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Abstract
In this article, we study an optimization problem for a couple including two breadwinners with uncer-
tain life times. Both breadwinners need to choose the optimal strategies for consumption, investment,
housing, and life insurance purchasing to maximize the utility. In this article, the prices of housing assets
and investment risky assets are assumed to be correlated. These two breadwinners are considered to have
dependent mortality rates to include the breaking heart effect. The method of copula functions is used to
construct the joint survival functions of two breadwinners. The analytical solutions of optimal strategies
can be achieved, and numerical results are demonstrated.
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1. Introduction
Life expectancy is experiencing a rapid increase over the last few decades, due to reducedmortality
rate and improved population health (World Health Organization, WHO (2025)). The prevalent
demographic trend can be observed all over the world which requires people to be more alert
about their allocations of assets when they are approaching to the retirement. Households, who
are at retirement, need to carefullymake consumption and investment decisions tomaximize their
utility. Their behaviors are subject to previous savings that are accumulated throughout earlier life
stage. The optimal retirement strategies can be determined via the life-cycle modeling.

Optimal life-cycle models have been widely examined and studied in the existing literatures.
Optimal strategies of asset allocation and consumption model were originally developed for
investors with a constant relative risk-aversion utility function in Merton (1969, 1971). Following
Merton’s work, a great number of optimal life cycle models have been developed with certain
feature to resemble real world. For example, Richard (1975) further extended Merton’s model to
include the demand for life insurance and annuity, where the investors maximized their utility
by allocating their wealth between assets, consumption, and insurance products. Pliska and Ye
(2007 ) extended the model in Richard (1975) by assuming that the lifetime of the wage earner
was random and unbounded. Kraft & Steffensen (2008) studied a life cycle model with mortality–
disability–unemployment risk. More recently, Wang et al. (2021) examined the effects of model
uncertainty and unknown income growth on the household decision makings.
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There is some scientific evidence suggesting that the mortality rate of coupled lives might be
correlated. The death of a spouse is associated with an increased risk of mortality for the sur-
viving partner, which is known as breaking heart effect. In this sense, the optimal retirement
strategy should be determined not only limited to an individual but also extended to a household
of two people with time-dependent mortality being considered in the model. The breaking heart
effect has been widely studied in existing literatures. For instance, Parkes et al. (1969) found the
increasing morality rate for widowers during first half year of bereavement by using the empirical
data. Stroebe (1994) stated that the vulnerability of the bereaved person can be explained by the
social integration. Lack of social contact and supports during the bereavement can cause higher
mortality. The results of Elwert & Christakis (2008) verified that the breaking heart effect varies
significantly according to the causes of death of the precedent one. Spreeuw & Owadally (2013)
used an augmented Markov model to demonstrate the short-term dependence of the couple’s life
times after the death of a partner. Lu (2017) used a mixed proportional hazards model to reflect
the mortality dependence of the couple that is only due to the breaking heart effect by disengag-
ing the breaking heart effect from other observed and unobserved heterogeneities. In the context
of life cycle planning model, Wei et al. (2020) considered an optimization problem of consump-
tion, investment, and life insurance purchasing for a couple, where the correlation of couple’s life
expectancy is modeled by using copula and common shock models.

Yates & Bradbury (2010) stated that Australian people are shifting to home ownership-based
strategy to accumulate wealth and preventing poverty after retirement. There exist studies that
have factored in a housing component when studying life cycle decision makings. For instance,
Cocco et al. (2005) incorporated the housing factor by assuming housing prices are perfectly cor-
related with labor income, and that house renting is not allowed in the model. Kraft & Munk
(2011) studied an optimal life cycle model with housing components, where real estate price,
rental income, labor income, and investments were defined as correlated. They also assumed that
there existed functional real estate investment trusts which ensures that investors could contin-
uously adjust their real estate investment. Kung & Yang (2020) extended the model in Kraft &
Munk (2011) by including insurance products.

To finance the accelerating aging-related cost, more and more people have the motivation to
access their housing wealth through housing equity withdrawal. Ong et al. (2015) and Hanewald
et al. (2016) investigated retired individuals’ decision-making process when their primary source
of wealth was home equity and they faced various risks. They used a discrete-time model to
analyze consumption, investment, insurance, and annuity decisions, considering the option to
access equity through a reverse mortgage or a home reversion plan. Reverse mortgage loans and
home reversion plans give homeowners the opportunity to access their home equity by taking
the lump-sum cash or annuity payments while still maintaining ownership of their properties
Alai et al. (2014). Specifically, the provider lends the customer cash and, in return, takes a share
or a mortgage charge on the customers’ properties. The termination of reverse mortgage loans
or home reversion plans can be trigged by the death or permanent move-out of the customers.
Subsequently, when the property is sold, and a portion of the proceeds will be taken to settle the
outstanding loan. To safeguard the interests of the provider, reverse mortgages typically include
a no-negative-equity guarantee. This ensures that borrowers cannot owe more than the current
value of their property Lee & Shi (2022).

In this article, we investigate the optimal household decisionmakings in investment, consump-
tion, housing, and life insurance purchasing. More specifically, we consider stochastic housing
price and rent and incorporate housing investment and housing consumption strategies. Also,
the breaking heart effect is included to examine the dependence between the lifetimes of two wage
earners in a household. Dynamic programming principle coupled with Hamilton–Jacobi–Bellman
(HJB) equation has been adopted to solve the life cycle planning problem. Our article contributes
to the literature in two aspects. First, we consider financial risks, uncertainties in housing price,
and breaking heart effect in mortality risk simultaneously, and the interactions between a variety
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of risks have been examined. The spousal mortality dependence is captured by Gumbel–Hougaard
copula model, and the parameters in the mortality model are calibrated by using the joint last sur-
vivor insurance policies data from a large Canadian insurance company. In this sense, our work
extends the models in Kung & Yang (2020) andWei et al. (2020). Second, we develop closed-form
representations for optimal portfolio choice, life insurance demand, housing consumption, and
housing investment for postretirement (i.e., no labor income) case. Also, we study how the opti-
mal strategies vary w.r.t. time in the numerical illustrations. This analysis provides rich financial
interpretations especially for the case when the housing investment strategy is negative because it
implies the possibility of financing postretirement life for the retirees through reverse mortgage
loans or home equity conversion.

The remainder of this article is organized as follows. Section 2 illustrates the life cycle model
and formulates the household’s stochastic optimization problem. Section 3 derives the analytical
expressions for optimal strategies and value function using the copula model. We conduct some
numerical studies in Section 4 and Section 5 concludes the article.

2. Model formulation
Let τi be the death time of the breadwinner i, for i= 1, 2. We assume that the marginal probability
distribution functions of τi is given by

Fi(t)= P(τi ≤ t)= 1− e−
∫ t
0 λi(s)ds,

where λi is the force of mortality. It is assumed that the random variables τ1 and τ2 follow a joint
probability distribution F(·, ·) with a density function of f (·, ·). We use T1 to denote the time
of the first death of the couple, that is, T1 = τ1 ∧ τ2. We also use FT1 (·) and fT1 (·) to denote the
probability distribution function and density function of T1, respectively.

In our model, the dynamics of the risk-free asset Bt and risky asset St are assumed to be
dB(t)
B(t)

= r(t)dt,

dS(t)
S(t)

=μ(t)dt + σS(t)dZS(t),

where r(t) is the risk-free interest rate,μ(t) is the appreciation rate, σS(t) is the volatility, and ZS(t)
is the Brownian motion with respect to risky asset price.

Based on Kung & Yang (2020) and Kraft & Munk (2011), we assume that household can invest
in real estate asset at a unit price (e.g., unit can be defined as the price per square meter). The
dynamics of the unit house price are

dH(t)
H(t)

= (r(t)+ λHσH(t)− ζ )dt + σH(t)(ρHSdZS(t)+ ρHdZH(t)),

where σH(t) is the house price volatility, λH is the Sharpe ratio of the unit house price,
ρH =

√
1− ρ2HS, ρHS is the constant correlation between house and stock, and ζ is the imputed

rent or the cost of holding house unit, and ZH(t) is the Brownian motion with respect to house
price. By using this setting, the household has the option to take a short position in housing
assets, allowing them to access housing wealth through housing equity withdrawal using reverse
mortgages or home reversion plans.

