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Appropriate thyroid gland function and thyroid hormone activity are considered crucial to sustain the productive performance in
domestic animals (growth, milk or hair fibre production). Changes of blood thyroid hormone concentrations are an indirect
measure of the changes in thyroid gland activity and circulating thyroid hormones can be considered as indicators of the
metabolic and nutritional status of the animals. Thyroid hormones play a pivotal role in the mechanisms permitting the animals
to live and breed in the surrounding environment. Variations in hormone bioactivity allow the animals to adapt their metabolic
balance to different environmental conditions, changes in nutrient requirements and availability, and to homeorhetic changes
during different physiological stages. This is particularly important in the free-ranging and grazing animals, such as traditionally
reared small ruminants, whose main physiological functions (feed intake, reproduction, hair growth) are markedly seasonal.
Many investigations dealt with the involvement of thyroid hormones in the expression of endogenous seasonal rhythms, such
as reproduction and hair growth cycles in fibre-producing (wool, mohair, cashmere) sheep and goats. Important knowledge
about the pattern of thyroid hormone metabolism and their role in ontogenetic development has been obtained from studies in
the ovine foetus and in the newborn. Many endogenous (breed, age, gender, physiological state) and environmental factors
(climate, season, with a primary role of nutrition) are able to affect thyroid activity and hormone concentrations in blood, acting
at the level of hypothalamus, pituitary and/or thyroid gland, as well as on peripheral monodeiodination. Knowledge on such
topics mirror physiological changes and possibly allows the monitoring and manipulation of thyroid physiology, in order to
improve animal health, welfare and production.
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Introduction

Appropriate thyroid gland function and activity of thyroid
hormones (TH) are considered crucial to sustain the pro-
ductive performance in domestic animals (growth, milk, hair
fibre production) and circulating TH can be considered as
indicators of the metabolic and nutritional status of the
animals (Riis and Madsen, 1985; Todini et al., 2007).
Changes of blood TH concentrations are an indirect mea-
sure of the changes in thyroid gland activity. Many papers
report marked seasonal variation in thyroid activity and in
blood TH concentration. These hormone variations are
particularly important in the free-ranging and grazing ani-
mals, whose main physiological functions (feed intake,
reproduction, hair growth) are markedly seasonal. This is
the case of small ruminants traditionally reared. Such var-
iations in hormone concentration, in fact, allow the animals

to adapt their metabolic balance to different environmen-
tal conditions, variations in nutrient requirements and
availability, and to homeoretic changes during different
physiological stages.

The present paper aims to review and summarise litera-
ture data about actions specifically described in domestic
small ruminants and the effects that several factors may
exert on thyroid activity and circulating TH. Endogenous
factors (breed, age, gender, physiological state), environ-
mental factors (climate, season) and nutrition are con-
sidered. Many other particular conditions are well known to
alter thyroid functions in small ruminants, but they are not
discussed in the present paper as they are not physiological:
illness, iodine excess or deficiency, ingestion of goitrogenic
substances, phytoestrogens and other endocrine-disrupting
compounds, exogenous hormones or drugs intake. The
values of blood hormone concentrations are characterised
by an extreme variability, which is of course very mean-
ingful in each particular study. On the other hand, valuesE-mail: luca.todini@unicam.it
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reported in different papers are not comparable due to the
very large differences of the experimental animals and
conditions, as well as assay methods. For this reason, the
author’s choice was not to report the absolute numerics of
hormone values in the text.

Overview of thyroid hormone physiology

TH, tetra-iodothyronine or thyroxine (T4) and 3-5-30-tri-
iodothyronine (T3), are iodinated derivatives from the
amino acid tyrosine. T4 can be deiodinated to the biologi-
cally active hormone T3 by a 50-deiodinase enzyme (outer-
ring deiodination), and to the inactive reverse T3 (rT3) by
the enzyme 5-deiodinase (inner-ring deiodination) (Utiger,
1995). Thyroid gland of adult sheep contains about 90.4%,
8.8% and 0.7% of T4, T3 and rT3, respectively, and T4 is
the main secretory product (about 77%) (Chopra et al.,
1975). In adult sheep more than 99.9% of T4 and 99.5%
of T3 circulate in blood bound to plasma proteins (Chopra
et al., 1975). Only the free hormone is responsible for the
biological activity and protein-bound hormones function
as a promptly utilisable storage, delaying the effects of
decreased thyroid secretion, as well as buffer against
sudden increases in thyroid’s secretory activity (Bartalena,
1990; Utiger, 1995).

Small amounts of the active hormone T3 come from the
thyroid, but in adult sheep at least 50% of serum T3 and
97% of serum rT3 derive from monodeiodination of T4 in
peripheral tissues (Fisher et al., 1972; Chopra et al., 1975).
Deiodination can occur in most if not all tissues, but the
liver and the kidney show the highest deiodinating activity.
Iodothyronine deiodinase enzymes are selenoproteins and
show structural differences and different tissue distribution
between various species (Santini et al., 1992; Nicol et al.,
1994; Chadio et al., 2006). Type I is predominantly
expressed in the liver and kidney; it is inhibited by pro-
pylthiouracil (PTU) and stimulated by T3. The type II enzyme
is predominant in the brain, pituitary, skin, skeletal muscle,
brown adipose tissue; it is not sensitive to PTU, but it is
inhibited by rT3 and T4 (Kohrle, 1999). Type III mono-
deiodinase is a 5-deiodinase, which catalyses the transfor-
mation of T3 to 3-30-diiodothyronine (T2) and of T4 to rT3.
The latter does not bind to the nuclear receptor and is
considered biologically inactive, but it is a powerful inhibitor
of type II deiodinase (Kaiser et al., 1986) and decreases
oxygen consumption and ATP/ADP ratio (Okamoto and
Leibfritz, 1997). Type III is widely distributed throughout the
body, playing an important role in regulating TH home-
ostasis and bioavailability (Bianco et al., 2002; Bianco and
Kim, 2006). It is particularly expressed in the placenta, in
the pregnant uterus and in foetal tissues, limiting TH
bioactivity and playing a critical role in the development
and maturation of the thyroid axis of the foetus and new-
born animal (Galton, 2005; Hernandez et al., 2006). The
functions and regulation of the different deiodinase activ-
ities are also a mean for allowing the organism to adapt to

changing states such as iodine deficiency or chronic illness
(Wartofsky and Burman, 1982; Chopra et al., 1985). Earlier,
diiodothyronines also were considered inactive metabolites,
but recently their thermogenic actions have been high-
lighted (Moreno et al., 2002).

