
What is the neurobiology of schizophrenia?

Michael A. Cummings1,2 , Ai-Li W. Arias1,2 and Stephen M. Stahl3,4

1University of California, Irvine, CA, USA; 2University of California, Riverside, CA, USA; 3University of California, San
Diego, CA, USA and 4University of Cambridge, Cambridge, UK

Abstract

Schizophrenia spectrumdisorders are brain diseases that are developmental dementias (dementia
praecox). Their pathology begins in utero with psychosis most commonly becoming evident in
adolescence and early adulthood. It is estimated they afflict theU.S. population at a prevalence rate
of approximately 0.8%. Genetic studies indicate that these brain diseases are about 80% deter-
minedby genes and about 20%determinedby environmental risk factors. Inheritance is polygenic
with some 270 gene loci having been identified as contributing to the risk for schizophrenia.
Interestingly, many of the identified gene loci and gene polymorphisms are involved in brain
formation andmaturation. The identified genetic and epigenetic risks give rise to a brain in which
neuroblasts migrate abnormally, assume abnormal locations and orientations, and are vulnerable
to excessive neuronal and synaptic loss, resulting in overt psychotic illness. The illness trajectory of
schizophrenia then is one of loss of brain mass related to the number of active psychotic
exacerbations and the duration of untreated illness. In this context, molecules such as dopamine,
glutamate, and serotonin play critical roles with respect to positive, negative, and cognitive
domains of illness. Acutely, antipsychotics ameliorate active psychotic illness, especially positive
signs and symptoms. The long-term effects of antipsychotic medications have been debated;
however, the bulk of imaging data suggest that antipsychotics slow but do not reverse the illness
trajectory of schizophrenia. Long-acting injectable antipsychotics (LAI) appear superior in this
regard. Clozapine remains the “gold standard” in managing treatment-resistant schizophrenia.

Schizophrenia spectrum disorders are a cluster of psychotic brain diseases that afflict approxi-
mately 0.4% to nearly 2.0%of persons in variousworldwide populations.1,2 In 2019, the direct and
indirect annual costs of schizophrenia were estimated at $343.2 billion in theUnited States alone.3

Moreover, in addition to a substantial economic burden on society as a whole, the schizophrenia
spectrum disorders impose a variety of devastating personal and familial burdens, including but
not limited to social isolation, disruption of education, unemployment, homelessness, intrafami-
lial violence, entanglement in the legal system, incarceration, increased injury and illness, and a
shortened life span.4,5 Given the costly and disastrous effects of the schizophrenia spectrum
disorders, Emil Kraepelin, who first characterized these psychotic disorders, described them as
dementia praecox or early dementia.6 In the remainder of this review, we will consider the
neurobiology underlying a cluster of brain diseases that can be conceptualized under an umbrella
as a group of developmental dementiaswith similar core pathologies but heterogeneous variations
in clinical detail.

The human genome was first published in 2001.7 Since then, researchers have been working
to identify protein-coding genes. The number of such genes is presently estimated at
between 19,000 and 20,000.8 Within the human genome, some 270 gene loci have been
associated with schizophrenia spectrum disorders, with 108 risk genes being identified as single
nucleotide polymorphisms.9 The most obvious genetic associations have been with genetic
variations in the major histocompatibility complex. Besides polymorphisms, structural variants
in the form of copy number variants, such as microdeletions and microduplications have a very
high impact in a subset of patients. These variations aremainlymicrodeletions on 1q21.1, 2p16.3,
3q29, 15q13.3, and 16p11.2, as well as a large deletion on 22q11.21 and a microduplication
on 16p11.2.10 Importantly, many of the genes and gene loci implicated in schizophrenia are
involved in areas such as cell differentiation, cell regulation, cell maturation, cell migration,
orientation of cells, the structure of cell receptors, cell adhesion, and, in the case of neurons,
development of neural networks.11,12 Additionally, those gene foci that are part of the histo-
compatibility complex play critical roles in immune identity and control of inflammatory
processes.8,13,14