The rent of a housing unit is assumed to have a constant relationship υ with the house price,
where υ > 0. Hence, the return of the household investing and renting out a unit house we have

dH(t)+ υH(t)dt
H(t)

=
[
r(t)+ λ̂HσH(t)

]
dt + σH(t)

[
ρHSdZS(t)+ ρHdZH(t)

]
,
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where λ̂H = λH + υ−ζ
σH(t) .

We use π(t) to denote the proportions of the wealth invested in risky assets. φ1(t) is the units
of housing units owned. φ2(t) is the units of housing units rented. φ3(t) is the units invested in
REIT at time t. Housing consumption is defined as φ4(t)= φ1(t)+ φ2(t) and housing investment
φ5(t)= φ1(t)+ φ3(t).

For each breadwinner, denoted as i where i can be either 1 or 2, ci(t) and ki(t) are the con-
sumption amount and life insurance premium. Let Yi(t) be the deterministic income flow for
breadwinner i during period [0, T] (i= 1, 2), where T represents the time when the last survivor
of the couple passes away. Hence, the wealth dynamics is

dX(t)= {[r(t)+ (μ(t)− r(t))π(t)]X(t)− φ4(t)υH(t)}dt + [π(t)X(t)σS(t)
+ φ5(t)H(t)ρHSσH(t)]dZS(t)+ φ5(t)H(t)ρHσH(t)dZH(t)
− [1{t<τ1}

(
c1(t)+ k1(t)− Y1(t)

)− 1{t<τ2}
(
c2(t)+ k2(t)− Y2(t)

)
]dt.

We assume a time-additive Cobb–Douglas style utility for the consumption,U1(c(, φ4)= (cβφ1−β4 )γ
γ

and the power utility for the bequest U2(x)= xγ
γ

for the terminal wealth, where β is the relative
weighting between housing, 0<β < 1, and consumption, and γ is the relative risk aversion, 0<
γ < 1.

We use δ to denote the discount factor. At is the set of all admissible strategies U �
(c1, c2, k1, k2, π , φ4, φ5). For an arbitrary admissible control u ∈At , the value function of this
optimal problem is as follows:

V(t, x, h)= max
u∈At

E
{ ∫ τ1∧T

t
w1e−δsU1(c1(s), φ4(s))ds+

∫ τ2∧T

t
w2e−δsU1(c2(s), φ4(s))ds

+w31{τ1∨τ2≤T}e−δ(τ1∨τ2)U2

(
X(τ1 ∨ τ2)+

2∑
i=1

ki(τi, X(τi))
θi(τi)

1{τi=τ1∨τ2}

)

+w41{τ1∨τ2>T}e−δTU2(X(T))
}
,

where wi ≥ 0, i= 1, 2, 3, 4 satisfies the condition of
∑4

i=1 wi = 1 which ranks the relative impor-
tance of the utility type, X(t)= x and H(t)= h. For i= 1, 2, the insurance benefit ki(τi,X(τi))

θi(τi) is
assumed to be paid to the beneficiary upon the death of the insured at time τi. Following Kung &
Yang (2020), we define l as the loading factor and θi = (1+ l)λi. In this context, ki(τi, X(τi)) rep-
resents the life insurance premium. When ki(τi, X(τi)) is positive, it indicates behavior consistent
with purchasing life insurance. Conversely, when ki(τi, X(τi)) is negative, it reflects behavior asso-
ciated with purchasing a variable life annuity. The utility derived from the bequest and terminal
wealth will only be realized upon the death of the last surviving individual. To ensure the utility
function remains well-defined, we follow the approach in Kung & Yang (2020) by introducing a
loading factor that may result in a zero-insurance condition.

3. Optimal results
Initially, we assume the presence of a breaking heart effect, where the time of death, denoted as
τi, for the bereaved individual is influenced by the passing of their partner. This phenomenon
highlights how deeply connected our emotions and mental well-being are to our physical health,
especially in close relationships. When someone we love passes away, it can set off a chain reaction
in our bodies andminds that affects how healthy we are overall. In our analysis, we first address the
optimization problem in the scenario where one of the couple passes away, recognizing that the

https://doi.org/10.1017/S1748499525000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499525000028


Annals of Actuarial Science 5

optimization strategy in the case where both breadwinners are alive may be informed by insights
gained from the former scenario.

3.1 The optimization problem after the first death
We firstly consider the optimization problem after one of the couple dies, that is, T1 = τ1 < τ2 or
T1 = τ2 < τ1. We simplify the notation Vi(t, x, h) for the value function to Vi.

After T1, the alive bread winner i has the value function of this optimal problem is as follows:

Vi =max E
{ ∫ τi∧T

t
wie−δ(s−t)U1(ci(s), φ4(s))ds

+w31{τi≤T}e−δ(τi−t)U2

(
Xi(τi)+ ki(τi, Xi(τi))

θi(τi)

)

+w41{τi>T}e−δ(T−t)U2(Xi(T))
}
,

where Xi(·) is given by

dXi(t)= {[r(t)+ (μ(t)− r(t))πi(t)]Xi(t)− φ4i(t)υH(t)}dt + [πi(t)Xi(t)σS(t)
+ φ5i(t)H(t)ρHSσH(t)]dZS(t)+ φ5i(t)H(t)ρHσH(t)dZH(t)−

(
ci(t)+ ki(t)− Yi(t)

)
dt.

The proof of the following proposition can be found in Appendix A.

Proposition 3.1. The value function is given by

Vi = 1
γ
gi(t, h)1−γ (x+ bi(t))γ ,

where bi(t)=
∫ ω
t e−

∫ s
t (r(u)+λi(u))duYi(s)ds represents the human capital for breadwinner i. The

optimal strategies are given by

c∗i (t)=
β

(1− β)gi(t, h)
υηihk(x+ bi(t)),

k∗
i (t, x)= θi(t)

[(
γ

w3

) 1
γ−1

gi(t, h)−1(x+ bi(t))− x

]
,

π∗
i (t)=

−(μ(t)− r(t))
(1− ρ2HS)σ 2

S (t)x(γ − 1)
(x+ bi(t)),

φ∗
4i(t)=

ηihq−1

gi(t, h)
(x+ bi(t)),

φ∗
5i(t)=

[
ρHS(μ(t)− r(t))

(1− ρ2HS)σS(t)σH(t)h(γ − 1)
+ gih(t, h)

gi(t, h)

]
(x+ bi(t)). (3.1)

where

gi(t, h)= α1hk
∫ T

t
eα2(s)ds+ α3hγ (β+k−1)

∫ T

t
eα4(s)ds+ α5,

α1 = ηiυ

(1− β)(γ − 1)
,

https://doi.org/10.1017/S1748499525000028 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499525000028


6 Jinhui Zhang et al.

α2(s)= d1(s− T)
(1− γ )α1

,

α3 = − w1
1− γ

(
β

1− β

)βγ
η
γ
i υ

βγ ,

α4(s)= d2(s− T)
(1− γ )α3

,

α5 =w
1

1−γ
4 +

(
γ − 1
d3

w
1

1−γ
3 +w

1
1−γ
4

)
(e

d1(T−t)
γ−1 − 1),

d1 = α1d3 + α1(γ − 1)(γ − ζ + λHσH(t))k− 1
2
α1(γ − 1)σ 2

H(t)k(k− 1),

d2 = α3d3 + α3(γ − 1)(γ − ζ + λHσH(t))γ (β + k− 1)

− 1
2
α3(γ − 1)σ 2

H(t)γ (β + k− 1)[γ (β + k− 1)− 1]

d3 = δ − (γ + 1)θi(t)− γ r − 1
2

γ (μ− r)2

σ 2
S (ρ2HS − 1)(γ − 1)

q= −γ + βγ

1− γ
,

ηi = (wiβ)
1

1−γ
(
βυ

1− β

)k−1
.