TH are mostly inactivated by glucuronidation in the liver
and secretion into bile, or by sulphation and deiodination in
the liver or kidney (Chopra et al., 1978). Oxidative deami-
nation and decarboxylation occurring in the kidney, liver
and muscle, form acid metabolites, which maintain a certain
biological activity, but do not contribute to the hormone
action in euthyroid subjects because they are produced
in very small amounts (Greenspan, 2001). Decarboxy-
lated derivatives of iodothyronines, such as mono-
iodothyronamine and thyronamine, actually represent a very
interesting field of investigation, because they may have
some biological actions, even different from those of TH
(Wu et al., 2005).

Thyroid cell growth and all the steps in the synthesis and
secretion of TH are stimulated by the pituitary glycoprotein
thyrotropin (TSH). TSH synthesis and release are in turn
stimulated by the hypothalamic tripeptide TSH-releasing
hormone (TRH). The hypothalamus controls the pituitary
thyrotrophs also by inhibiting factors (somatostatin, dopa-
mine). Increased plasma levels of TH exert a negative
feedback control on both the pituitary and the hypothala-
mus (Utiger, 1995). Many factors are able to affect thyroid
activity and hormone concentrations in blood, acting at
the level of hypothalamus, pituitary and/or thyroid gland,
as well as on peripheral monodeiodination (Figure 1).
In addition, growth factors, prostaglandins, cytokines, by
means of paracrine and/or autocrine actions, may modify
thyroid cell growth and activity (Greenspan, 2001).

TH acts on many different target tissues, stimulating
oxygen utilisation and heat production in every cell of the
body. The overall effects are to increase the basal metabolic
rate, to make more glucose available to cells, to stimulate
protein synthesis, to increase lipid metabolism and to sti-
mulate cardiac and neural functions (Capen and Martin,
1989). Peculiar actions consist in cell and tissue dif-
ferentiation. TH are the primary endocrine stimulators of
non-shivering (‘facultative’ or ‘adaptive’) thermogenesis,
thus regulating body temperature (Silva, 2005). One main
mechanism of this function should be the stimulation of
expression and activity of uncoupling proteins (UCPs),
which uncouple re-oxidation of reduced coenymes to ADP
phosphorylation, hence producing heat (Collin et al., 2005).
UCPs have been found in various tissues, also in ovine
species (Darby et al., 1996; Mostyn et al., 2003). Most of
the physiological actions of TH are mediated by the binding
to nuclear receptors. Recently, several membrane trans-
porters for cellular entry have been identified and they are
now considered among the factors on which TH biological
activity could depend (Hennemann et al., 2001; Friesema et
al., 2005). As it is the case of steroid hormones some
actions of TH are rapid and non-genomic (Davis et al., 2002;
Hiroi et al., 2006) due to actions on mitochondria and cell
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membranes on which binding proteins have been identified
(Wrutniak-Cabello et al., 2001; Davis et al., 2005).

Seasonality of reproduction

In ovine species, a notable interest has been excited by
the involvement of TH in seasonal reproduction (Karsch
et al., 1995). In fact, TH play an important function in
the expression of endogenous seasonal rhythms of neu-
roendocrine reproductive activity in sheep, as in many
species of birds (Nicholls et al., 1988b). Thyroidectomised
ewes began their sexual season at the same time as intact
animals, but continued to cycle when the intact ewes enter
seasonal anoestrus (Nicholls et al., 1988a; Maurenbrecher
and Barrell, 2003). Similar but less-pronounced effects have
been obtained in sheep rendered hypothyroid, in which the
end of the reproductive season occurred later than in
controls (Follett and Potts, 1990; Hernandez et al., 2003).
TH are necessary during a limited period late in the

breeding season to permit transition to seasonal anoestrus
(Thrun et al., 1996 and 1997a), acting primarily within the
brain to promote inhibition of neuroendocrine reproductive
function (Viguié et al., 1999). TH permit the increase of
the responsiveness to the oestradiol negative feeback, but
are also required for steroid-independent seasonal cycles in
luteinising hormone pulse frequency (Anderson et al.,
2002). This permissive role of TH seemed limited to changes
related to transition to seasonal anoestrus, since thyr-
oidectomy during anoestrus did not affect the onset of the
subsequent breeding season (Thrun et al., 1997b). Anyway,
TH may be required for the long-term expression and
maintenance of the endogenous seasonal reproductive
rhythm (Billings et al., 2002).

In male sheep, thyroidectomy abolished seasonal cycles
of gonadotropin secretion and testicular size (Parkinson and
Follett, 1994; Parkinson et al., 1995).

The anatomical substrate for TH action on seasonal
reproduction may be provided by the finding of TH receptor
in GnRH and other neurotransmitters–containing neurons

Figure 1 Schematic representation of the regulation of thyroid gland and thyroid hormones activity.
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(Jansen et al., 1997). Recently, it has been found that
photoperiod regulates the expression of type II deiodinase
gene in the mediobasal hypothalamus of the Saanen goat,
hence seasonally affecting the bioavailability of TH for the
reproductive neuroendocrine axis (Yasuo et al., 2006).

