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Summary

Coalescent theory is commonly used to perform population genetic inference at the nucleotide
level. Here, we examine the procedure that fixes the number of segregating sites (henceforth the
FS procedure). In this approach a fixed number of segregating sites (S) are placed on a coalescent
tree (independently of the total and internode lengths of the tree). Thus, although widely used, the
FS procedure does not strictly follow the assumptions of coalescent theory and must be considered
an approximation of (i) the standard procedure that uses a fixed population mutation parameter h,
and (ii) procedures that condition on the number of segregating sites. We study the differences in the
false positive rate for nine statistics by comparing the FS procedure with the procedures (i) and (ii),
using several evolutionary models with single-locus and multilocus data. Our results indicate that
for single-locus data the FS procedure is accurate for the equilibrium neutral model, but
problems arise under the alternative models studied; furthermore, for multilocus data, the
FS procedure becomes inaccurate even for the standard neutral model. Therefore, we recommend
a procedure that fixes the h value (or alternatively, procedures that condition on S and take into
account the uncertainty of h) for analysing evolutionary models with multilocus data. With single-
locus data, the FS procedure should not be employed for models other than the standard neutral
model.

1. Introduction

Monte Carlo simulation based on the coalescent is
widely used in population genetics. This approach
enables researchers to generate data for a given sam-
ple size under a panmictic neutral model or other
evolutionary models. Using tests of neutrality or
other summary statistics, the observed and simulated
data can then easily be compared.

In order to simulate a sample under a strict
neutral panmictic model, it is necessary to know the

population mutation parameter h (where h=4Nm, N
being the effective population size and m the mutation
rate). The population mutation parameter, however,
is generally unknown and must be estimated
(Watterson, 1975; Tajima, 1983; Fu, 1994; Griffiths
& Tavaré, 1994; Kuhner et al., 1995). To avoid the
uncertainty in using an estimate of h (usual estimation
methods are mostly inefficient, e.g. mean pairwise
difference is inconsistent, Watterson’s estimate con-
verges only asymptotically), several approaches have
been proposed (e.g. see Hudson, 1993; Markovtsova
et al., 2000; Simonsen et al., 1995). The most popular
approximate procedure simulates samples by fixing
the number of segregating sites (S) instead of using
the mutational parameter h (Hudson, 1993).
However, using this approach, population samples
with short genealogical trees tend to exhibit high
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mutation rates, and conversely, long genealogical
trees have low mutational rates.

This latter procedure should not be confused with
approaches that condition on S taking into account
the parameter h. A procedure that conditions on S
(instead of fixing S) considers for a given h all possible
trees weighted by their probabilities of giving rise
to the observed number of segregating sites (Tavaré
et al., 1997; Markovtsova et al., 2000, 2001;
Jakobsson et al., 2006), and thus takes into account
the uncertainty of h (see Kelly, 1997; Depaulis et al.,
2001, equation 2). In the case of conditioning on S,
the internode times are not independent. Therefore,
the procedure proposed by Hudson (1993) might be
considered from two different points of view: (i) as an
approximation of the standard procedure that is
based on a (known) h value, and (ii) as an approxi-
mation of a rigorous procedure that conditions on S
and takes into account the uncertainty of h.

Although fixing the number of segregating sites
does not strictly follow the assumptions of coalescent
theory (e.g. independence of the genealogical and
mutational phases : see Kingman, 1982a, b ; Hudson,
1990; Donnelly & Tavaré, 1995; Nordborg, 2001),
this approximate procedure is reasonably accurate for
obtaining critical values of statistics for the standard
neutral model, provided that the true h value is well
supported by the data (Depaulis et al., 2001;
Markovtsova et al., 2001; Wall & Hudson, 2001).
Thus, the probability of obtaining a h value that is not
supported by the data is expected to be low (Depaulis
et al., 2001), and the critical values of tests obtained
by fixing the number of segregating sites appear to be
quite accurate. However, for alternative evolutionary
models the accuracy of this approximation is un-
known, although many publications have used a fixed
number of segregating sites for testing purposes (e.g.
Braverman et al., 1995; Depaulis & Veuille, 1998;
Wall, 1999; Fay & Wu, 2000; Przeworski, 2002;
Ramos-Onsins & Rozas, 2002; Glinka et al., 2003). It
is therefore necessary to study the accuracy of this
procedure for a wide range of models.

2. Simulation methods

Simulations have been performed with the program
mlcoalsim (Ramos-Onsins & Mitchell-Olds, 2007),
which is available at http://www.ub.edu/softevol/
mlcoalsim.

(i) Evolutionary models

The following models are considered:

(a) The neutral panmictic model with constant
population size.