To ensure the non-negativity of Xi(τi)+ ki(τi,Xi(τi))
θi(τi) , we need to verify that the expression for

gi(t, h) is non-negative. Given thatwi > 0, υ > 0, and 0<β < 1, it follows that ηi > 0. Given γ < 1,
we can ensure that α1 > 0 and α3 > 0 and Xi(τi)+ ki(τi,Xi(τi))

θi(τi) can be non-negative.
For this case, we build upon the optimization framework proposed by Wei et al. (2020). Our

approach initiates by considering the optimization problem after the first death and subsequently
addresses the optimization problem before the first death. Compared to their work, ourmodel fur-
ther includes housing consumption and investment, thereby exploring the area of housing assets.
By incorporating housing consumption and insurance demand, our model addresses two sce-
narios: after the first death, where the surviving breadwinner cannot purchase life insurance, a
variable annuity, or real estate assets, which is considered an extension of the traditional Richard’s
model (Richard, 1975). Our extended model integrates housing elements such as consumptiona
and investment component, distinguishing it from other extensions of Richard’s model (e.g.,
Pliska & Ye, 2007; Zhang et al., 2021 and Chen et al., 2024), which initially did not consider these
aspects. This incorporation broadens the scope of the model and allows for a more comprehensive
analysis of the interplay between housing decisions and life insurance.

3.2 The optimization problem before the first death
We now consider the case that both breadwinners are alive. For each breadwinner, the optimal
strategy has been discussed in Section 3.1 when t> T1. The optimal strategies are written as
c̄i(t, xt), k̄i(t, xt), π̄(t, xt), φ̄4i(t, xt) and φ̄5i(t, xt) when both breadwinners are alive.

We simplify the notation Vi(t, x, h) for the value function to Vi. The proof of the following
dynamic equation is stated in Appendix B.
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V = 1
1− FT1 (t)

max
u∈At

E

{∫ T

t

[∫ ∞

z
f (s, z)ds

]
V1

(
z, X(z)+ k̄2(z, X(z))

θ2(z)
,H(z)

)
dz

+
∫ T

t

[∫ ∞

s
f (s, z)dz

]
V2

(
s, X(s)+ k̄1(s, X(s))

θ1(s)
,H(z)

)
ds

+
∫ T

t

[
1− FT1 (s)

]
e−δ(s−t) [w1U1(c̄1(s, X1(s)))+w2U1(c̄2(s, X2(s)))] ds

+w4e−δ(T−t)U2(X(T))
∫ ∞

T

∫ ∞

T
f (s, z)dsdz

}
, (3.2)

where

dX(t)= [r(t)+ (μ(t)− r(t))π̄(t)]X(t)dt +
2∑

i=1
[−φ̄4i(t)υH(t)−

(
c̄i(t)+ k̄i(t)− Yi(t)

)
]dt

+ π̄(t)X(t)σS(t)dZS(t)+
2∑

i=1
[φ̄5i(t)H(t)ρHSσH(t)]dZS(t)

+
2∑

i=1
φ̄5i(t)H(t)ρHσH(t)dZH(t).

The proof of the following proposition can be found in Appendix C.

Proposition 3.2. We write Ṽ = (1− FT1 (t))V. Rewriting this, We assume the value function
follows the ansatz:

V = g(t, h)1−γ

γ [1− FT1(t)]
(x+ b(t))γ

and

Ṽ = g(t, h)1−γ

γ
(x+ b(t))γ .

The optimal strategies are given by

c̄∗i (t)=
β

(1− β)g(t, h)
υηihk(x+ b(t)),

π̄∗(t)= −(μ(t)− r(t))
(1− ρ2HS)σ 2

S (t)x(γ − 1)
(x+ b(t)),

φ̄∗
4i(t)=

ηihk−1

g(t, h)
(x+ b(t)),

φ̄∗
5 (t)=

[
ρHS(μ(t)− r(t))

(1− ρ2HS)σS(t)σH(t)h(γ − 1)
+ gh(t, h)

g(t, h)

]
(x+ b(t)). (3.3)

where

g(t, h)=
⎛
⎝w

1
1−γ
4 + d̃2

γ
1−γ d̃1

⎞
⎠ e

γ
1−γ d̃1(T−t) − d̃2

γ
1−γ d̃1

,

k= −γ + βγ

1− γ
,
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ηi = (wiβ)
1

1−γ
(
βυ

1− β

)k−1
,

b(t)=
2∑

i=1

∫ ω

t
e−

∫ s
t (r(u)+θi(u))duYi(s),

d̃1 = r(t)+ (μ(t)− r(t))2

(1− ρ2HS)σ 2
S (t)(γ − 1)

+ 1
2

(μ(t)− r(t))2

(1− ρ2HS)2σ 2
S (t)(γ − 1)

+ P̃1
γ

+ P̃3
x
,

d̃2 = (1− FT1 (t))
− 1
γ−1

[
w1
η
γ
1
γ

+w2
η
γ
2
γ

](
β

1− β

)βγ
υβγ hγ (k+β−1),

− (1− FT1 (t))
− 1
γ−1

(η1 + η2)υhk

1− β
+ P̃2γ− γ

γ−1 x
1

γ−1 ,

P̃1 = −
(
δ +

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
,

P̃2 = θ1(x+ b2)+ θ2(x+ b1),

P̃3 =
(
1− 1

γ

)(
θ1∫∞

t f (t, z)dz

) γ
γ−1

g2(t, h)
∫ ∞

t
f (t, z)dz

+
(
1− 1

γ

)(
θ2∫∞

t f (s, t)ds

) γ
γ−1

g1(t, h)
∫ ∞

t
f (s, t)ds.

Diverging from the framework presented by Kung & Yang (2020), we introduce a novel insur-
ance component that extends Richard’s foundational model (Richard, 1975). While Kung & Yang
(2020) focus on integrating housing and life insurance decisions within a continuous time setting,
our approach enhances this integration by specifically addressing the optimal consumption and
investment strategies for households with two breadwinners following the first death. It is impor-
tant to note that although k̄∗

i (t, x) can be negative, we must ensure that the expression k̄∗
i (t,x)
θi(t) + x

remains positive. Following the approach of Kung & Yang (2020), we apply a loading factor to
reduce insurance demand. As demonstrated in Section 4, by choosing specific value of l= 0.1, we
can ensure k∗

i (t,x)
θi(t) + x is non-negative.

The optimal solution after the first death represents a significant advancement over Richard’s
original model, as it now accounts for the housing components crucial for realistic financial plan-
ning and decision-making. By structuring the problem to capture the dynamic decision-making
process of both individuals before the first death, our model accurately captures the dynamics of
life insurance, housing, and financial decision-making over the life cycle of couples with correlated
lifetimes, providing a more realistic and practical framework for optimizing consumption and
investment strategies. Compared to Wei et al. (2020), our model includes housing elements for
consumption and investment, broadening the study of optimal strategies. By incorporating this
additional insurance component and integrating housing elements, our model provides a more
robust framework for understanding and optimizing the consumption and investment behaviors
of individuals facing the dual challenges of housing and life insurance decisions in a continuous
time context.
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Table 1. Calibrated parameters in the mortality model

mM σM mF σF α0 α5 α10

85.82 11.13 89.02 8.89 2.02 1.67 1.33

4. Numerical results and discussion
In our numerical demonstration, two cases are studied. For the optimisation problem after the
first death (case 1), there is only one alive breadwinner. This person can purchase life insurance,
a variable annuity, and real estate assets. For the second case (the optimisation problem before
the first death), both breadwinners are alive. The couple can purchase life insurance, a variable
annuity, and real estate assets. Calibration parameters in themortality model are shown in Table 1.

The marginal probability distribution functions for male and female are assumed to be
expressed by

F1(t)= 1− exp{exp(−m1/σ1)[1− exp(t/σ1)]},
F2(t)= 1− exp{exp(−m2/σ2)[1− exp(t/σ2)]}.

These two-parameter Gompertz distributions imply the following density functions of τ1 and τ2:

f1(t)= 1
σ1

exp
{
exp(−m1/σ1)[1− exp(t/σ1)]− m1

σ1
+ t
σ1

}
,

f2(t)= 1
σ2

exp
{
exp(−m2/σ2)[1− exp(t/σ2)]− m2

σ2
+ t
σ2

}
.

