un
(n−1) = t

)
fn−1(t) dt

=
∫ 1

t=0

1

1 + znt
fn−1(t) dt,

https://doi.org/10.1239/jap/1346955336 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955336


Noisy secretary problem 837

where fi is the density of the ith largest order statistic from a uniform (0,1) distribution
which is Beta(α = n + 1 − i, β = i). But, U(n−1) ∼ Beta(α = 2, β = n − 1). Hence,
E(Un

(n−1)) = 2/(n + 1) and var(Un
(n−1)) = 2(n − 1)/(n + 1)2(n + 2) = O(1/n2). So

P(Un
(n−1) < 1/n1−δ/2) → 1 as n → ∞. This implies that

P(Xn
(1) − Xn

(2) ≥ n1−δ) ≥ 1

1 + n1−δn−(1−δ/2)
P

(
Un

(n−1) <
1

n1−δ/2

)

= 1

1 + n−δ/2 P

(
Un

(n−1) <
1

n1−δ/2

)

→ 1 as n → ∞.

Remark 5.1. The assumption that G has a normal distribution in Example 5.4 is easily relaxed.
All that is needed in the proof is that the maximum of n random variables be o(n1−δ) for any
δ > 0.

Remark 5.2. Note that Example 5.4 establishes (R5). Clearly, for small n, the value of pn

here is not equal to 1. But, if limn→∞ pn = 1, the pn sequence cannot be monotone.
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