To our knowledge, there is only one report about the
requirement of TH in seasonal reproduction in goat species,
and these results are in contrast with the above-mentioned
numerous investigations carried on in sheep: Cashmere
goats thyroidectomised in late breeding season advanced
the onset of seasonal anoestrus (Walkden-Brown et al.,
1996). Furthermore, T3 at the goat testis level induces the
synthesis of a soluble protein in Leydig cells, which in turn
stimulates androgen release (Jana and Bhattacharya, 1994;
Jana et al., 1996).

Hair fibre growth

At the skin level, the availability of bioactive TH may
depend not only on the circulating hormone levels but also
on the local synthesis of T3. Type II and III, but not type I,
deiodinase activity was detected in skin samples from
cashmere goats (Villar et al., 1998 and 2000b) and showed
marked individual variability between animals and seasonal
changes. Type II deiodinase enzyme was higher during
winter short-day photoperiod and lower during periods of
long daylength, whereas type III showed an opposite pat-
tern. Manipulations of circulating prolactin affected further
the seasonal changes in the ratios of type II and type III
deiodinase enzymes, and this was associated with dif-
ferences in follicle activity and cashmere moult (Rhind et al.,
2004). In Soay sheep, showing marked seasonal variations
in hair growth rate, the quiescent period corresponded to
the seasonal physiological decline in plasma TH con-
centrations (Lincoln et al., 1980). Studies correlating sea-
sonal changes of plasma TH and cashmere growth cycle
failed to ascertain the putative regulatory role of TH (Kloren
et al., 1993) and contrasting results have been reported
(Rhind and McMillen, 1995; Merchant and Riach, 2002; Celi
et al., 2003; Rhind and Kyle, 2004). To clarify the role of TH
on hair fibre production, many investigations have been
carried out on manipulating TH availability for hair growth:
on the whole, also the results of such papers were often
contradictory (Ryder, 1979; Maddocks et al., 1985; Hynd,
1994; Rhind and McMillen, 1996). It seems that the sen-
sitivity to TH failure or excess may be dependent on breed,
season and interactions with other regulatory factors. TH
action may be permissive rather than inductive, i.e. they
might be present above certain threshold levels. Very
important should be the interactions with other factors:
firstly prolactin (Villar et al., 2000a; Rhind et al., 2004), as
well as the local actions of insulin (Puchala et al., 1998) and
growth factors, such as EGF (Hoath et al., 1983). The
putative effects of TH on hair fibre diameter are very
interesting from a commercial and technological viewpoint.
In an earlier study, it was reported that exogenous T4

administration to intact sheep induced increased wool
growth, in terms of increased fibre length, without affecting
the diameter (Hart, 1957). T4, but not T3, reduced fibre dia-
meter in sheep supplemented with selenium (Donald et al.,
1994) but T4 administration failed to avoid the increase in
wool diameter following increased feed intake (Lee et al.,
2001). Angora goats rendered hyperthyroid by daily sub-
cutaneous injections of T4 showed increased mohair
growth, with higher fibre length and lower fibre diameter
(Puchala et al., 2001). In Angora kids supplemented with
energy and protein (horse bean), the higher plasma TH
were associated with increased fibre length, decreased fibre
diameter and higher percentage of active secondary follicles
than controls (Todini et al., 2005). Anyway, further inves-
tigations are needed in order to clarify the role of TH in hair
fibre production. This role should be rather different
between animals showing a marked seasonality and clear
moulting cycles (such as cashmere goats) and animals
whose hair growth is more or less continuous throughout
the year (Angora goats, Merino sheep).

Foetal life

In foetal sheep, during the last one-third period of gesta-
tion, serum T4 concentrations were slightly higher or
comparable with those in adult sheep, while foetal serum
T3 were much lower and rT3 much higher. The elevated rT3
concentrations in foetal sheep serum decreased progres-
sively after birth and reached comparable levels with those
in adults, within few days of life (Chopra et al., 1975). An
opposite trend was described for T3 concentrations
(Nathanielsz et al., 1973; Klein et al., 1978). These differ-
ences in serum hormone concentrations have been related
to differences in peripheral deiodinase activity as the rela-
tive thyroidal content of T4 and T3 was similar in foetal and
adult sheep (Chopra et al., 1975). In fact, type I deiodinase
activity in the liver and kidney of foetus up to the fourth
month was lower than that in pre-term foetus or in the
newborn (Wu et al., 1992). Low foetal T3 levels are
maintained also by sulphation and deiodination (Wu et al.,
2006). In the foetus, low T3 levels allow anabolic processes
to prevail, despite the high rate of foetal T4 secretion,
which resulted eight-fold than maternal one during the last
one-third period of gestation (Dussault et al., 1971). The
pre-partum cortisol surge increased hepatic renal and
perirenal adipose tissue type I deiodinase, and reduced
renal and placental type III deiodinase activities (Forhead et
al., 2006). The increased availability of active T3 is impor-
tant for the latter phases of tissue differentiation. The
functional development of brown adipose tissue allows to
optimise non-shivering thermogenesis, thus permitting an
adequate thermoregulation in the newborn (Schermer et al.,
1996). Therefore, UCP1, induced by TH, is of primary
importance for the transition from foetal to neonatal life,
when cellular energy and thermoregulatory requirements
are at maximal rates (Symonds et al., 2003). When the
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pre-partum rise of cortisol occurs, TH may also influence the
growth and development of foetal liver and skeletal muscle,
modulating the local activity of the somatotropic axis, i.e.
the local expression of growth hormone receptor and
insulin-like growth factors (Forhead et al., 1998, 2000 and
2002). At the same time TH are essential for foetal gluco-
genesis (Fowden et al., 2001), allowing the pre-partum
rise in glucose-6-phosphatase and phosphoenolpyruvate
carboxykinase activity in the foetal liver and kidney Forhead
et al., 2003).