(b) The symmetric finite-island model (Wright, 1943)
with a constant number of populations (d), equal

population size for each population, and a sym-
metric and constant migration parameter M
among islands (with M=4Nm, where N is the ef-
fective population size of a deme and m the mi-
gration rate).

(c) The logistic growth model (Fu, 1997). In
this the population size changes with time as
follows:

N(t)=N0 if tft0,

N(t)=N0+
N1xN0

1+exc txt0x
t1xt0

2ð Þð Þ if t0<t<t1,

N(t)=N1 if tot1,

9>=
>;
(1)

Here N(t) is the population size at time t (ex-
pressed in N0 generations), N0 is the population
size at time t0, and N1 is the population size at
time t1. We used c=10/(t1xt0). Coalescence times
were calculated by integrating (1) over t.
Expansion and reduction of population size was
studied using this model. We used 10- and 100-
fold differences between N1 and N0. We also used
recent expansion processes, where t1xt0=0.1N0

generations, and t0=0.
(d) A bottleneck model using a constant population

size initially for a period of time td (expressed in
4N generations), then a sharp reduction for a time
tb followed by a size increase. Reduction and ex-
pansion of population size also follow a logistic
model. The conditions used here are bottlenecks
of 10- or 100-fold differences in effective popu-
lation size.

(e) Hitchhiking model : We followed essentially the
algorithm described in Braverman et al. (1995) to
generate hitchhiking genealogies, and allowed re-
combination within the locus of interest during
the selective and neutral phases (see also Fay &
Wu, 2000; Kim & Stephan, 2002; Przeworski,
2002). As in Fay & Wu (2000), we used as par-
ameters the selection coefficient (s), the recom-
bination rate between the selected locus and the
studied locus (c), the intragenic recombination
rate (r), and the time at which an advantageous
mutation is fixed (tf). For the selective phase, we
calculated the time to the most recent common
ancestor (instead of checking at small time incre-
ments) for both the selected and unselected ‘sub-
populations’ using the reasoning of Nordborg
(2001, equation 7). The selective phase starts at
time tf with a frequency of the selected allele
of 1x1/2N, and ends when the frequency of
x(t)<1/N. The value x(t) was calculated de-
terministically using equation 1 in Kim & Stephan
(2002) (see also equation 3a in Stephan et al.,
1992). The computer code was tested by compar-
ing the results with those of table 2 in Stephan
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et al. (1992) and also by comparison with the ssw
program (Kim & Stephan, 2002). The parameter
values used in this work were tf=0, 4Ns=2r104,
N=106 and e=1/4N.

(ii) Monte Carlo methods

In all procedures, we used sample data (n lines) ob-
tained from a diploid species. The procedures are as
follows:

(a) The Fh procedure (Fixed h procedure) : This is the
original standard coalescent procedure. We used
a fixed value of the population mutation par-
ameter h. We placed a number of mutations on
the tree according to the Poisson distribution with
the mean value h times the total length of the tree.

(b) The FS procedure (Fixed S procedure) :We placed
a fixed number of segregating sites uniformly on
each tree generated under the models mentioned
above (Hudson, 1993). The procedure for gener-
ating trees is identical to the Fh procedure.

(c) Procedure based on fixing the number of segre-
gating sites and the value of h (FSh) : This pro-
cedure employs the rejection algorithm #2
justified and described by Tavaré et al. (1997).

(d) Procedure based on fixing the number of segre-
gating sites but taking into account the uncer-
tainty of the value of h (FShprior procedure) : We
use the RAU procedure (Rejection Algorithm
using a Uniform prior). This procedure employs
the rejection algorithm #2 described by Tavaré
et al. (1997) but sampling of h is done from a
given prior distribution instead of having a fixed
h value.

(iii) Mutational parameter h

We assume a uniform distribution over some arbi-
trarily chosen interval [hmin ; hmax] (Depaulis et al.,
2001). Thus the prior density of h is

gu(h)=
1

hmaxxhmin

: (2)

When we do not have information about the value
of h, the assumption of a uniform density for any
value of h is reasonable. This is a commonly used
strategy to estimate h given observed data (e.g.
Watterson, 1975; Wright & Charlesworth, 2004;
Wright et al., 2005; Haddrill et al., 2005). If the re-
searcher has available information about the distri-
bution of h, then this information should be used
instead of assuming a uniform distribution (e.g.
Pritchard et al., 1999; Przeworski, 2003), but we do
not consider other prior distributions in this paper.

In order to avoid biologically unrealistic values of
h, we used as a minimum bound of h per nucleotide

a value of 0.0005, and as a maximum bound a value of
0.05. Numerous publications show that these num-
bers are realistic. Different bounds might modify
some of our results, but do not change the main con-
clusions.

