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1. Introduction

An algorithm for summing the series PN = 2^=o anPn> where the coef-
ficients an are assumed known, and the quantities pn satisfy a linear three
term recurrence relation, has been given by Clenshaw [1]. If we suppose
that the pn satisfy the recurrence relation

(1-1) Pn + *nPn-l + PnPn-2 = 0,

where a,, and /Jn are, in general, functions of n, then PN may be found by
constructing a sequence {bn} for n = N(—1)0, where the bn satisfy the
inhomogeneous recurrence relation

(1-2) bn+*n+1bn+1+pn+2bn+2 = aH,

with the conditions,

(1.3) bN+1 = bN+2 = 0.

The sum PN is then given by

This result can be readily verified by multiplying each side of equation
(1.2) by pn, summing from n = 0 to N, and making use of equations (1.1)
and (1.3).

This algorithm is very convenient for use on a digital computer since
it is easy to program, and may in fact be looked upon as a generalisation
of the well known "nested-multiplication" process for summing power series.
It has been frequently used for summing Chebyshev series. In this paper,
we propose to discuss this algorithm in far more detail than appears to have
been given previously in the literature. In Section 3 we shall give a fairly
complete error analysis. Partial error analyses have already been given in
particular cases. Clenshaw [1] has given a partial analysis for a series of
shifted Chebyshev polynomials; Elliott [2] has generalised this result to
series of ultraspherical polynomials, and Smith [3] has further extended
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this result to the case when the pn are general orthogonal polynomials.
However, all these analyses are incomplete since they consider only the
effect of the error in each an, and neglect the errors which might arise in
computing the bn from equation (1.2), and PN from equation (1.4). In the
next section we shall first discuss the algorithm in some detail.

2. Further discussion of the algorithm

Before proceeding with the error analysis, we shall first obtain an
explicit expression for the quantities bn, as defined by equations (1.2) and
(1.3), in terms of functions which we shall consider to be known. It is well
known that equation (1.1) possesses two linearly independent solutions.
One of these solutions is the givenPn; let a second solution of the recurrence
relation be denoted by qn. Since these two solutions are linearly independent,
we define the Casorati determinant Wn (see, for example, Milne-Thomson
[4]) by

(2-1) Wn=pn_xqn-pnqn_x.

We have Wn =£ 0, and furthermore

•(2.2) Wn = £nWn_x for n = 1, 2, 3, • • •.

An explicit solution for the quantities bn can now be given in terms of an,
p n and qn. That this is not a completely trivial problem may be seen from
the fact that the homogeneous equation

(2-3) bn+<xn+1bn+1+Pn+2bn+2 = 0

is not, in general, the same as equation (1.1) satisfied by pn and qn. However
it can be verified by substitution that two linearly independent solutions
of equation (2.3) are given by

4 ^ and %! ,

where we have assumed (as in the cases to be considered later) that none
of the /3t- is zero. With this result, it is then readily shown by standard
techniques that

(2-4) bn = - L 2 {pn-iqm-pmqn-i)"m, for n - 0(l)2V.

It is now convenient to introduce the sum QN, which is defined by

(2-5) QN = l"nqn-
n=0

https://doi.org/10.1017/S1446788700005267 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005267
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We note that if our problem had been one of evaluating QN instead of PN,
then we would have calculated precisely the same quantities bn. The value
of QN is given by

and of course depends on the specific values taken by q0 and q1, which
then uniquely define all the quantities qn. Thus we see that the quantities
b0 and blt may be expressed in terms of PN and QN; in fact,

o = ~ {(
l

This result is of interest in so far as we can see the conditions under which
the algorithm should not be used. Suppose that \qn\ 3> \pn\ for most values
of n in 0(1 )iV, then in general we shall have \QN\ > \PN\. The sum PN will
then be obtained as the difference of two large numbers and a considerable
loss of accuracy will occur.

An excellent example of such behaviour is given if we use the al-
gorithm to sum the series

n = l

where Jn(x) denotes the Bessel function of the first kind. The value of
P12 is 1, correct to 10 decimal places. Suppose we calculate the quantities
bn using floating point decimal arithmetic to ten significant figures, using
only single precision operations. Now we have

with
*is = hi = o

and

( 2 (w even, # 0),

1 (n = 0).
0 («odd).