In this case, the mortality rate of each wage earner is given by

λ1(t)= 1
σ1

e
t−m1
σ1 ,

λ2(t)= 1
σ2

e
t−m2
σ2 .

We use the following Gumbel–Hougaard copula to capture the dependence structures between
the mortalities of a couple:

C(s, t)= e−[(−ln s)α+(−ln t)α]−1/α
, α ≥ 1.

Under this model, the joint probability distribution of (τ1, τ2) is given by

F(t, t)= e−[(−ln FM(t))α+(−ln FF(t))α]
1
α .

The distribution function of T1 is
FT1 (t)= F1(t)+ F2(t)− F(t, t).

Also, we have the following results:

f1(t)=
∫ ∞

t
f (t, z)dz + f1(t)F(t, t)

F1(t)

[
1+

(
ln F2(t)
ln F1(t)

)α] 1−α
α

,

f2(t)=
∫ ∞

t
f (s, t)ds+ f2(t)F(t, t)

F2(t)

[
1+

(
ln F1(t)
ln F2(t)

)α] 1−α
α

.

We use α0, α5 and α10 to denote the value of α in the copula model when the age difference
between male and female is 0, 5 and 10, respectively.

In the numerical examples, we assume that the age of male is 75, and the age of female is 70. The
age difference is 5, which makes α = 1.67. Also, it is supposed that T1 = τ2, which implies that the
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Table 2. Values of parameters in the numerical experiments

β δ r μ σS γ v ω1 ω2 ω3

0.2 0.03 0.05 0.0107 0.2669 0.3 0.025 0.4 0.45 0.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ω4 t T λH σH h ρHS ζ x α
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.05 0 5 0.5104 0.0601 2150 0.2503 0.015 200000 1.67

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

Figure 1. Effect of t on the optimal investment strategies.

wife dies before the husband, and so for the case of after the first death we focus on the strategies
of the male. Most of the values of the model parameters shown in Table 2 are borrowed fromKung
& Yang (2020). In Fig. 1, we show the effects of time t on the optimal investment strategies. As we
can see, the household will not adjust the optimal investment decisions as time varies. The optimal
investment strategy is a fixed negative constant which is independent of wealth level x and time t.
This is consistent with the expressions for π∗

i in (3.5) and π̄∗ in (3.14). This is because we assume
that μ(t), r(t) and σS(t) are constants for simplicity, and also we do not consider income of the
household in the numerical demonstration.

Fig. 2 displays the effects of time on the optimal consumption strategies. It can be observed that
before the first death, the consumption strategies of male and female are both decreasing functions
of time t. Comparatively speaking, the consumption policy for the case of after the first death is
more sensitive to the change of time. Usually, it is a fact that the consumption strategy increases
w.r.t. time. This is due to the fact that consumption strategy is an increasing function of labor
income and usually the labor income increases as time goes by before the retirement time (see, for
example, Kung & Yang, 2020 and Wei et al., 2020). However, this kind of result is not obtained in
our article because we assume the household has no labor income in this section to illustrate the
theoretical results. The household will reduce the consumption rates to keep the wealth for future
use in our case. Similar arguments can be used to analyze the effects of time t on the housing
consumption strategy which has been shown in Fig. 3.

In Fig. 4, we examine the effects of t on the optimal insurance strategy. The household usu-
ally spends more on life insurance as their ages increase to hedge against its mortality risk and
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Figure 2. Effect of t on the optimal consumption strategies.
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Figure 3. Effect of t on the optimal housing consumption strategies.

labor income risk. But in our case, the life insurance strategy declines as the human capital is not
considered and purchasing life insurance makes little sense. Also, a negative life insurance strat-
egy after the first death means the household receives payment from the insurance company. To
ensure that k∗

i (t,x)
θi(t) + x remains non-negative, we set the loading factor to l= 0.1. This adjustment
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Figure 4. Effect of t on the optimal insurance strategies.

helps maintain positivity in the expression by moderating the impact of k∗
i (t, x) when it is neg-

ative, effectively reducing the insurance demand. By following this approach, we ensure that the
utility function U2(·) remains well-defined and applicable within the value function.

Fig. 5 demonstrates how time t impacts optimal housing investment strategies for different sce-
narios. Considering that the pandemic has introduced significant uncertainty and volatility into
the financial markets, which increases the demand for safer investments and leads to a decrease
in stock prices and potentially lower expected returns, we assume a smaller value for the expected
return of risky asset in this section. This is why the the values of the optimal investment strategy
for risky asset in Fig. 1 are negative. On the other hand, housing and risk-free asset may appear
relatively more attractive compared to stocks, which explains why the optimal housing investment
strategies in Fig. 5 are positive. Finally, Fig. 6 shows the effects of wealth on the value functions
for two cases. Not surprisingly, we find that the value functions increase w.r.t. the level of wealth.

In what follows, we show the effects of risk aversion parameter γ on the optimal control poli-
cies. In each of the following figures, we vary the value of γ from 0.01 to 0.5. Fig. 7 shows the
impact of γ on the optimal investment decisions in risky asset. As we can observe, if the wage
earner is more risk averse, they tend to sell more risky assets to mitigate financial risk, which
makes intuitive sense.

In Figs. 8 and 9, we illustrate how the optimal consumption strategies and optimal housing
consumption strategies vary w.r.t. γ , respectively. It can be seen that a more risk-averse wage
earner consumes less. This stems from the tendency of risk-averse individuals to prefer more
certain outcomes, often sacrificing potential higher utility from consumption to avoid poten-
tial financial instability or uncertainty. In this sense, our results are consistent with those in
Chen et al. (2024).

From Fig. 10, we can see that optimal housing investment strategies increase as γ increases
and the difference between before and after the first death is insignificant. In both cases, housing
is considered as a relatively stable and less volatile asset compared to stocks, and hence more
risk-averse breadwinner tends to invest more in housing.
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Figure 5. Effect of t on the optimal housing investment strategies.
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Figure 6. Effect of x on the value functions.

Fig. 11 displays how γ influences the optimal life insurance purchasing strategies. In the litera-
ture, different patterns of life insurance demand w.r.t. γ have been reveled, see, for example, Kwak
& Lim (2014), Han & Hung (2017) and Chen et al. (2024). In our model setup, the results show
the following economic implications. First, the impact of γ for the case of after the first death
is not significant. Second, for the other two cases, the optimal insurance strategies increase and
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Figure 7. Effects of γ on the optimal investment strategies.
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Figure 8. Effects of γ on the optimal consumption strategies.

then decrease w.r.t. γ . When γ is small, the wage earner who is more risk averse tends to purchase
more life insurance to hedge against the potential losses frommortality risk and protect their fam-
ily. However, if γ is relatively larger, housing investment may be considered as a more attractive
and effective tool than life insurance for ensuring an adequate legacy and future consumption for
dependents after the death of breadwinner, which results in a reduction in life insurance demand.
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Figure 9. Effects of γ on the optimal housing consumption strategies.
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Figure 10. Effects of γ on the optimal housing investment strategies.

The numerical examples consider a couple with a 5-year age difference. Mortality dependency
significantly influences consumption, investment, and insurance decisions. Before the first death,
mortality dependency is reflected in a decreasing consumption pattern. Conversely, after the first
death (without mortality dependency), consumption displays an increasing trend over time. The
effect of mortality dependency is further evident in insurance purchase and housing investment.
Mortality dependency prompts a demand for insurance, leading to a gradual decrease over time.
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Figure 11. Effects of γ on the optimal insurance strategies.

In scenarios without mortality dependency (after the first death), the theoretical demand shifts
towards annuities, as illustrated in our example.Moreover, mortality dependency influences hous-
ing investment, resulting in a rising trend in housing consumption. These findings highlight
the intricate interplay between mortality dependency and diverse financial decisions within the
specified scenarios.

5. Conclusion
In summary, this article investigates an optimal strategy problem within the context of a couple
of two breadwinners with uncertain lifetimes. Optimal strategies for consumption, investment,
housing, and life insurance have been determined to maximize utility. This study considers the
correlated prices for housing assets and investment risky assets. Moreover, the model employs
copula functions to account for correlated mortality rates and capture the breaking heart effect.