(iv) Statistical methods

From the simulated trees we calculated Tajima’s D
(Tajima, 1989), here named TD, Fu & Li’s D and F
(Fu & Li, 1993), here named FD and FF, respectively,
and Fay & Wu’s H (Fay & Wu, 2000), abbreviated as
H, the statistic B (Wall, 1999) (considered sensitive to
structured populations), FS (Fu, 1997) and R2
(Ramos-Onsins & Rozas, 2002), which are sensitive to
population size expansion, as well as the number of
haplotypes (here divided by the sample size) Kw

(Strobeck, 1987; Fu, 1996; Depaulis et al., 2001;
Wall, 1999) and the haplotype diversity Hw (Depaulis
& Veuille, 1998). In total, nine summary statistics
were computed. The calculation of these statistics was
examined with the software package DnaSP 3.51
(Rozas & Rozas, 1999; Rozas et al., 2003).

For multilocus analyses, we treated each locus in-
dependently because we assumed that the studied loci
are unlinked. When we used the RAU procedure, we
chose independent h values for each locus in order to
perform simulations. For a given statistic, we re-
corded the P value independently for each locus and
combined them as in Voight et al. (2005) but calcu-
lated each tail separately.

To avoid excessively liberal critical values (95%
interval of the null sampling distribution) for discrete
distributions, we have used the following procedure :
for the 2.5% interval of the upper tail, we took the
first value that is larger than the observed value at
2.5% of the distribution (see Ramos-Onsins & Rozas,
2002). The same logic was applied to the 2.5% inter-
val of the lower tail and also for comparing discrete
distributions. Because of this issue, the realized type I
error rates are slightly lower than the expected 5%
and have to be assessed for every statistic and method.

(v) Determining the accuracy of the
FS procedure in relation to Fh

We have used the approach described in Wall &
Hudson (2001) to determine the level of accuracy of
the FS procedure compared with the Fh procedure. In
this approach, a number of simulations using a large
range of values of S (e.g. from S=1 to S=120) is
obtained by the FS procedure, and its critical values
and the false positive rate (called the ‘nominal ’ size)
for each statistic are calculated for a given evolution-
ary model. Then, the ‘true’ h value for the same
evolutionary model is obtained, which is the value
that gives an average of S=20 in 10 000 iterations
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under the Fh procedure. Next, a simulation with the
Fh procedure (i.e. the null hypothesis) is performed
using the ‘ true’ fixed value of h. For each iteration,
the value of S is calculated, and acceptance or rejec-
tion of the null hypothesis is determined for every
statistic by comparing its value with the critical values
of the corresponding FS distribution. The rejection
rate (i.e. the false positive rate given the FS critical
values, here called the ‘true ’ size) for each statistic is
stored. The choice of the ‘ true’ h value, although
somewhat arbitrary, is suggested by the design of the
study, which fixes the number of segregating sites in-
stead of fixing the value of h (which is unknown to
the researcher). Using the following method, we try to
be conservative in the sense of minimizing the differ-
ences between the two different procedures (see Wall
& Hudson, 2001; Depaulis et al., 2003, 2005).

(vi) Determining the accuracy of the FS procedure
in relation to FShU

Here we assume that the h value is unknown. The
FShU procedure is considered the ‘true’ procedure
because it takes into account the uncertainty assumed
by the researcher. In this approach, a simulation for a
given evolutionary model is performed for the FS
procedure (for a fixed S=20) and its critical values
and the false positive rate (called the ‘nominal size ’)
of each statistic are stored. Then, a simulation using
the FShU procedure (for S=20) is performed for the
same evolutionary model (the null hypothesis). The
‘true’ false positive rate is calculated in the following
way: for each iteration calculated with the FShU
procedure, rejection of the null hypothesis is deter-
mined for every statistic by comparing its value with
the critical values of the FS distribution. Finally, the
rejection rate for each statistic is stored.

(vii) Parameter values

We used n=20 for a locus of 1000 nucleotides. For
procedures that fix S, we preferentially used S=20.
The reason for choosing n=20 and S=20 is largely
historical, as the value of h (given the neutral equi-
librium model) is then approximately 0.005 (which
has been used in a number of the theoretical popu-
lation genetics studies). All h values under any evol-
utionary model studied here were in the range we
considered biologically realistic. For n=20 and S=50
we found similar results.