Although schizophrenia spectrum disorders are heavily genetically determined, it is thought
that about 20% of the risk for overt illness is determined by environmental factors such as
maternal stress during pregnancy, in utero infection exposure, childhood illnesses, childhood
adversity, and childhood or adolescent exposure to drugs such as methamphetamine or canna-
bis.1,15 Many of these environmental risk factors may influence the occurrence and phenotypic
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development of schizophrenia via epigenetic processes, such as
gene promotion or inhibition of other genes using small peptides
or short ribonucleic acid (RNA) sequences, methylation of deox-
yribonucleic acid (DNA), or modulation of the acetylation of
histone (protein involved in the winding and unwinding of DNA
strands for copying).16,17 Moreover, while no gene therapies cur-
rently exist for schizophrenia spectrum disorders, interventions in

selected environmental risk factors hold promise for altering the
phenotypic presentation of schizophrenia, as well as risk of overt
illness in both present and future generations.18,19

The human central nervous system begins as a simple tube
formed from neural crest cells. This relatively simple structure,
however, then undergoes a complex and elegant series of steps to
become the brain and spinal cord.20 The brain is formed by

Figure 1. Ventricular enlargement/brain atrophy.
openbooks.lib.msu.edu (open access).

Figure 2. Mesostriatal dopaminergic hyperactivity.
Stahl, S. Stahl’s Essential Psychopharmacology, 5th Edition, Chapter 4, p. 93.
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overfolding of the cephalad portion of the neural tube with glial cells
laying down the structural form of the brain and providing trails of
chemical markers for motile neuroblasts to follow to their cortical
and subcortical positions.21 During the second trimester of preg-
nancy, neuroblasts (immature motile forms of later neurons)
undergo rapid mitosis deep in the forming brain near the lateral
ventricles. These neuroblasts then crawl to their later positions
following neurotrophic markers and organize themselves into
orderly neural assemblies.20 They then form neural networks by
sprouting axons and dendrites. Initially, the number of connections
is 2 to 5 times greater than the connections present in the mature
brain. That is, exposure to the environment and the process of
learning selects those pathways that will be reinforced and those
that will be allowed to atrophy as the brainmatures.22-24 The primary
visual cortex is the first tomature at about 1 year of age, while the last
areas to mature are the frontal and temporal lobes at between 18 the
25 years of age. Thus, the roughly 100 billion neurons of the central

nervous system, along with their associated astrocytes, oligodendro-
gliocytes, and microglia, as well as other cell types, become the adult
brain and spinal cord.21,24,25

In contrast, brain development and maturation in schizophre-
nia spectrum disorders is clearly abnormal. To begin, many of the
neuroblasts produced during the second trimester of pregnancy fail
to reach their correct positions, instead being found in post-
mortem studies isolated deep within the white matter of the
brain.26,27 Then, across childhood and adolescence individuals in
the premorbid phase of schizophrenia exhibit excessive loss of
neurons and synaptic connections, such that by the onset of overt
psychosis some one-third to one-half exhibit clear atrophic changes
and enlargement of the lateral ventricles on brain imaging.28,29

Ventricular enlargement, reflecting loss of brain tissue in schizo-
phrenia, is illustrated below (Figure 1).

Following the onset of overt illness, loss of brain mass con-
tinues and appears to be correlated with the duration of untreated

Figure 3. 5HT2A serotonergic hyperactivity.
Stahl, S. Stahl’s Essential Psychopharmacology, 5th Edition, Chapter 4, p. 136.
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illness and the number of psychotic exacerbations.1,29,30 At least a
portion of the brain tissue loss associated with psychotic exacer-
bations or longer durations of untreated active psychosis appears
to be mediated by inflammatory processes, including activation of
microglia and invasion of the brain by macrophages.14,31,32 Inter-
estingly, treatment of high-risk children (i.e., having 2 parents
with schizophrenia spectrum disorders) with low-dose antipsy-
chotic medications may reduce the rate of conversion to overt
illness in adolescence.33 Nevertheless, it should be noted that
some subsequent studies have failed to find evidence that anti-
psychotic treatment during the premorbid phase of schizophrenia
is protective with respect to later development of overt schizo-
phrenia.34 Better established appear to be observations that con-
sistent antipsychotic treatment (eg, with LAIs) slows but does not
reverse the deterioration of the brain in schizophrenia spectrum
disorders.35-37