The quantities bn for n = 4(1)12 may be evaluated exactly (being integers
with 10 or less digits), and rounded values have to be taken for the remaining
bn. We find in particular that bt = 0-32797 06418x 1010 (exact), together
with bo= -0-73772 45906 X 1011 and ^ = 0-12828 18767 X 1012. If now,
in equation (1.4) we use values of / 0 ( l ) and 7i(l) correctly rounded to
ten decimal places, we find that P12 = — 30 instead of 1, i.e. we have no
correct significant digits. It is of course well known that two linearly in-
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dependent solutions of the recurrence relation satisfied by Jn(l) are / n ( l )
and Yw(l) (the Bessel function of the second kind), and that for n > l , we
have Jn{l) ~ l/2"«! and Yn ~ — 2n(n—l)\jn. This is an example where
\qn\ > \pn\ for most values of n in the range n = 0(1)12, over which the
series is summed.

The question then arises as to how such series might be summed. It
is suggested that we first compute the values of pn from equation (1.1) by
making use of Miller's recurrence algorithm. This algorithm, and the
errors which arise in its use, have recently been discussed in some detail
by Olver [5]. With the values of pn then determined, the series may be
summed directly by accumulating the products anpn for n = 0(1 )iV. We
shall not discuss the summation of such series any further in this paper.
In the next section we shall consider a complete error analysis of the al-
gorithm of Section 1.

3. Analysis of errors

We shall now consider the total effect of round-off errors on the com-
puted value of PN, due to the possible round-off errors arising at each step
of the algorithm. The possible sources of error in PN are:

(i) the round-off error in each an,
(ii) errors in the computed values of a.n and /Jn,
(iii) errors in computing the bn from equation (1.2), and
(iv) errors in computing PN from equation (1.4).

Previous error analyses [1], [2] and [3] have only considered the error
in PN due to the errors in the an. Smith [3] correctly noted that if there is
an error (f>n in each an then the error in PN, assuming that no other errors
occur, is obviously 2^=o«£n/V Clenshaw [1] and Elliott [2] obtained this
result in their particular cases, in a far more elaborate manner.

In the subsequent analysis, we shall denote by u the value of a quantity
u as it is computed during the course of the algorithm. We note that w is
not necessarily always the correctly rounded value of u. The calculations
may be performed in either fixed or floating point arithmetic, and to any
number base. In particular if we assume that we are working in fixed point
arithmetic to t decimal places, then u is the correctly rounded value of u
if \u—u\ ^ ^X 10~*. On the other hand, if we are working with floating
point numbers, with u = a • 106 where 0 - l ^ | « | < l , f i a n integer and a
given to t decimal places, then ii is the correctly rounded value of u if
\u—u\ ^ JlwlxlO1"'. In both cases we can put an upper bound on the
round-off error; the modification for binary arithmetic is straightforward.

Let us now consider the algorithm again, but in terms of quantities

https://doi.org/10.1017/S1446788700005267 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005267


[5] Error analysis for a finite series sum algorithm 217

that are actually computed. First, from equation (1.2), we compute bn

say, where

(3-1) bn= (dn-5cn+1En+1-pn+2En+2)+rn.

The quantity rn is introduced as the round-off error which arises on rounding
off the quantity in the brackets ( ). It will depend upon the way in which
the computation of {an—5cn+15n+1—Pn+2En+2) is performed, and will, for
example, be less if the sum of products is accumulated to double, rather
than single length. Since equation (3.1) is not suitable for analysis as it
stands, we rewrite it as

(3-2) &« = «» — * B + l 5 n + i — Pn+2?>n+2 + en+r
n,

where the quantity sn is defined by

(3-3) e » = (K.i+1 — « n + l ) 5 n + l + ( j 3 n + 2 — # n + 2 )5 n + 2 -

Now we may write,

(3-4) Sn= («n+l-a,,-n)^+i+(^+2-^,1+2)6«+2.

approximately, on neglecting second order small quantities such as
(«n+l — an+l)(&n+l — bn+l) etC.

Let <j>n and xpn denote the errors in an and bn respectively, i.e. we
define

«» = «»+^« and bn = bn+y,n for n = 0(l)iV,
1 where <f>n = yn = 0 for n = iV+1, iV+2.

On subtracting equation (1.2) from (3.2), we find that the errors yn are
completely defined by

I w h e r e y>N+1 = y>N+2 = 0 .

Thus the quantities y>n satisfy a set of equations similar to that of the bn,
although with different right hand sides. On comparing with equation (1.4),
we have immediately that

N
(3.7)

We shall make use of this result when we consider the errors in the evaluation
of the sum PN.

Finally, from equation (1.4), we actually compute a quantity PN

say, where

where the quantity s performs a similar role to that of rn in equation (3.2),

https://doi.org/10.1017/S1446788700005267 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005267


218 David Elliott [6]

i.e., it is the round-off error introduced on evaluating the sum of products
in the brackets [ ]. If we rewrite PN as

(3.9) PN = A>

where | is defined by

(3.10) Z = (h~Po)h+(Pi-Pi

then on subtracting equation (1.4) from (3.9), we have

(3.11) Px-Px=poVo+(Pi+*iPo)Yi+e+s.