3. Analytical approaches

(i) Effects of recombination

Recombination is difficult to take into account in
analytical models. However, one can consider the

extreme case of free recombination (e.g. a sequence
consisting of m freely recombining fragments of equal
size such as m nucleotides). This is the limiting case
when the recombination parameter R=4Nr becomes
very large. Let the parameter T be the vector of the

coalescent times Tk, then Ln=gn

k=2kTk is the total

length of the coalescent tree (by summing the length
of all branches) measured in units of 4N generations.
Assuming m is large, the central limit theorem shows
that the prior distribution of the average length Ln

of the m independent coalescent trees will converge
towards the normal distribution with mean a1(n) and
variance a2(n)/m (defined in equations (A3) and (A4)
of Appendix 1, respectively). This is,

lim
R!?

fLn
(t)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2pa2(n)

r
e
x

m

2a2(n)
(txa1(n))

2

, (3)

where f Ln
(t) is the density of the average length Ln.

This last equation can be used in equations (A7)–(A8)
(Appendix 1) to address the effects of the simulation
procedures Fh, FS, FSh, and FShprior on the posterior
density of the length of the coalescent tree in the lim-
iting case of freely recombining sequences.

(ii) Shape of the coalescent trees

In the present work, we focus on procedures where
simulations use a fixed number of segregating sites S.
In these procedures, unlike in the Fh procedure, the
total length of a tree does not play a role as long as the
shape of the tree remains the same (trees are only
scaled). In order to assess the impact of the rejection
algorithm on the shape of the trees, we study the ratio
of the branch lengths in the upper and lower parts of
the tree X/Yn (Fig. 1). The mean value of this ratio is
given by

E
X

Yn

jn,S
� �

=
1

g(n,S)

r
Z ?

0

Z ?

0

x

y
fX(x)fYn

(y)Paccept(x, y)dxdy, (4)

where fX and fYn
denote the prior densities of X and Yn

(see equations (A5) and (A6)) and

Paccept(x, y)=

1 (FS procedure)

hS(x+y)S

S!
ex(x+y)h (FSh procedure)

(x+y)S

S!

Z ?

0
ex(x+y)hg(h)dh (FShprior procedure)

8>>>>><
>>>>>:

and g(n,S)=
R?
0

R?
0 fX(x)fYn

(y)Paccept(x, y)dxdy is a
normalizing constant.
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4. Simulation results

We determined the accuracy of the approximate pro-
cedure proposed by Hudson (1993) (which fixes the
number of segregating sites while ignoring the value
of the population mutation value h ; the FS pro-
cedure) in comparison with the two rigorous pro-
cedures : (i) the standard procedure fixing h (Fh) and
(ii) procedures that while conditioning on S take
into account the uncertainty of h (FShprior, here using
a uniform prior, named FShU). We consider several
different evolutionary models including the neutral
panmictic model, population subdivision, population
size bottleneck, expansion and genetic hitchhiking. As
a measure of accuracy, we calculated the difference in
the false positive rate between procedures.

(i) Comparison of the FS procedure with the
standard procedure Fh

We examined the accuracy of the FS procedure for
different alternative models. To do this we also re-
examined the type I error for the standard neutral
model (neutral panmictic population with zero re-
combination) for the nine statistics studied here, since
the type I error for single-locus data was also studied
in Depaulis et al. (2001), Markovtsova et al. (2001)
and Wall & Hudson (2001).

Table 1 shows the difference between the nominal
size (the false positive rate of a test given the FS pro-
cedure) and the ‘true’ size (the false positive rate of a
test given the Fh procedure) for a 5% critical region.
Our analysis confirmed the small difference in the type
I error rate observed by Wall & Hudson (2001) and
Depaulis et al. (2001) under a neutral model for a
single locus, although we used some other statistics

and slightly different conditions (n=20 and h=0.0057
for the Fh procedure ; i.e. the estimate of h for S=20).
Fig. 2A shows the differences in size for each S value
among the procedures for the nine studied statistics
under the neutral model. Negative values indicate that
the critical values of the FS procedure are more liberal
than expected (increased type I error). The large fluc-
tuations observed in Fig. 2 are also a consequence
of the discrete distribution of values obtained when
the number of segregating sites is fixed (see Ramos-
Onsins & Rozas, 2002). Important differences are
observed in the proportion of acceptance/rejection
when the observed number of mutations is far from
the average (S=20), as indicated in Wall & Hudson
(2001) (see also Depaulis et al., 2003, 2005).
Nonetheless, the more extreme values contribute very
little such that when summed the differences cancel
each other out, thus leading to a good accuracy of
the FS procedure for the standard neutral model
(Table 1). Therefore, we consider the FS procedure as
sufficiently accurate under the neutral panmictic
model for single-locus data.