The analytical solutions for optimal strategies provide valuable insights, and the numerical
results in this article enhance our understanding of complex dynamics. This research addresses
knowledge gaps in life insurance, consumption, investment, and housing asset strategies for cou-
ples with uncertain lifetimes and mortality dependence. The findings offer a clear roadmap for
decision-making in households dealing with financial uncertainties.

Regarding optimal consumption strategies, it can be shown that before the first death in a
household, both male and female consumption decreased over time. This observed decrease con-
trasts with conventional expectations of increasing consumption over time due to rising labor
income, which we excluded in the numerical demonstration to emphasize theoretical results.

After the first death, the consumption trend became less sensitive to time changes, indicating a
stabilization in consumption rates. This deviation from traditional models, which predict a steady
increase in consumption, reflects the household’s strategy to preserve wealth for future use. By
decreasing consumption gradually, households aim to accumulate savings as a financial buffer for
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retirement or unexpected expenses, maintaining a stable standard of living even after the loss of a
partner.

The analysis also demonstrates the impact of time on housing consumption and life insurance
strategies. Specifically, it shows that the decline in life insurance strategy over time, contrary to
conventional expectations, can be attributed to the exclusion of human capital considerations in
this particular case. The observed declining trend in housing assets suggests that retirees may
increasingly consider using reverse mortgages to access home equity as a financial resource.

This article has the potential to influence policies related to housing, spending, investing,
and insurance for retirees. By providing a deeper understanding of how housing assets, reverse
mortgages, and retiree decisions interact, policymakers can develop more effective strategies for
housing finance, retirement planning, and overall financial well-being. The findings may lead to
the creation of more targeted policies that address the unique needs of retired couples, enhanc-
ing solutions for accessing housing equity and ensuring financial security during retirement.
This improved policy framework could significantly benefit retirees by offering better options for
managing their financial resources and maintaining their quality of life.
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Appendix A.
We can firstly write the continuous time Hamilton–Jacobi–Bellman (HJB) equation. Here, we
simplify the notation Vi(t, x, h) for the value function to Vi.

(δ + θi(t))Vi = sup
ci,πi,φ5i ,φ4i ,ki

{
wiU1(ci(t), φ4i(t))+w3θi(t)U2

(
x+ ki(t, x)

θi(t)

)
+Vit

+ViX{[r(t)+ (μ(t)− r(t))πi(t)]x− φ4i(t)υh− (ci(t)+ ki(t)− Yi(t))}
+ViH[H(t)(r(t)+ λHσH(t)− ζ )]+ 1

2
ViHH[H2(t)σ 2

H(t)]

+ 1
2
ViXX[π2

i (t)x
2σ 2

S (t)+ φ2Ii(t)h
2σ 2

H(t)

+ 2ρHSπi(t)φ5i(t)xhσS(t)σH(t)]

+ViXH
[
xhσS(t)σH(t)ρHSπ(t)+ φ5i(t)h2σ 2

H(t)
] }

, t ∈ [0, T) (A1)

and Vi at time T is equal to w4U2(x).
We assume that the value function takes the form of

V1 = 1
γ
g1(t, h)1−γ (x+ b1(t))γ

V2 = 1
γ
g2(t, h)1−γ (x+ b2(t))γ ,

where the bi(t)=
∫ ω
t e−

∫ s
t (r(u)+θi(u))duY(s)ds represents the human capital for breadwinner i. We

can write bi(t)= Y
∫ ω
t e−r×(s−t)+θi(s)ds= ai(r,ω− t)Y if we assume r and Y are constant.
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The derivatives of Vi are stated as follows:

Vit = γVi

[
1− γ

γ

git(t, h)
gi(t, h)

+ bit(t)
x+ bi(t)

]
,

Vix = γVi
x+ bi(t)

,

Vixx = γ (γ − 1)Vi
(x+ bi(t))2

,

Vih = (1− γ )Vigih(t, h)
gi(t, h)

,

Vihh = γ (1− γ )Vi

[
1
γ

gihh(t, h)
gi(t, h)

−
(
gih(t, h)
gi(t, h)

)2
]
,

Vixh = (1− γ )γVi
gih(t, h)

gi(t, h)(x+ bi(t))
. (A2)

According to the first-order conditions for optimal consumption, c∗i (t) and optimal housing
consumption, φ∗

4i(t), we have

wiβ(φ∗
4i(t))

1−β(c∗i (t))β−1 [(c∗i (t))β(φ∗
4i(t))

1−β]γ−1 =Vix,

wi(1− β)(φ∗
4i(t))

−β(c∗i (t))β
[
(c∗i (t))β(φ∗

4i(t))
1−β]γ−1 = υhVix

and further we find

c∗i (t)=
β

1− β
υηihkV

1
γ−1
ix ,

φ∗
4i(t)= ηihq−1V

1
γ−1
ix ,

k∗
i (t, x)= θi(t)

[(
1
w3

Vix

) 1
γ−1 − x

]
, (A3)

where q= −γ+βγ
1−γ and ηi = (wiβ)

1
1−γ

(
βυ
1−β

)k−1
.

We can also find that

U1(c∗i (t), φ∗
4i(t))=

[(c∗i (t))β(φ∗
4i(t))

1−β]γ

γ

=
υβγ η

γ
i h(k+β−1)γ

(
β

1−β
)γβ

γ
V

γ
γ−1
ix ,

U2

(
x+ k∗

i (t, x)
θi(t)

)
= w

−γ
γ−1
3
γ

V
γ
γ−1
ix . (A4)

According to the first-order conditions for the optimal proportions of the wealth invested in
risky assets, π∗

i (t), and optimal housing investment units, φ∗
5i(t), we have

0= (μ(t)+ r(t))xVix + π∗
i (t)x

2σ 2
S (t)Vixx + ρHSφ

∗
5i(t)xhσSσHVixx + ρHSxhσS(t)σH(t)Vixh,

0= φ∗
5i(t)h

2σ 2
H(t)Vixx + π∗

i (t)ρHSxhσS(t)σH(t)Vixx + h2σ 2
HVixh
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and further we find

π∗
i (t)=

−(μ(t)− r(t))Vix

(1− ρ2HS)σ 2
S (t)xVixx

,

φ∗
5i(t)=

ρHS(μ(t)− r(t))Vix

(1− ρ2HS)σS(t)σH(t)hVixx
− Vixh

Vixx

= ρHS(μ(t)− r(t))Vix − (1− ρ2HS)σS(t)σH(t)hVixh

(1− ρ2HS)σS(t)σH(t)hVixx
. (A5)

Here, to simplify the equations, we denote ci as c(t), θi as θ(t), μ as μ(t), r as r(t), πi as πi(t),
S as S(t), H as H(t) σS as σS(t), σH as σH(t), ki as ki(t, x), Yi as Yi(t), bi as bi(t), φ4i as φ4i(t), and
φ5i as φ5i(t). Then, we can have the continuous time HJB equation

(δ + θi)Vi = sup
ci,πi,φ5i ,φ4i ,ki

{
wiU1(ci, φ4i)+w3θiU2

(
x+ ki

θi

)

Vit +ViX{[r + (μ− r)πi]x− φ4iυh− (ci + ki − Yi)}
+ViH[h(r + λHσH − ζ )]+ 1

2
ViHH[h2σ 2

H]

+ 1
2
ViXX[π2

i x
2σ 2

S + φ25ih
2σ 2

H

+ 2ρHSπiφ5i xhσSσH]

+ViXH
[
xhσSσHρHSπi + φ5ih2σ 2

H
] }

for t ∈ [0, T). (A6)

By substituting (A2)–(A5) into (A6), we can have

0=Vi(δ− θi)− (1− γ )w
− 1
γ−1

3 γ
− 1
γ−1 (x+ bi)−

γ
γ−1V

γ
γ−1
i

−wiη
γ
i h

γ (β+k−1)υβγ
(

β

1− β

)βγ
γ

− 1
γ−1 (x+ bi)−

γ
γ−1V

γ
γ−1
i

+Vi

[
git(t, h)(γ − 1)

gi(t, h)