Age effects: birth, neonatal period and growth.
Gender effects

The pre-partum cortisol rise is accompanied by an increase
in foetal T3 and a decrease in rT3 concentrations (Sensky
et al., 1994). This pattern should be maintained throughout
the early postnatal life (Nathanielsz et al., 1973; Klein et al.,
1978). Plasma free T3 (fT3) in neonatal lambs increased
parallel to total T3 (Cabello and Wrutniak, 1986), whereas
the neonatal increase of free T4 (fT4) concentrations was
greater and longer lasting than total T4 (Cabello and
Wrutniak, 1990). In fact, neonatal plasma T3 and fT4 rises
followed that of TSH concentrations, lasting for 24 h after
birth, but T4 levels declined before (after 2 h of life), when
TSH levels were still elevated (Cabello and Wrutniak, 1990).
Therefore, the thyroid gland seems unable to respond, in
terms of T4 secretion, to a prolonged stimulation by TSH,
probably because a depletion of hormonal stores in the
gland occurs during the first minutes of life (Slebodzinski,
1972). It is likely that during the first hours of life the
thyroid gland can respond to other stimulating factors:
small increases of plasma TH followed exogenous prolactin
administration in neonatal lamb, but not in growing lambs
and ewes (Peeters et al., 1992). Plasma rT3 levels during
the first 48 h of life progressively decreased in suckling
lambs, but increased in bottle-fed lambs (Cabello and
Wrutniak, 1986 and 1990). Plasma T4 concentrations were
higher in single lambs than in twins at birth (Assane and
Sere, 1990). Plasma TH levels highly correlated with lambs’
birth-weight (Dwyer and Morgan, 2006) and were lower in
lambs separated from their mothers just after parturition
than in those maintained with their mothers (Firat et al.,
2005). Neonatal lambs had higher levels of T3 and T4
compared with growing lambs and ewes (Peeters et al.,
1992). Growing goat kids displayed higher TH levels than
adults (Colavita et al., 1983) and the lowest values were
found in elderly animals (Table 1; Lucaroni et al., 1989).
Age-related differences were particularly evident during the
hot season, especially for T3 blood concentrations (Lucaroni
et al., 1989).

In young animals, there is no sex-dependent differences
in blood TH concentrations, whereas in adult goats mean
plasma TH levels were higher (significantly for T4) in does
than in bucks (Table 2; Todini et al., 1992). In young
cashmere goats, T3 levels were lower in males than in
females after 8 months of age, while T4 was not affected by

sex (Celi et al., 2003). Sex-related differences are reported
in others mammals and are referred to several actions by
sexual steroid hormones: differences in total T4 levels can
be explained by oestrogen-reduced catabolism of thyroxine-
binding globulin (TBG) (Ain et al., 1987), or androgen
inhibition of the synthesis of TBG by the liver (Federman et
al., 1958). Moreover, androgens inhibit TSH secretion by the
pituitary (Christianson et al., 1981).

Breed effects

To our knowledge, there are no published data on goat
breed differences. At birth, Blackface lambs had higher T3
and T4 levels than Suffolk lambs and this was correlated
with higher body temperature and better thermoregulatory
ability (Dwyer and Morgan, 2006). Merino lambs aged 2 to
3 days, submitted to cold stress, showed a stronger increase
of TH levels compared with Romney-Marsh lambs (Doubek
et al., 2003). Lamb breeds that are usually reared under
extensive conditions (hill regions) have an improved ther-
moregulation than those reared intensively in lowland: this
is partly related to birthcoat characteristics, accompanied by
higher TH concentrations (important for endogenous heat
production and hair growth) in hill than lowland lambs
(Dwyer and Lawrence, 2005). Assaf ewes had higher serum
T4 concentrations than Rasa Aragonesa and Merino ewes,
which was associated with differences in wool growth rate
(Abecia et al., 2005). Higher plasma T4 levels in Suffolk
ewes than Gulf Coast native ewes in the US were shown to
be positively related to larger body size and enhanced
growth potential (Williams et al., 2004). Higher levels of T3
and T4 in ram lambs have been associated with higher
prolificacy of the Outaouais breed compared with the Suf-
folk breed (lower prolificacy) (Fallah-Rad and Connor,
1999). The decline in serum T4 levels induced by feed
restriction was greater in crossbreed ewes than in native
Indian sheep (Naqvi and Rai, 1991).

Changes during oestrus, pregnancy, peri-parturient
period and lactation

During induced or spontaneous oestrus in goats, a rise
in plasma total T4 (Colavita and Malfatti, 1989) and

Table 1 Serum thyroid hormone concentrations (mean 6 s.d.) in
goats (local Umbrian population) at different ages (data grouped from
samplings at different seasons), adapted from Lucaroni et al. (1989)

Age (years) n T3 (ng/ml) T4 (mg/dl)

,1 33 2.82 6 1.01 8.65 6 1.86
1 68 2.75 6 1.20 6.93 6 2.08
2 47 2.57 6 1.49 6.35 6 1.63
3 74 1.93 6 0.74 7.04 6 1.36
4 79 1.78 6 0.79 6.98 6 1.50
5 111 1.73 6 0.73 6.93 6 1.71

.6 107 1.57 6 0.62 5.67 6 1.81
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fT4 (Blaszczyk et al., 2004) levels has been observed. In
ewes, plasma T4 levels were higher during oestrus and
lower during the luteal phase, T3 concentrations were
higher during the luteal phase, while the concentrations of
rT3 were not associated with the oestrous cycle (Peeters
et al., 1989).