Next we consider the accuracy for alternative
models. Table 1 shows the difference between nominal
(FS procedure) and true (Fh procedure) distributions
of statistical tests for certain critical values. The rea-
son to use different critical values for alternative
models (10%, 50% and 90% instead 2.5% and
97.5%) is because we are interested in whether the
probability distribution for a given statistic can be
accurately represented using the FS procedure. The
analysis is performed for five different alternative
models (subdivision, expansion, contraction, bottle-
neck and hitchhiking) and for some arbitrary par-
ameters. The strong differences observed between
the two procedures indicate that the FS procedure is
inaccurate when alternative models are used. Fig. 2B
shows considerable differences between nominal
and true sizes for several of the studied statistics for
each S separately, leading to a large difference in total
(Table 1).

(ii) Comparison of the FS procedure with
a procedure that conditions on S and takes
into account the uncertainty of h

We have examined the accuracy of FS (the nominal
procedure) by comparison with the procedure FShU
(the ‘true ’ procedure, see Section 2). With regard to
the type I error for the standard neutral model, we
have studied the 95% interval of the nine neutrality
test statistics for the FS procedure and the procedure
FShU by simulation for n=20 and a range of S values
from S=2 to 80. Fig. 3 shows the difference between
the nominal and ‘true’ sizes. Liberal tests are Fay &
Wu’s H with regard to the upper tail, and Fu’s FS,
Ramos-Onsins & Rozas’ R2, and Fu & Li’s D and F

Fig. 1. Shape index of a coalescent tree. The shape index is
the ratio of the branch lengths in the upper and lower
parts of the tree, X/Yn (see text).
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Table 1. Difference (in percentage) between the FS and Fh procedures for several critical valuesa

n=20 TD Fs FD FF H B Kw Hw R2

Neutral
4Nr=0 <2.5% x0.08 0.23 0.86 0.06 x0.14 x0.01 x0.55 x0.17 0.25

>97.5% x0.15 x0.11 0.97 x0.21 0.13 0.15 0.12 0.70 x0.18

4Nr=10 <2.5% 0.08 0.18 0.71 0.14 0.06 x0.04 0.22 x0.25 0.05
>97.5% 0.05 x0.10 1.32 x0.02 0.23 0.22 1.07 x0.33 0.05

Subdivisionb

4Nr=0 <10% 0.5 6.1 2.9 0.7 x0.4 x0.4 x2.0 x2.6 3.4
<50% 4.3 13.0 13.3 7.8 x0.1 15.8 2.5 x10.5 11.0
>90% x0.8 x2.3 8.0 x1.2 4.9 x7.2 3.2 5.8 x0.4

4Nr=10 <10% 0.4 4.3 2.8 0.6 0.0 4.4 2.3 x0.4 1.0
<50% 1.1 5.4 7.7 1.3 x0.7 7.3 x0.4 x2.9 2.1
>90% 0.2 x1.4 9.2 x0.4 2.5 2.3 4.8 4.1 0.1

Expansionc

4Nr=0 <10% 0.1 0.1 2.4 0.2 x0.4 0.0 x2.0 x0.2 0.4
<50% 0.7 0.4 6.6 0.8 x0.1 16.1 x2.7 x0.1 0.9
>90% x0.5 x0.2 1.6 x0.7 0.3 0.6 1.1 1.4 x0.6

4Nr=10 <10% 0.5 0.2 2.8 0.4 x0.2 0.0 2.8 x0.7 0.6
<50% 1.1 0.6 7.3 1.2 x0.7 16.7 9.6 x2.0 1.1
>90% x0.3 x0.3 1.9 x0.5 0.5 2.2 x1.2 1.3 x0.4

Contractiond

4Nr=0 <10% x0.2 0.0 2.5 x0.1 x0.3 x2.1 x0.3 x0.2 0.3
<50% 1.0 0.8 7.0 1.5 0.1 12.0 x7.7 0.5 1.1
>90% x0.4 0.0 2.8 x0.7 0.6 0.5 x0.4 0.4 x0.4

4Nr=10 <10% x0.1 0.1 3.0 x0.1 x0.1 x0.4 x0.5 x0.4 x0.2
<50% 0.1 x0.1 7.5 0.0 0.1 16.8 4.3 5.6 0.1
>90% 0.0 0.0 4.2 0.0 0.1 4.0 1.3 0.0 x0.1

Bottlenecke

4Nr=0 <10% x0.2 0.1 2.9 0.4 x0.3 x0.3 x1.5 x0.3 0.7
<50% 1.1 0.2 7.1 1.6 x0.3 10.7 2.4 x1.0 1.6
>90% x0.2 0.1 1.8 x0.4 1.6 0.6 x1.0 0.9 x0.2

4Nr=10 <10% 3.1 x2.7 5.4 3.6 0.5 x0.3 4.7 6.6 2.7
<50% 8.4 x13.3 12.8 7.4 x13.5 17.3 14.4 15.4 6.3
>90% 2.8 8.3 4.2 1.9 4.8 5.9 x6.1 x5.0 3.0