If we now make use of equation (3.7), we have the required result,

(3.12) PN-PN = I (4>m+£m+rm)pm+£+s.
m=0

Previous analyses ([1], [2] and [3]) have essentially given only the partial
result that PN—PN= *2.m=o<t>mPm> a n d this is not necessarily the major
contribution to the total error.

Our previous example on summing a series of Bessel functions is a good
example of this. Here, the coefficients am are given exactly so that <f>m = 0.
Furthermore, em = 0 since the coefficients am and /?m are also given exactly.
Thus the error P12—P12 is given by

m=0

in this example, and as we have already seen this is not negligible with
respect to P12.

The results derived in this and the previous section provide sufficient
information for an estimate of the error in PN to be made. In the next
section we propose to give a complete analysis of the error which may arise
when we sum a finite series of Chebyshev polynomials.

4. Errors in summing a Chebyshev series

One frequently needs to evaluate a sum of the form

(4.1) PN = ^anTn(x), for - l ^ x ^ l ,
n=0

where Tn(x) is the Chebyshev polynomial of the first kind defined by

(4.2) Tn(x) = cos nd where x = cos d, for n = 0, 1, 2, • • •.

These polynomials satisfy the recurrence relation

(4.3) Tn(x)-2xTn^(x) + Tn_2(x) = 0,
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a second solution of which are the Chebyshev polynomials of the second
kind, Un(x) which are defined by

^ ( , ) » ^ . x = cos9) , = 0,1,2,
sin t)

It can be readily shown that, in the notation of Section 2,

(A S\ Pn-I<lm—Pm<ln-1(.
"' n

so that from equation (2.4), we have

— Um-n\X).

In order to carry out the error analysis, we shall assume that the cal-
culation is done in fixed point arithmetic to t decimal places. We shall
further assume that \rn\, \s\ f^ ^xlO~'. Since, in general, the quantity x
will not be represented exactly, let us assume that in the calculations it is
replaced by x, where x—x = y, say. Then since an = — 2x we have
an—an = 2y for all n. Finally since /?„ = 1, for all n, we shall assume that
/?„—/?„ = o. Equation (3.4) now gives

(4-7) sn = 2ybn+1,

approximately. Since p0 = 1 and px = x we shall assume that p~o—po = 0
and pi—px = y. Thus, from equation (3.10) we have

(4.8) £ = —ybx,

approximately, where we have replaced 5X by bx. With these results, equation
(3.12) gives

(4.9) PN-PN = 2 (<f>m+rm)Tm(x)+2y 2 b^T^-fa+s.

Now the second sum on the right hand side of this equation may be summed
explicitly, for

N N

Hbm+iTm(x) =J,bmTm_1{x), since bN+1 = 0,
m=0 m=X

N / N

= 1 (lUk-m(x)a^Tm_1{x), by equation (4.6),

m = l

https://doi.org/10.1017/S1446788700005267 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005267


220 David Elliott [8]

Thus equation (4.9) may be rewritten as

(4.10) PN-PN = Io(<l>m+rm)Tm(x)+y2»tamUm_1(x)+s.

At this point, we may obtain an upper bound for \PN~PN\ by making use
of the facts that for — 1 ^ x <: 1, \Tm(x)\ <, 1 and [t7im_1(ar)| ^ m. If we
further assume that both |^m| and \y\ are less than JxlO~', we have

(4.11) \PN-

At this point, we may recall Clenshaw's partial error analysis [1], which
although given in terms of shifted Chebyshev polynomials would give for
this problem \PN~PN\ ^ J x 10-'X (2N+2). (Clenshaw introduced a factor
of 2 to account for possible round-off errors in bn). The additional term
given in equation (4.11) is only likely to make a significant contribution to
the error if we are summing a Chebyshev series where the coefficients an

are slowly convergent. In numerical work a "slowly convergent" series
would be one for which an = 0(l/«2). If we assume that there exists a
constant A such that \an\ 5S Ajn* for all ft ^ 1, then equation (4.11) gives
the result that

\PN-PN\ ^ %Xl0-*{(2+A)N+3).

5. Conclusion

In this paper we have given a fairly complete discussion of the algorithm
which may be used to sum a series 2^=o anPn where the pn satisfy a three
term recurrence relation. We have seen that the algorithm should not be
used for series in which the second solution of the recurrence relation is
considerably larger in modulus than \pn\. For problems where the algorithm
may be used, a complete discussion of the errors has been given, from which
a bound may be obtained for the errors in the final sum.
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