During pregnancy, thyroid activity and circulating hor-
mone levels are reported to increase in all the investigated
mammalian species. Several mechanisms have been
claimed to explain these observations: increased binding
protein concentrations in plasma, secretion of thyrotropic
factors by the placenta, enhanced responsiveness of
pituitary TSH secretion to hypothalamic TRH and changes in
maternal TH catabolism (De Leo et al., 1998; Glinoer, 2001).
Towards the end of pregnancy, the goat foetus(es) should
play a competitive role (higher thyroid activity, iodine affi-
nity and uptake than maternal ones), so that a decrease in
maternal plasma fT4 concentrations has been observed
(McDonald et al., 1988). Plasma T3 and T4 levels in goats at
mid-pregnancy rised compared with the low levels observed
just before oestrus and mating. Then, during the second
half of pregnancy, maternal hormone levels progressively
decrease, probably because of the negative energy balance
(Todini et al., 2007). This is supported by the lower maternal
serum TH levels (more marked and significant for T4)
observed in twin-bearing does, that are often characterised
by negative energy balance, compared with aborted and
single-bearing does (whose energy balance is usually less
negative) (Manalu et al., 1997). Very similar findings are
reported for ewes. Plasma T4 concentration was highest
during early pregnancy and decreased gradually, reaching
lowest values during late pregnancy and post partum
(Assane and Sere, 1990; Okab et al., 1993; Yildiz et al.,
2005). Like in goats, maternal T3 and T4 in twin pregnancy

were lower compared with single-bearing sheep (Yildiz
et al., 2005), especially at the end of pregnancy (Assane
and Sere, 1990).

In goats, maternal plasma T3 levels remained rather
steady around parturition, while T4 concentrations mark-
edly decreased and remained low until day 10 post partum
(Lucaroni and Todini, 1989). Khan and Ludri (2002b)
reported that both TH concentrations did not change from
day 20 before parturition until the day of kidding, when
they reached a minimal level, followed by an increase until
day 20 post partum. In ewes, plasma TH concentrations
were lower post partum than during pregnancy (Okab et al.,
1993), tended to decrease from 36 h to 21 days post partum
and thereafter constantly rose until day 51 post partum
(Bekeova et al., 1991).

Blood TH levels were low at the beginning of lactation,
afterwards gradually rose in does (Riis and Madsen, 1985;
Emre and Garmo, 1985) and in ewes (Mitin et al., 1986).
Administration of TH is known to stimulate lactation in
many species (Tucker, 1994 and 2000) but an inverse
relationship between blood hormone concentration and
milk yield has been observed in goats (Riis and Madsen,
1985), at least during the first phases of lactation. In ewes,
during late lactation, the increase of T4 concentration in
blood seems related to the decrease of milk production
(Bass, 1989).

Within the first 20 days post partum, in twin-bearing
does, plasma TH levels were significantly lower compared
with single-bearing does (Khan and Ludri, 2002a), but
throughout lactation very slight or no differences between
single and twin-suckling ewes were found (Bass, 1989;
Rhind et al., 1991). Taken together, these findings may
support the meaning of blood TH levels as indicators of the
energy balance, also in lactating animals.

Table 2 Plasma thyroid hormone concentrations (mean 6 s.d.) in 16 adult does and 8 adult bucks (dairy Mediterranean breeds), maintained sex-
separated and fed a qualitatively constant diet throughout the year (weekly samplings). Monthly mean, minimal and maximal environmental
temperatures are also indicated (adapted from Todini et al. (1992)).

Does Bucks Environmental temperature (8C)

T3 (ng/ml) T4 (mg/dl) T3 (ng/ml) T4 (mg/dl) Minimum Maximum Mean

Jan. 0.96 6 0.29 7.90 6 3.35 0.88 6 0.31 4.83 6 0.89 0.4 11.8 6.1
Feb. 0.84 6 0.31 7.50 6 3.66 0.84 6 0.16 5.40 6 1.53 2.7 16.8 9.7
Mar. 1.10 6 0.43 8.15 6 2.22 0.75 6 0.17 4.40 6 0.86 2.0 17.2 9.6
Apr. 1.35 6 0.40 7.55 6 3.55 0.83 6 0.04 5.72 6 1.38 7.3 19.7 13.5
May 0.95 6 0.23 6.34 6 2.01 0.79 6 0.10 5.16 6 0.95 9.1 24.7 16.9
Jun. 0.84 6 0.20 7.07 6 3.27 0.82 6 0.22 4.41 6 0.72 12.9 28.3 20.60
Jul. 0.59 6 0.12 6.10 6 2.47 0.69 6 0.06 3.88 6 0.79 16.5 32.3 24.4
Aug. 0.71 6 0.23 6.82 6 2.32 0.50 6 0.08 4.09 6 1.30 15.8 30.3 23.0
Sep. 0.63 6 0.14 6.80 6 3.17 0.58 6 0.06 3.75 6 0.81 12.1 26.5 19.3
Oct. 0.78 6 0.19 7.05 6 2.75 0.82 6 0.13 4.31 6 1.20 6.6 21.2 16.9
Nov. 0.85 6 0.20 7.28 6 2.47 0.95 6 0.14 5.00 6 0.89 4.5 15.3 9.9
Dec. 0.88 6 0.33 7.61 6 3.15 0.98 6 0.27 5.11 6 1.27 2.2 13.3 7.7
Year 0.87 6 0.32 7.17 6 2.89 0.79 6 0.19 4.65 6 1.17
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Circadian rhythms

Circadian changes in hormone secretion are probably
associated with the rhythms of environmental temperature
and light, as well as with feed intake and metabolism,
which in turn are related to the alternance activity/rest
throughout the day. Moreover, overlapping effects by
season and physiological state are expected. Because many
factors can influence T4 and T3 levels and because inter-
actions between these factors are likely, the few data
available in the literature on such topics are rather
discordant.

Blood samplings at 4-h intervals in late spring did not
permit to find significant circadian differences in TH con-
centrations in lactating (milked or suckled) goats, but the
maximal levels were observed during the night (Lucaroni
et al., 1989). In ewes sampled twice a day, the differences
between morning and afternoon were not univocal,
depending on the season (Ashutosh et al., 2001). In ewes
sampled at 2-h intervals, lowest blood hormone levels were
found in the afternoon, concentrations then increased
progressively during the night, and reached the highest
levels in the morning (Velasquez et al., 1997). In winter, T3
and T4 concentrations reached maximal levels in early
morning, probably because of a delayed response to cold
stress to which the animals were exposed by night; fur-
thermore, the circadian variations in winter decreased with
the increase in wool length (Salem et al., 1991). Combining
the results obtained from samplings carried out every
2 months for 1 year, rams showed the highest TH con-
centrations during the afternoon and the lowest in the early
morning (Souza et al., 2002).