]
−Viγ θi − γ

− 1
γ−1 (x+ bi)−

γ
γ−1V

γ
γ−1
i

ηihkυ
β − 1

−Viγ

[
r + (μ− r2)

σ 2
S (ρ2HS − 1)(γ − 1)

]
+Vi(γ − 1)h(γ − ζ + λHσH)

gih(t, h)
gi(t, h)

− 1
2
Vi(γ − 1)h2σ 2

H
gihh(t, h)
gi(t, h)

+ 1
2
Viγ

μ− r
σ 2
S (ρ2HS − 1)(γ − 1)

. (A7)

Then, we divide (A7) by (x+bi)γ
γ gγi (t,h)

and find

0= gi(t, h)d3 + git(t, h)(γ − 1)+ gih(t, h)(γ − 1)h(γ − ζ + λHσH)

− 1
2
(γ − 1)h2σ 2

H(t)gihh(t, h)+ d4, (A8)
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where

d3 = δ − (γ + 1)θi(t)− γ r − 1
2

γ (μ− r)2

σ 2
S (ρ2HS − 1)(γ − 1)

,

d4 = (γ − 1)w
1

1−γ
3 −w1

(
β

1− β

)βγ
η
γ
i h

γ (β+k−1)υβγ + 1
1− β

ηihkυ.

According to terminal condition, gi(t, h) has the boundary condition, that is, gi(T, h)=w
1

1−γ
4 .

Hence, closed form result of gi(t, h) can be found from (A8).

gi(t, h)= α1hk
∫ T

t
eα2(s)ds+ α3hγ (β+k−1)

∫ T

t
eα4(s)ds+ α5,

where

α1 = ηiυ

(1− β)(γ − 1)
,

α2(s)= d1(s− T)
(1− γ )α1

,

α3 = − w1
1− γ

(
β

1− β

)βγ
η
γ
i υ

βγ ,

α4(s)= d2(s− T)
(1− γ )α3

,

α5 =w
1

1−γ
4 +

(
γ − 1
d3

w
1

1−γ
3 +w

1
1−γ
4

)
(e

d1(T−t)
γ−1 − 1),

d1 = α1d3 + α1(γ − 1)(γ − ζ + λHσH)k− 1
2
α1(γ − 1)σ 2

Hk(k− 1),

d2 = α3d3 + α3(γ − 1)(γ − ζ + λHσH)γ (β + k− 1)

− 1
2
α3(γ − 1)σ 2

H(t)γ (β + k− 1)[γ (β + k− 1)− 1].

Appendix B.
We firstly define the following conditional probability distribution functions.

F1(s;t)= P(τ1 ≤ s | τ1 > t),
F2(s;t)= P(τ2 ≤ s | τ2 > t),
FT1 (s;t)= P(T1 ≤ s | T1 > t),

F(s1, s2;t)= P(τ1 ≤ s1, τ2 ≤ s2 | T1 > t),

The corresponding conditional density functions are defined as f1(s;t), f2(s;t), fT1 (s;t) and
f (s1, s2;t).
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Lemma B1.

fi(x;t)= fi(x)
1− Fi(t)

, i= 1, 2,

fT1 (x;t)=
fT1 (x)

1− FT1 (t)

f (x, y;t)= f (x, y)
1− FT1 (t)

where T1 = τ1 ∧ τ2 and FT1 (t)= F1(t)+ F2(t)− F(t, t).

Since the proof of the above lemma closely resembles that of Lemma 3.2 in Wei et al. (2020), the
details are omitted here.

To obtain Equation (3.2), we firstly write the follows terms which are

∫ τ1∧T

t
w1e−δ(s−t)U1(c1(s, X(s)))ds+

∫ τ2∧T

t
w2e−δ(s−t)U1(c2(s, X(s)))ds

=
∫ T1∧T

t
w1e−δ(s−t)U1(c1(s, X(s)))ds+

∫ T1∧T

t
w2e−δ(s−t)U1(c2(s, X(s)))ds

+
∫ τ1∧T

T1∧T
w1e−δ(s−t)U1(c1(s, X(s)))ds+

∫ τ2∧T

T1∧T
w2e−δ(s−t)U1(c2(s, X(s)))ds

=
∫ T1∧T

t
w1e−δ(s−t)U1(c1(s, X(s)))ds+

∫ T1∧T

t
w2e−δ(s−t)U1(c2(s, X(s)))ds

+ 1{T1=τ2<τ1,T1≤T}
∫ τ1∧T

T1
w1e−δ(s−t)U1(c∗1(s, X(s)))ds

+ 1{T1=τ1<τ2,T1≤T}
∫ τ2∧T

T1
w2e−δ(s−t)U1(c∗2(s, X(s)))ds, (B1)

w31{τ1∨τ2≤T}e−δ(τ1∨τ2)U2

(
X(τ1 ∨ τ2)+

2∑
i=1

ki(τi, X(τi))
θi(τi)

1{τi=τ1∨τ2}

)

=w31{T1=τ2<τ1≤T}e−δτ1U2

(
X(τ1)+ k∗

1(τ1, X(τ1))
θ1(τ1)

)

+w31{T1=τ1<τ2≤T}e−δτ2U2

(
X(τ2)+ k∗

1(τ2, X(τ2))
θ2(τ2)

)
, (B2)

and

w41{τi>T}e−δ(T−t)U2(X(T))
=w4

(
1{T1=τ2≤T<τ1} + 1{T<T1=τ2<τ1}

)
e−δ(T−t)U2(X(T))

+w4
(
1{T1=τ1≤T<τ2} + 1{T<T1=τ1<τ2}

)
e−δ(T−t)U2(X(T)). (B3)

Following Equations (B1)–(B3), we can find
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V = max
u∈At

E
{ ∫ τi∧T

t
wie−δ(s−t)U1(ci(s), φ4(s))ds

+w31{τi≤T}e−δ(τi−t)U2

(
X(τi)+ ki(τi, X(τi))

θi(τi)

)

+w41{τi>T}e−δ(T−t)U2(X(T))
}

= max
u∈At

E
{ ∫ T1∧T

t
w1e−δ(s−t)U1(c̄1(s, X(s)))ds+

∫ T1∧T

t
w2e−δ(s−t)U1(c̄2(s, X(s)))ds

+ 1{T1=τ2<τ1,T1≤T}
[ ∫ τ2∧T

T1
w2e−δ(s−t)U1(c∗2(s, X(s)))ds

+w31{τ2≤T}e−δτ2U2

(
X(τ2)+ k∗

2(τ2, X(τ2))
θ2(τ2)

)
+w41τ2>T}e−δ(T−t)U2(X(T))

]

+ 1{T1=τ1<τ2,T1≤T}
[ ∫ τ1∧T

T1
w1e−δ(s−t)U1(c∗1(s, X(s)))ds

+w31{τ1≤T}e−δτ1U2

(
X(τ1)+ k∗

1(τ1, X(τ1))
θ1(τ1)

)
+w41τ1>T}e−δ(T−t)U2(X(T))

]
+w4

(
1{T<T1=τ2<τ1} + 1{T<T1=τ1<τ2}

)
e−δ(T−t)U2(X(T))

}
. (B4)

We can further simplify the terms in Equation (B4) as follows:

max
u∈At

E
{ ∫ T1∧T

t
e−δ(s−t) [w1U1(c̄1(s, X(s)))+w2U1(c̄2(s, X(s)))] ds

}

= max
u∈At

E
{
1{t<T1<≤T}

∫ T1

t
e−δ(s−t) [w1U1(c̄1(s, X(s)))+w2U1(c̄2(s, X(s)))] ds

+ 1{T1>T}
∫ T

t
e−δ(s−t) [w1U1(c̄1(s, X(s)))ds+w2U1(c̄2(s, X(s)))

]
ds
}

= max
u∈At

E
{ ∫ T

t

[
1− FT1 (s)
1− FT1 (t)

]
e−δ(s−t) [w1U1(c̄1(s, X(s)))+w2U1(c̄2(s, X(s)))] ds

}
, (B5)

max
u∈At

E
[
1{T1=τ2<τ1,T1≤T}V1

(
T1, X(T1)+ k̄2(T1, X(T1))