Hitchhiking f

4Nr=0 <10% 10.0 8.5 8.1 7.6 1.4 7.9 5.2 3.1 7.0
<50% 9.3 12.8 13.3 8.5 1.9 11.4 x5.7 x0.3 8.8
>90% 0.1 0.5 3.6 0.6 3.9 x1.6 6.4 6.7 x2.0

4Nr=10 <10% 10.0 9.0 9.2 8.7 1.3 8.8 5.2 3.4 7.8
<50% 11.8 12.8 18.4 13.9 x0.2 11.1 x12.3 0.3 1.1
>90% 0.0 1.3 4.2 1.9 2.4 x0.6 8.9 7.2 x1.2

a Abbreviations are explained in Simulation methods. The critical values studied are 2.5% and 97.5% for the neutral model
and 10%, 50% and 90% for alternative models (see Simulation methods). The maximum precision error detected is around
¡1%.
b Island model with d=10 subpopulations, 4Nm=0.5 and 4Nr=10. The samples are all obtained from a single population.
In the FShU procedure, the bounds of h were reduced d times for a better comparison with the other models. In the Fh
procedure, h=0.00062.
c Logistic expansion model with a 10-fold growth of population size. The expansion process started 0.4N0 generations ago
and finished at present. 4N0r=10. In the Fh procedure, h=0.03384.
d Logistic contraction model: In contrast to the logistic expansion model, the population is reduced 10 fold. In the Fh
procedure, h=0.00059.
e Bottleneck model : Population size is maintained constant during 0.5N0 generations since present. It follows a logistic, 100-
fold reduction of population size for 0.01N0 generations, maintained for 0.01N0 generations, then an instantaneous recovery
to the present population size. 4N0r=10. In the Fh procedure, h=0.00860.
f Hitchhiking model : The selective phase is completed at present time (tf=0). N=106, 4Ns=104, the population recombi-
nation parameter between the selected and observed locus is 4Nc=400, c/s=0.02, and intragenic recombination is indicated
in the table. In the Fh procedure, h=0.00127.
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for the lower tail. In the case of Fu & Li’s F, the test is,
in fact, less liberal than shown, because the critical
value for the FS procedure is sometimes much lower
than 2.5% (given the discrete distribution of values ;
not shown). We observed that all statistics at inter-
mediate S values show a difference lower than 1.5%.
Therefore, in this comparison the FS procedure is
sufficiently accurate for statistical inferences under the
neutral panmictic model for single-locus data.

In contrast, for alternative models there are strong
differences between the nominal (FS procedure) and
true (FShU procedure) distributions of statistical tests
for 10%, 50% or 90% critical values (Table 2). The

important differences observed between the two pro-
cedures indicate that the FS procedure is also in-
accurate when it is compared with the FShU
procedure and when alternative models are used.

We performed a multilocus analysis for the nine
test statistics using the combined P values for different
numbers of loci (see Section 2) for the standard neu-
tral model. The difference between the nominal and
true size is examined in Fig. 4. The results indicate
that for a larger number of loci the FS procedure be-
comes inaccurate (through the accumulation of small
departures in the single-locus tests). Thus, the small
differences observed for one locus between FS and

Fig. 2. Differences between the sizes of FS and Fh procedures for each S separately. (A) Neutral model : In the upper
panel the distribution of S values obtained with the Fh procedure using h=0.0057 is shown. In the middle and lower
panels the size differences for statistics for the upper (97.5%) and the lower (2.5%) tails, respectively, are presented.
Note that large S values, although causing large differences, contribute very little to the total. (B) Hitchhiking model : In
the upper panel the distribution of S values obtained with the Fh procedure using h=0.0127 is shown. In the middle and
lower panels the size differences for statistics for the upper (90%) and the lower (10%) tails, respectively, are presented.
Abbreviations are explained in Section 2. Critical values are not calculated for B (lower tail), and for Kw, and Hw

(upper tail), because these statistics are not conservative with recombination.
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FShU become very important when multilocus studies
are performed. Some statistics, like Kw,Hw and Fay &
Wu’s H, are extremely conservative for the lower tail,
as are most statistics (except for Fay & Wu’s H) for
the upper tail (see Fig. 4A). On the other hand, stat-
istics such as Tajima’s D, Fu’s FS, Fu & Li’s D and F,
and Ramos-Onsins & Rozas’ R2 are too liberal for the
lower tail of the distribution, and Fay & Wu’s H is
also too liberal for the upper tail of the distribution.

5. Discussion

We have compared the FS procedure with the stan-
dard procedure using a fixed h value (Fh) and with a
procedure that conditions on S taking into account
the uncertainty of h (FShU). Our results show that the
FS procedure is inaccurate in both comparisons when
alternative models are used.