Season effects

A major exogenous regulator of thyroid gland activity is the
environmental temperature (Dickson, 1993), so an inverse
relationship between ambient temperature and blood TH
concentrations has been found in sheep (Valtorta et al.,
1982; Webster et al., 1991; Starling et al., 2005) and goats
(Colavita et al., 1983; Todini et al., 1992).

During heat stress, blood T3 and T4 concentrations, as
well as metabolic rate, feed intake, growth and milk pro-
duction were decreased (Valtorta et al., 1982; Silanikove,
2000). On the other hand, cold stress in ewes (Hocquette
et al., 1992) ram lambs (Ekpe and Christopherson, 2000;
Doubek et al., 2003) and shearing (Morris et al., 2000;
Merchant and Riach, 2002) induced increases in blood TH
levels. The seasonal pattern of blood TH levels often
showed maximal values during winter (cold months) and
minimal during summer (hot months) (Salem et al., 1991;
Webster et al., 1991; Okab et al., 1993; Menegatos et al.,
2006). However, contrasting results have been reported
(Kloren et al., 1993; Rhind et al., 1998; Ashutosh et al.,
2001; Yokus et al., 2006). In the Sahel desert, plasma T3
and T4 levels did not change significantly from the begin-
ning of the cool season (December) until the end of the dry

warm season (May), but a highly significant rise of both
hormones was observed at the onset of the humid warm
season (June) (Assane and Sere, 1990). It can be supposed
that an enhanced thyroid activity during the humid warm
season in such environments is functional for the animals
facing the increased availability of food (quantity and
quality), following the seasons characterised by food
shortage.

Blood TH concentrations were high in spring (increasing
daylength) and low in autumn (decreasing daylength),
which was not fully explained by the changes in environ-
mental temperature (Figure 2; Buys et al., 1990; Todini
et al., 1992; Rhind and McMillen, 1995: Clariget et al.,
1998; Rhind et al., 2000; Taha et al., 2000; Villar et al,
2000a; Merchant and Riach, 2002; Souza et al., 2002;
Blaszczyk et al., 2004; Zamiri and Khodaei, 2005; Mene-
gatos et al., 2006; Todini et al., 2006). It seems that when
the temperature ranges are not extreme (mild climate,
indoor housing, shelter in the night time), the effect of
photoperiod and season-dependent TH profiles (mainly
related to the daylength changes) are present.

In Alpine and Saanen bucks exposed to artificial photo-
periodic cycles, alternating 1 or 2 months of long days (LD:
16 h light and 8 h dark) to 1 or 2 months of short days (SD:
16 h dark and 8 h light), plasma T3 levels rapidly followed
the photoperiodic changes, increasing during LD and
decreasing during SD. The effects of daylength changes on
plasma T4 concentrations were seen after a delay of several
weeks and the T3:T4 ratio showed very marked variations,
increasing during LD and decreasing during SD (Todini
et al., 2006). Similar results were obtained by Lincoln et al.
(1980) in rams submitted to an alternance of 16 weeks of
SD and 16 weeks of LD. The mechanisms of the photo-
periodic effects on peripheral TH are far from being eluci-
dated. Additional data on actions of the photoperiod in the
brain are scanty in small ruminants: TRH from hypothalamic

Figure 2 Circannual profiles of mean plasma T3 (3-5-30-triiodothyronine)
and T4 (thyroxine) in 20 female goats (local Umbrian population), mean
environmental temperature, daylength and physiological state (modified
from Lucaroni et al. (1989)).
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perfusate samples of ewes only tended to be significantly
higher during LD than during SD (Leshin and Jackson,
1987). Long days suppressed the expression of mono-
deiodinase gene in the hypothalamus of goats, thus limiting
the local bioavailability of TH, which should be related to
the role of the thyroid gland in seasonal reproduction
(Yasuo et al., 2006).

On the basis of the above-quoted studies, it is not pos-
sible to discriminate between the relative role of tempera-
ture and photoperiod on the seasonality of thyroid activity,
in different environmental conditions. Moreover, when the
feed intake is markedly seasonal, it becomes a major factor
modifying the seasonal pattern of blood TH profiles.

Nutrition effects

T3 directly stimulates feed intake at the hypothalamic level
(Kong et al., 2004), while on the other hand, the quantity
and quality of food eaten is a major factor determining
plasma concentrations of TH (Dauncey, 1990). Blood TH
levels are considered to be good indicators of the nutri-
tional status of an animal (Riis and Madsen, 1985) and
were correlated with feed intake in ruminant species,
including those that exhibit very marked seasonal cyclicity
in feed intake, body weight and reproductive activity, e.g.
deers (Ryg and Langvatn, 1982; Chao and Brown, 1984;
Rhind et al., 1998).

Circulating TH concentrations seem better correlated with
feed intake than adiposity status (McCann et al., 1992;
Caldeira et al., 2007a and b).

Energy deprivation decreased concentrations of T3 and
fT3 in adult sheep, while subsequent overnutrition
increased them. Plasma total T3 concentrations significantly
correlated with energy and nitrogen balances. Plasma rT3
levels showed an opposite pattern, increasing during
energy deprivation and decreasing during overnutrition
(Blum et al., 1980). Concentrate supplementation induced
an increase of plasma T4 levels in lactating ewes (Shetaewi
and Ross, 1991) and plasma T3 concentrations was higher
in rams with high amounts of ingested energy and protein
(Zhang et al., 2004). Following feed restriction or food
deprivation, plasma TH concentrations were reduced in
sheep (Naqvi and Rai, 1991; Wronska-Fortuna et al., 1993;
Wester et al., 1995; Ekpe and Christopherson, 2000; Abecia
et al., 2001; Rae et al., 2002). Feed-restricted animals also
showed an earlier and more marked decline in plasma TH
concentrations during the late summer/early autumn,
compared with ad libitum fed animals (Rhind et al., 1998
and 2000).