θ2(T1)

) ]

= max
u∈At

E
[
(1{τ2≤T,τ1>T} + 1{τ2≤τ1≤T})V1

(
T1, X(T1)+ k̄2(T1, X(T1))

θ2(T1)

) ]

= max
u∈At

E
{ ∫ T

t

[∫∞
z f (s, z)ds
1− FT1 (t)

]
V1

(
z, X(z)+ k̄2(z, X(z))

θ2(z)

)
dz
}
, (B6)

max
u∈At

E
[
1{T1=τ1<τ2,T1≤T}V2

(
T1, X(T1)+ k̄1(T1, X(T1))

θ1(T1)

) ]

= max
u∈At

E
[
(1{τ1≤T,τ2>T} + 1{τ1≤τ2≤T})V2

(
T1, X(T1)+ k̄1(T1, X(T1))

θ1(T1)

) ]

= max
u∈At

E
{ ∫ T

t

[∫∞
s f (s, z)dz
1− FT1 (t)

]
V2

(
s, X(s)+ k̄1(s, X(s))

θ1(s)

)
ds
}
, (B7)
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and

max
u∈At

E
[
w4
(
1{T<T1=τ2<τ1} + 1{T<T1=τ1<τ2}

)
e−δ(T−t)U2(X(T))

]

= max
u∈At

E

{
w4e−δ(T−t)U2(X(T))

1− FT1 (t)

[∫ ∞

T

∫ ∞

z
f (s, z)dsdz +

∫ ∞

T

∫ ∞

s
f (s, z)dzds

]}

= max
u∈At

E

{
w4e−δ(T−t)U2(X(T))

1− FT1 (t)

∫ ∞

T

∫ ∞

T
f (s, z)dsdz

}
. (B8)

Based on Equations (B5)–(B8), we can have

V = 1
1− FT1 (t)

max
u∈At

E
{ ∫ T

t

[
1− FT1 (s)

]
e−δ(s−t) [w1U1(c̄1(s, X(s)))+w2U1(c̄2(s, X(s)))] ds

+
∫ T

t

[∫ ∞

z
f (s, z)ds

]
V1

(
z, X(z)+ k̄2(z, X(z))

θ2(z)

)
dz

+
∫ T

t

[∫ ∞

s
f (s, z)dz

]
V2

(
s, X(s)+ k̄1(s, X(s))

θ1(s)

)
ds

+w4e−δ(T−t)U2(X(T))
∫ ∞

T

∫ ∞

T
f (s, z)dsdz

}
. (B9)

Appendix C.
Here, to simplify the equations, we denote c̄i as c̄i(t), θi as θ(t), μ as μ(t), r as r(t), πi as πi(t), S as
S(t), H as H(t) σS as σS(t), σH as σH(t), k̄i as k̄i(t, x), Yi as Yi(t), bi as bi(t), φ̄4i as φ̄4i(t), and φ̄5 as
φ̄5(t). We write Ṽ = (1− FT1 (t))V . According to It’s formula, the dynamics of the value function
Ṽ is

dṼ = Ṽtdt + ṼX{[r + (μ− r)π̄]X −
2∑

i=1

[
φ̄4iυH + (c̄i + k̄i − Yi)

]
}dt

+ ṼH[H(r + λHσH − ζ )]dt + 1
2
ṼHH[H2σ 2

H]dt

+ 1
2
ṼXX[π̄2X2σ 2

S + φ̄25H
2σ 2

H + 2ρHSπ̄ φ̄5XHσSσH]dt

+ ṼXH
[
XHσSσHρHSπ̄ + φ̄5H2σ 2

H
]
dt

+ {ṼX[π̄XσS + φ̄5HρHSσH]+ ṼHρHSσH}dZS
+ [ṼXφ̄5HρHσH + ṼXHρHσH]dZH for t ∈ [0, T].

We can then obtain the HJB equation.
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(
δ+

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
Ṽ

= sup
c̄i,π̄ ,φ̄5,φ̄4i ,k̄i

{
(1− FT1 )

2∑
i=1

wiU1(c̄i, φ̄4i)+ Ṽt

+V1

(
x+ k̄2(t, x)

θ2
, h

) ∫ ∞

t
f (s, t)ds+V2

(
x+ k̄1(t, x)

θ1
, h

) ∫ ∞

t
f (t, z)dz

+ ṼX{[r + (μ− r)π̄]x−
2∑

i=1
[φ̄4iυh+ (c̄i + k̄i − Yi)]}

+ ṼH[h(r + λHσH − ζ )]+ 1
2
ṼHH[h2σ 2

H]

+ 1
2
ṼXX[π̄2x2σ 2

S + φ̄25h
2σ 2

H + 2ρHSπ̄ φ̄5xhσSσH]

+ ṼXH
[
xhσSσHρHSπ̄ + φ̄5h2σ 2

H
] }

for t ∈ [0, T), (C1)

Ṽ =w4U2(X(T)) for t> T.

We assume that the value function has the ansatz of

V = g(t, h)1−γ

γ [1− FT1(t)]
(x+ B)γ

and

Ṽ = g(t, h)1−γ

γ
(x+ b)γ ,

where B=∑2
i=1

∫ ω
t e−

∫ s
t (r(u)+θi(u))duYids represents the human capital for breadwinner.

The derivatives of V are stated as follows:

Ṽt = γ Ṽ
[
1− γ

γ

gt(t, h)
g(t, h)

+ Bt
x+ B

]
,

Ṽx = γ Ṽ
x+ B

,

Ṽxx = γ (γ − 1)Ṽ
(x+ B)2

,

Ṽh = (1− γ )ṼgH(t, h)
g(t, h)

,

Ṽhh = γ (1− γ )Ṽ

[
1
γ

gHH(t, h)
g(t, h)

−
(
gH(t, h)
g(t, h)

)2
]
,

Ṽxh = (1− γ )γ Ṽ
gH(t, h)

g(t, h)(x+ B)
. (C2)

According to the first-order conditions for optimal consumption, c̄∗i and optimal housing
consumption, φ̄∗

4i , we have
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(1− FT1 (t))wiβ(φ̄∗
4i)

1−β(c̄∗i )β−1 [(c̄∗i )β(φ̄∗
4i)

1−β]γ−1 = Ṽx,

(1− FT1 (t))wi(1− β)(φ̄∗
4i)

−β(c̄∗i )β
[
(c̄∗i )β(φ̄∗

4i)
1−β]γ−1 = υhṼx

and by first-order condition, we can find

c̄∗i = β

1− β
υηihkV

1
γ−1
x ,

φ̄∗
4i = ηihk−1V

1
γ−1
x (C3)

and

π̄∗ = −(μ− r)Ṽx

(1− ρ2HS)σ 2
S xṼxx

φ̄∗
5 = ρHS(μ− r)Ṽx

(1− ρ2HS)σSσHhṼxx
− Ṽxh

Ṽxx

= ρHS(μ− r)Ṽx − (1− ρ2HS)σSσHhṼxh

(1− ρ2HS)σSσHhṼxx
. (C4)

where k= −γ+βγ
1−γ and ηi = (wiβ)

1
1−γ

(
βυ
1−β

)k−1
.