(i) Causes of the discrepancy between the FS and the
Fh or FShU procedures

In the comparison of FS with Fh, differences in the
length (Ln) and topology (X/Yn) of the trees for the FS
and FSh procedures can explain the inaccuracy of
FS, given that the critical values of FS are compared
with the FSh distribution for each S. The distribution
of the total length of the coalescent trees of a non-
recombining sequence is shown in Fig. 5. The shapes
of the FS distribution and the distribution obtained
with the FSh procedure (taking S=20) are clearly
different. The distribution of Ln obtained with the

FSh procedure has lower variance than the FS pro-
cedure, which can be explained by the lack of uncer-
tainty in the value of h (see also Table 3). The mean
and standard deviation of the shape index X/Yn for
the different simulation procedures are shown in
Table 4. Higher values are obtained for trees with
long internal branches whereas smaller ratios denote
shorter internal branches. We observed that for S=20
the trees obtained with the FSh procedure have
smaller ratios X/Yn than the trees obtained with the
FS procedure. These observations can be explained as
follows. For a given h, when S is lower than the av-
erage for that h, this will often have been caused by a
tree that is shorter than average. Although the inter-
node times are a priori independent (because the total
tree length is dominated by the last few internode
times, given a short tree), it will often be that the final
internode time is particularly short. Thus X/Yn is
smaller than the unconditional expectation. The situ-
ation is reversed for S greater than the average for a
given h. Thus, these results show how the simulation
procedure may affect the shape of the sampled co-
alescent trees and may lead to different outcomes of
neutrality tests.

To understand the causes of the inaccuracy of the
FS procedure in comparison with the procedure
FShU, we examined differences in the trees by con-
sidering the total length of the tree (Ln) analytically
and by simulations. The distribution of the total
length of the coalescent tree of a non-recombining
sequence is shown in Fig. 5. Some inaccuracies of the
FS procedure in comparison with the procedure FShU
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Fig. 3. Differences between the sizes of the FS and FShU procedures. Critical values are obtained for each of the nine
neutrality tests for the 2.5% upper and lower tails. Abbreviations are indicated in Section 2.
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are observed under a panmictic neutral model with no
recombination. Differences in the distributions of Ln

are small but apparent, with longer and slightly
broader distributions for the procedure FShU than for
FS. It is noteworthy that this procedure samples
shorter trees with a lower variance of Ln than the FS
procedure (Table 3). When we analysed the shape of
the coalescent trees (Table 4), the coalescent trees
obtained by the FShU procedure are skewed towards
shorter trees with smaller internal branches than trees
sampled with the FS procedure.

Figure 6 shows the Ln distribution for four of the
alternative models analysed with the FS and FShU
procedures. There are strong differences in the distri-
bution of Ln for the FS procedure in comparison with
FShU for most of the alternative models. In particu-
lar, in the case of subdivided populations, large

differences are observed for the parameter values
studied. Bottleneck and hitchhiking models show also
apparent differences in the trees that are used in FS in
relation to FShU. On the other hand, models of
population size expansion exhibit smaller differences
among procedures. In summary, differences in the
length (and in the topology) of the trees explain the
inaccuracy of the FS procedure and these differences
are large in most of the alternative models studied.

(ii) The effect of recombination

Analysing the effect of recombination is also import-
ant, as the true value of the recombination parameter
is generally unknown. Recombination has an im-
portant effect on the distribution of segregating
sites because it breaks up the correlation among

Table 2. Difference (in percentage) between the FS and the FShU procedures for several critical valuesa

n=20 TD Fs FD FF H B Kw Hw R2

Subdivision
4Nr=0 <10% 0.7 2.8 0.6 0.3 1.2 2.4 2.6 3.4 2.6

<50% 1.2 x10.7 x1.7 x2.2 0.4 x5.5 14.1 11.6 x1.2
>90% 2.1 3.4 0.0 x1.9 2.4 3.1 3.3 2.6 2.2

4Nr=10 <10% x0.5 x2.5 0.1 0.0 0.5 2.1 0.5 1.2 x0.5
<50% 0.1 x2.2 x0.6 x0.4 2.2 7.6 2.4 2.0 x0.4
>90% x1.2 x0.2 0.0 0.3 x1.3 x1.1 x1.0 x1.1 x1.0

Expansion
4Nr=0 <10% 0.6 0.3 0.1 0.4 x0.2 0.0 0.8 0.3 0.6

<50% 0.0 0.0 x0.8 x0.8 0.4 x0.2 0.3 0.5 x1.2
>90% 0.6 1.2 1.0 0.8 x0.4 1.5 0.2 x0.3 0.9