Lactating Angora does and their kids supplemented with
energy and protein (horse bean) had higher plasma TH
concentrations than controls (Todini et al., 2005). Goats
with a slightly higher energy intake showed higher plasma
TH concentrations during the second half of gestation, and
the decrease of plasma TH in mid- and late gestation was
attenuated and delayed (Todini et al., 2007). These effects

suggested that energy balance could play a major role in
affecting the decrease in plasma TH levels usually observed
at the end of gestation in small ruminants (see above).
Furthermore, in the higher energy diet-fed goats, the var-
iations of circulating T4 during different physiological states
were not significant (Todini et al., 2007). Recently, no
significant difference in the rates of type II and type III
deiodinase activity in the skin or in blood TH concentrations
was found between cashmere goats maintained at a dif-
ferent plane of nutrition (Rhind et al., 2006).

Selenium is present in deiodinase enzymes, and other
selenoproteins play a protective role for the thyrocytes
against damage by hydrogen peroxide produced for TH
biosynthesis (Kohrle et al., 2005). Oral iodine and selenium
supplements increased blood concentrations of TH in sheep,
and selenium supplementation alone increased plasma T3
concentrations and decreased T4 concentrations (Bik,
2003). Following selenium supplementation, type I deiodi-
nase activity decreased in the liver and increased in the
pituitary, while pituitary type II deiodinase was unaffected,
indicating that enzyme activity is homeostatically controlled
when a sufficient amount of selenium is present, in order to
ensure TH homeostasis (Chadio et al., 2006).

Conclusion

Changes of blood TH concentrations are an indirect mea-
sure of the changes in thyroid gland and extrathyreoidal
deiodination activity. Many factors act simultaneously
modulating thyroid gland activity and/or peripheral mono-
deiodination. Besides endogenous and environmental cli-
matic factors, nutrition plays a primary role on thyroid gland
activity and on blood TH concentrations. The physiological
range of the endocrine responses to different conditions is
very large, thus reference values are very difficult to obtain.
Assay results must be carefully evaluated, not only for
diagnostic and clinical purposes but also to evaluate the
physiological states and responses of the animals. The
systemic actions of TH justify their pivotal role in the
mechanisms permitting the animals to adapt to the sur-
rounding environment. New insights are gathered from
investigations on the regulation of monodeiodinase activity,
hence of TH bioavailability, in the central nervous system
and at the peripheral level. Little is known about TH
receptor expression and activity or about the targets at
molecular levels, even in humans and rodents. The field of
the non-genomic, rapid TH actions needs further research.
Knowledge on such topics will possibly allow the monitor-
ing and manipulation of thyroid physiology, in order to
improve animal health, welfare and production (meat, milk,
hair fibre).
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and hormonal profiles of potentiated cold stress in lambs during early
postnatal period. Czech Journal of Animal Science 48, 403–411.

Thyroid hormones in small ruminants

1005

https://doi.org/10.1017/S1751731107000262 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731107000262


Dussault JH, Hobel CJ and Fisher DA 1971. Maternal and fetal thyroxine
secretion during pregnancy in the sheep. Endocrinology 88, 47–51.

Dwyer CM and Lawrence AB 2005. A review of the behavioural and
physiological adaptations of hill and lowland breeds of sheep that favour lamb
survival. Applied Animal Behaviour Science 92, 235–260.

Dwyer CM and Morgan A 2006. Maintenance of body temperature in the
neonatal lamb: Effects of breed, birth weight, and litter size. Journal of Animal
Science 84, 1093–1101.

Ekpe ED and Christopherson RJ 2000. Metabolic and endocrine responses to
cold and feed restriction in ruminants. Canadian Journal of Animal Science 80,
87–95.

Emre Z and Garmo G 1985. Plasma thyroxine through parturition and early
lactation in goats fed silage of grass and rape. Acta Veterinaria Scandinavica
26, 417–418.

Fallah-Rad AH and Connor ML 1999. Relationships of thyroid hormones, IGF-I
and testosterone in breeds of ram lambs with low and high prolificacies.
Canadian Journal of Animal Science 79, 441–448.

Federman DD, Robbins J and Rall JE 1958. Effects of methyl testosterone on
thyroid function, thyroxine metabolism and thyroxine-binding protein. Journal
of Clinical Investigations 37, 1024–1030.

Firat A, Ozpinar A, Serpek B and Haliloglu S 2005. Comparisons of serum
somatotropin, 3,5,3’-triiodothyronine, thyroxine, total protein and free fatty
acid levels in newborn Sakiz lambs separated from or suckling their dams.
Annals of Nutrition and Metabolism 49, 88–94.

Fisher DA, Chopra IJ and Dussault JH 1972. Extrathyroidal conversion of
thyroxine to triiodothyronine in sheep. Endocrinology 91, 1141–1144.

Follett BK and Potts C 1990. Hypothyroidism affects reproductive refractoriness
and the seasonal oestrous period in Welsh Mountain ewes. Journal of
Endocrinology 127, 103–109.

Forhead AJ, Li J, Gilmour RS and Fowden AL 1998. Control of hepatic insulin-
like growth factor II gene expression by thyroid hormones in fetal sheep near
term. American Journal of Physiology – Endocrinology and Metabolism 275,
E149–E156.

Forhead AJ, Li J, Saunders JC, Dauncey MJ, Gilmour RS and Fowden AL 2000.
Control of ovine hepatic growth hormone receptor and insulin-like growth
factor I by thyroid hormones in utero. American Journal of Physiology –
Endocrinology and Metabolism 278, E1166–E1174.