Now, we consider the following bivariate function

ψ(k̄1, k̄2)= −(k̄1 + k̄2)Ṽx +V1

(
t, x+ k̄2

θ2(t)

) ∫ ∞

t
f (s, t)ds

+V2

(
t, x+ k̄1(t)

θ1(t)

) ∫ ∞

t
f (t, z)dz

−
(
δ +

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
Ṽ

= (k̄1 + k̄2)Ṽx +
g1−γ1 (t, h)

(
x+ k̄∗

2
θ2

+ b2
)γ

γ

∫ ∞

t
f (s, t)ds

+
g1−γ2 (t, h)

(
x+ k̄∗

1
θ1

+ b1
)γ

γ

∫ ∞

t
f (t, z)dz

−
(
δ +

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
Ṽ . (C5)

We define (k̄1, k̄2) as a critical point. Sinceψk̄1 < 0,ψk̄2 < 0 andψk̄1k̄1ψk̄2k̄2 −ψ2
k̄1k̄2

> 0,ψ(k̄1, k̄2)
has the relative maximum point at (k̄∗

1, k̄
∗
2). Hence, we have

ψk̄∗
1
(k̄∗

1, k̄
∗
2)= −ṼX + g1−γ2 (t, h)

θ1

(
x+ k̄∗

1
θ1

+ b2

)γ−1 ∫ ∞

t
f (t, z)dz = 0,

ψk̄∗
2
(k̄∗

1, k̄
∗
2)= −ṼX + g1−γ1 (t, h)

θ2

(
x+ k̄∗

2
θ2

+ b1

)γ−1 ∫ ∞

t
f (s, t)ds= 0. (C6)
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Equation (C5) can be further simplified as

ψk̄∗
1
(k̄∗

1, k̄
∗
2)= −ṼX + g1−γ2 (t, h)

θ1

(
x+ k̄∗

1
θ1

+ b2

)γ−1 ∫ ∞

t
f (t, z)dz = 0,

ψk̄∗
2
(k̄∗

1, k̄
∗
2)= −ṼX + g1−γ1 (t, h)

θ2

(
x+ k̄∗

2
θ2

+ b1

)γ−1 ∫ ∞

t
f (s, t)ds= 0. (C7)

From Equation (C7), we can obtain

(
x+ k̄∗

1
θ1

+ b2

)γ−1

= ṼX(t, x)θ1
g1−γ2 (t, h)

∫∞
t f (t, z)dz(

x+ k̄∗
2
θ2

+ b1

)γ−1

= ṼX(t, x)θ2
g1−γ1 (t, h)

∫∞
t f (s, t)ds

(C8)

and

k̄∗
1 = θ1(− x− b2)+

(
ṼXθ1

g1−γ2 (t, h)
∫∞
t f (t, z)dz

) 1
γ−1

k̄∗
2 = θ2(− x− b1)+

(
ṼXθ2

g1−γ1 (t, h)
∫∞
t f (s, t)ds

) 1
γ−1

. (C9)

Based on Equations (C8) and (C9), Equation (C5) can be written as

ψ(k̄∗
1, k̄

∗
2)= −(k̄∗

1 + k̄∗
2)ṼX + g1−γ1 (t, h)

(
ṼXθ2

g1−γ1 (t,h)
∫∞
t f (s,t)ds

) γ
γ−1

γ

∫ ∞

t
f (s, t)ds

+ g1−γ2 (t, h)

(
ṼX(t,x)θ1

g1−γ2 (t,h)
∫∞
t f (t,z)dz

) γ
γ−1

γ

∫ ∞

t
f (t, z)dz

−
(
δ +

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
Ṽ

= (θ1(x+ b2)+ θ2(x+ b1))Ṽx

+
(
1− 1

γ

)(
θ1∫∞

t f (t, z)dz

) γ
γ−1

g2(t, h)
∫ ∞

t
f (t, z)dzṼ

γ
γ−1
x

+
(
1− 1

γ

)(
θ2∫∞

t f (s, t)ds

) γ
γ−1

g1(t, h)
∫ ∞

t
f (s, t)dsṼ

γ
γ−1
x

−
(
δ +

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
Ṽ . (C10)
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Based on Equations (C3) and (C4), Equation (C1) can be written as

0= sup
c̄i,π̄ ,φ̄5,φ̄4i ,k̄i

{
(1− FT1 (t))

[
w1
η
γ
1
γ

+w2
η
γ
2
γ

] (
β

1− β

)βγ
υβγ hγ (k+β−1)V

γ
γ−1
X + Ṽt

+ ṼX

[
rx+ (μ− r)2ṼX

(1− ρ2HS)σ 2
S ṼXX

+ Y1 + Y2

]

+ ṼH[h(r + λHσH − ζ )]− ṼX
(η1 + η2)υhk

1− β
V

1
γ−1
X

+ 1
2
ṼHH[h2σ 2

H]+
1
2
ṼXX

[
Ṽ2
X(μ− r)2

(1− ρ2HS)2σ 2
S Ṽ2

XX

+ ρ2HS(μ− r)2Ṽ2
X

(1− ρ2HS)2σ 2
S Ṽ2

XX
+ Ṽ2

XHh2σ 2
H

Ṽ2
XX

+ −2ρ2HS(μ− r)2Ṽ2
X

(1− ρ2HS)2σ 2
S Ṽ2

XX

]

+ ṼXH

[
−ρHS(μ− r)ṼXhσH
(1− ρ2HS)σSṼXX

+ ρHS(μ− r)ṼXhσH + (1− ρ2HS)ṼXHh2σ 2
HσS

(1− ρ2HS)σSṼXX

]}
+ψ(k̄∗

1, k̄
∗
2). (C11)

Substitute (C2) into (C11), we have

0= sup
c̄i,π̄ ,φ̄5,φ̄4i ,k̄i

{
γ Ṽ

[
1− γ

γ

gt(t, h)
g(t, h)

+ Bt
x+ B

]

+ (1− FT1 (t))
− 1
γ−1

[
w1
η
γ
1
γ

+w2
η
γ
2
γ

](
β

1− β

)βγ
υβγ hγ (k+β−1)γ

γ
γ−1 Ṽ

γ
γ−1 (x+ B)−

γ
γ−1

+ γ

x+ B(t)
Ṽ

[
r(t)x+ (μ(t)− r(t))2(x+ B)

(1− ρ2HS)σ 2
S (γ − 1)

+ Y1 + Y2

]

+ (1− γ )gH(t, h)
g(t, h)

Ṽ[h(r + λHσH − ζ )]

+ 1
2
γ (1− γ )Ṽ

[
1
γ

gHH(t, h)
g(t, h)

−
(
gH(t, h)
g(t, h)

)2
]
(h2σ 2

H)

− (1− FT1 (t))
− 1
γ−1

(η1 + η2)υhk

1− β
γ

γ
γ−1 Ṽ

γ
γ−1 (x+ B)−

γ
γ−1

+ 1
2
γ (γ − 1)Ṽ
(x+ B)2

[
(μ− r)2(x+ B)2

(1− ρ2HS)2σ 2
S (γ − 1)2

+ (x+ B)2h2σ 2
Hg2H(t, h)

g2(t, h)

]

+ γ (1− γ )
h2σ 2

Hg2H(t, h)Ṽ
g2(t, h)

+ψ(k̄∗
1, k̄

∗
2). (C12)
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Then, the continuous time (C12) becomes

0= g(t, h)d̃1 + gt(t, h)
1− γ

γ
+ gh(t, h)

1− γ

γ
[h(r + λHσH − ζ )]

+ ghh(t, h)
1
2
1− γ

γ
h2σ 2

H + d̃2, (C13)

where

d̃1 = r + (μ− r)2

(1− ρ2HS)σ 2
S (γ − 1)

+ 1
2

(μ− r)2

(1− ρ2HS)2σ 2
S (γ − 1)

+ P̃1
γ

+ P̃3
x
,

d̃2 = (1− FT1 (t))
− 1
γ−1

[
w1
η
γ
1
γ

+w2
η
γ
2
γ

] (
β

1− β

)βγ
υβγ hγ (k+β−1),

− (1− FT1 (t))
− 1
γ−1

(η1 + η2)υhk

1− β
+ P̃2γ− γ

γ−1 x
1

γ−1 ,

P̃1 = −
(
δ +

∫ ∞

t
f (s, t)ds+

∫ ∞

t
f (t, z)dz

)
,

P̃2 = θ1(x+ b2)+ θ2(x+ b1),

P̃3 =
(
1− 1

γ

)(
θ1∫∞

t f (t, z)dz

) γ
γ−1

g2(t, h)
∫ ∞

t
f (t, z)dz

+
(
1− 1

γ

)(
θ2∫∞

t f (s, t)ds

) γ
γ−1

g1(t, h)
∫ ∞

t
f (s, t)ds.

From (C13), we can find

g(t, h)=
⎛
⎝w

1
1−γ
4 + d̃2

γ
1−γ d̃1

⎞
⎠ e

γ
1−γ d̃1(T−t) − d̃2

γ
1−γ d̃1

.
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