Clinically, the signs and symptoms of schizophrenia have been
divided into positive, negative, and cognitive deficit domains.1,38

Positive signs and symptoms include hallucinations/illusions, delu-
sional ideation, illogical thoughts and behavior, hyperactivity/agi-
tation, and thought disorder.1,38 Negative signs and symptoms
include apathy, lethargy, abulia, avolition, and social withdrawal.39

Cognitive deficits in schizophrenia spectrum disorders include
deficits in attention, concentration, memory organization and
recall, language processing, and executive functions such as self-
awareness and social judgment.38, 40 In addition to the develop-
mental abnormalities and atrophic brain changes described earlier
in this article, 2 neuromodulatory molecules, that is, dopamine and
serotonin, appear to play important functional roles in schizophre-
nia spectrum disorders.41,42 Below, we will consider 3 neural net-
works with respect to the positive, negative, and cognitive domains
of schizophrenia.

Positive signs and symptoms appear to arise in part from
excessive dopamine stimulation of mesostriatal projections to tem-
poral lobe association cortices and related structures (formerly
termed the mesolimbic pathway).41,43 This excessive stimulation
of limbic D2 dopamine receptors, in turn, appears to arise from a
failure of inhibition by gamma aminobutyric (GABA) interneurons
in the frontal cortex. And failure of M4 acetylcholine receptors on

the cell bodies of the relevant mesostriatal dopamine neurons.41,44

This is illustrated as follows (Figure 2).
Excessive serotonin (5-hydroxytryptamine) stimulation of

5HT2A receptorsmay add to positive psychotic signs and symptoms,
especially visual hallucinations, in schizophrenia.41,45 This is illus-
trated as follows (Figure 3).

Finally, it appears that in addition to previously described devel-
opmental pathologies and atrophic changes, inadequate stimulation
of frontal lobe D1 and D3 dopamine receptors contributes to the
negative symptoms and cognitive impairments of schizophrenia
spectrum disorders, including anosognosia (unawareness of ill-
ness).41,46 This is illustrated as follows (Figure 4).

Importantly, all antipsychotic medications appear capable of
ameliorating psychotic symptoms, with the largest effects being on
positive signs and symptoms.47 In particular, LAIs appear superior
in preventing relapse and, thereby, illness progression, morbidity,
and mortality.35,48 In the near future, a new class of antipsychotics
likely starting with xanomeline/trospium may be able to presyn-
aptically modulate dopamine release in mesostriatal projections by
targeting the M4 acetylcholine auto-receptor.44 Among the anti-
psychotics, clozapine remains the “gold standard” of treatment in
several areas, that is, management of treatment-resistant illness,
reduction of violence, reduction of suicide risk, and enhancement
of cognitive executive functions.49,50 Clozapine also appears to be
unique in that it likely acts by exerting effects upstream of the
mesostriatal dopamine neurons by improving glutamate signal
transduction.51,52

Summary: Schizophrenia spectrum disorders are a group of
related psychotic developmental dementias (dementia praecox)
characterized by positive, negative, and cognitive signs and symp-
toms usually beginning in adolescence or early adulthood. Illness is
mediated by a combination of developmental and atrophic changes
in brain structure and defects in the signal transductions of gluta-
mate, gamma amino butyric acid (GABA), acetylcholine, dopa-
mine, and serotonin. Importantly, defects in neurotransmitter
signal transduction provide targets for pharmacotherapy with
antipsychotic medications. Critically, failure to provide consistent
antipsychotic treatment early in the course of illness (eg, with LAIs)
promotes atrophic brain pathology and deterioration of the illness

Figure 4. Mesocortical dopaminergic hypoactivity.
Stahl, S. Stahl’s Essential Psychopharmacology, 5th Edition, Chapter 4, p. 95.
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course. Finally, while all antipsychotic medications can ameliorate
acute signs and symptoms, clozapine shows superior efficacy in
treating the positive, negative, and cognitive signs and symptoms of
the schizophrenia spectrum disorders, as well as treatment resis-
tance, violence, and suicide.
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