Forhead AJ, Li J, Gilmour RS, Dauncey MJ and Fowden AL 2002. Thyroid
hormones and the mRNA of the GH receptor and IGFs in skeletal muscle of
fetal sheep. American Journal of Physiology – Endocrinology and Metabolism
282, E80–E86.

Forhead AJ, Poore KR, Mapstone J and Fowden AL 2003. Develop-
mental regulation of hepatic and renal gluconeogenic enzymes by thyroid
hormones in fetal sheep during late gestation. The Journal of Physiology 548,
941–947.

Forhead AJ, Curtis K, Kaptein E, Visser TJ and Fowden AL 2006. Developmental
control of iodothyronine deiodinases by cortisol in the ovine fetus and placenta
near term. Endocrinology 147, 5988–5994.

Fowden AL, Mapstone J and Forhead AJ 2001. Regulation of glucogenesis by
thyroid hormones in fetal sheep during late gestation. Journal of Endocrinology
170, 461–469.

Friesema EC, Jansen J, Milici C and Visser TJ 2005. Thyroid hormone
transporters. Vitamins and Hormones 70, 137–167.

Galton VA 2005. The roles of the iodothyronine deiodinases in mammalian
development. Thyroid 15, 823–834.

Glinoer D 2001. Pregnancy and iodine. Thyroid 11, 471–481.

Greenspan FS 2001. The thyroid gland. In: Basic and clinical endocrinology,
sixth edition (ed. FS Greenspan and DG Gardner), pp. 201–272. Lange/
McGraw Hill, New York.

Hart DS 1957. Stimulation of wool growth by thyroxine implantation. New
Zealand Journal of Science and Technologies 38, 871–880.

Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP and
Visser TJ 2001. Plasma membrane transport of thyroid hormones and its role in
thyroid hormone metabolism and bioavailability. Endocrine Reviews 22,
451–476.

Hernandez JA, Hallford DM and Wells NH 2003. Ovarian cyclicity in thyroid-
suppressed ewes treated with propylthiouracil immediately before onset of
seasonal anestrus. Journal of Animal Science 81, 29–34.

Hernandez A, Martinez ME, Fiering S, Galton VA and St Germain D 2006. Type
3 deiodinase is critical for the maturation and function of the thyroid axis.
Journal of Clinical Investigation 116, 476–484.

Hiroi Y, Kim HH, Ying H, Furuya F, Huang ZH, Simoncini T, Noma K, Ueki K,
Nguyen NH, Scanlan TS, Moskowitz MA, Cheng SY and Liao JK 2006. Rapid
nongenomic actions of thyroid hormone. Proceedings of the National Academy
of Sciences of the United States of America 103, 14104–14109.

Hoath SB, Laksmanan J, Scott SM and Fisher DA 1983. Effect of thyroid
hormones on epidermal growth factor concentration in neonatal mouse skin.
Endocrinology 112, 308–314.

Hocquette JF, Vermorel M, Bouix J, Anglaret Y, Donnat JP, Leoty C, Meyer M
and Souchet R 1992. Effects of cold, wind and rain on energy-expenditure and
thermoregulation of ewes from 7 genetic types. Genetics Selection Evolution
24, 147–169.

Hynd PI 1994. Follicular determinants of the length and diameter of wool
fibres. 2. Comparison of sheep differing in thyroid hormone status. Australian
Journal Agricultural Research 45, 1149–1157.

Jana NR and Bhattacharya S 1994. Binding of thyroid hormone to the
goat testicular Leydig cell induces the generation of a proteinaceous
factor which stimulates androgen release. Journal of Endocrinology 143,
549–556.

Jana NR, Halder S and Bhattacharya S 1996. Thyroid hormone induces a 52
kDa soluble protein in goat testis Leydig cell which stimulates androgen
release. Biochimica et Biophysica Acta 1292, 209–214.

Jansen HT, Lubbers LS, Macchia E, DeGroot LJ and Lehman MN 1997. Thyroid
hormone receptor (a) distribution in hamster and sheep brain: colocalization in
gonadotropin-releasing hormone and other identified neurons. Endocrinology
138, 5039–5047.

Kaiser CA, Goumaz MO and Burger AG 1986. In vivo inhibition of the 50-
deiodinase type II in brain cortex and pituitary by reverse triiodothyronine.
Endocrinology 119, 762–770.

Karsch FJ, Dahl GE, Hachigian TM and Thrun LA 1995. Involvement of thyroid
hormones in seasonal reproduction. Journal of Reproduction and Fertility
Supplement 49, 409–422.

Khan JR and Ludri RS 2002a. Hormone profiles during periparturient period in
single and twin fetus bearing goats. Asian-Australasian Journal of Animal
Sciences 15, 346–351.

Khan JR and Ludri RS 2002b. Hormone profile of crossbred goats during the
periparturient period. Tropical Animal Health and Production 34, 151–162.

Klein AH, Oddie TH and Fisher DA 1978. Effect of parturition on serum
iodothyronine concentrations in fetal sheep. Endocrinology 103, 1453–1457.

Kloren WRL, Norton BW and Waters MJ 1993. Fleece growth in Australian
cashmere goats. III. The seasonal patterns of cashmere and hair growth, and
association with growth hormone, prolactin and thyroxine in blood. Australian
Journal of Agricultural Research 44, 1035–1050.

Kong WM, Martin NM, Smith KL, Gardiner JV, Connoley IP, Stephens DA, Dhillo
WS, Ghatei MA, Small CJ and Bloom SR 2004. Triiodothyronine stimulates food
intake via the hypothalamic ventromedial nucleus independent of changes in
energy expenditure. Endocrinology 145, 5252–5258.

Kohrle J 1999. Local activation and inactivation of thyroid hormones: the
deiodinase family. Molecular and Cellular Endocrinology 151, 103–119.
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