4Nr=10 <10% 0.0 0.1 0.1 0.0 0.1 0.0 x0.4 x0.1 x0.2
<50% x1.2 x0.8 x0.9 x0.6 1.5 0.0 0.5 0.2 x1.3
>90% 0.9 x0.2 0.7 0.7 x0.4 0.6 0.1 0.0 1.0

Contraction
4Nr=0 <10% x0.5 x4.5 x1.6 x1.8 3.0 x2.5 2.3 3.5 x2.7

<50% x5.2 x9.6 x6.8 x7.3 7.3 x9.0 10.3 8.6 x6.8
>90% 4.1 5.0 3.6 4.2 x3.0 4.5 x3.7 x3.6 4.4

4Nr=10 <10% 0.0 1.7 x0.3 x0.2 x0.5 0.0 x1.1 x1.1 0.0
<50% 0.3 3.2 x0.4 0.1 x0.6 1.8 x2.9 x2.7 0.6
>90% x0.1 x1.8 x0.1 x0.4 0.8 x0.6 1.3 1.2 x0.2

Bottleneck
4Nr=0 <10% x0.5 x3.8 x1.2 x2.4 3.8 0.0 3.4 4.0 x2.9

<50% x9.0 x12.6 x9.6 x10.1 10.2 x12.5 12.3 10.7 x11.4
>90% 4.4 4.7 3.6 4.6 x5.1 4.5 x3.1 x2.7 4.5

4Nr=10 <10% x2.3 x3.6 x2.6 x3.7 1.9 0.0 1.8 1.8 x3.8
<50% x7.4 x6.6 x6.4 x6.9 5.8 x6.9 4.5 4.3 x7.6
>90% 3.0 2.8 1.5 2.7 x4.4 2.2 x1.1 x1.0 3.0

Hitchhiking
4Nr=0 <10% 0.0 8.0 5.7 5.8 x1.6 5.8 0.0 0.0 5.7

<50% 1.5 3.3 2.1 1.5 x4.5 3.2 x6.0 x5.8 2.4
>90% 0.8 x0.2 x0.1 0.3 6.3 0.0 7.4 7.0 0.1

4Nr=10 <10% 0.0 7.5 6.3 5.6 x2.5 6.5 0.0 0.0 6.6
<50% x1.6 5.6 1.6 0.7 x8.3 9.1 x9.4 x9.0 7.2
<90% 0.5 x1.2 x1.5 x0.6 6.4 0.0 7.7 7.3 x0.2

a As in Table 1.

Population genetic inference 239

https://doi.org/10.1017/S0016672307008877 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672307008877


contiguous positions. Differences in Ln are observed
when recombination is added to the model (Fig. 7).
Average values of the parameter Ln are constant un-
der the FS procedure, as expected. Indeed, the FS
procedure uses all output trees, like the standard co-
alescent procedure uses a fixed h value. The expected
average value of Ln for the FS procedure value is
given by equation (A3) in Appendix 1. Therefore,
for n=20, E(Ln)=3.548. On the other hand, the pro-
cedure FShU has lower average Ln values for zero re-
combination (Ln is 3.16 for n=20), and this value
increases for larger recombination values. The pro-
cedure FSh leads to a similar pattern as that shown
for FShU, but with fewer differences relative to FS.

The means and standard deviations of Ln in the
limiting case of free recombination between fragments
are given in Table 3. Recombination tends to bring
the posterior distributions closer to the prior distri-
bution of Ln. Whereas the difference between the FS
and FShU simulation procedures remains clear, the
outcomes of the FS and FShU simulation procedures
can hardly be distinguished (independent of the
assumed prior for h), confirming the observation of
Fig. 7.

The consequences of having differences in the
average Ln given no recombination might be import-
ant, because it indicates that the zero-recombination
neutral panmictic model may have an average of a
given statistic that is different from that of a model
with recombination, and therefore may not be con-
servative. Zero recombination in a neutral panmictic
model leads to the largest deviation in average Ln

in relation to the FS procedure. We have observed
that for single loci this difference can be tolerated,
but becomes too large for multilocus analyses. That
is, for multilocus analyses, the FS procedure should
not be used unless recombination is quite high for
each locus.

The prior distribution of the mutational parameter
h is shown to have an important effect on the
posterior distribution of coalescent trees (Fig. 5),
although, as previously pointed out by Wall &
Hudson (2001), the recombination parameter also has
a strong effect on this distribution. The improvement
obtained from using sophisticated techniques such as
the FShU procedure may, however, be negligible in
comparison with the errors caused by the uncertainty
in the recombination parameter R (Wall & Hudson,
2001). A procedure considering also the uncertainty
in the recombination parameter would give more
appropriate distributions, but is beyond the scope of
this paper.

Appendix 1

(i) The branch lengths in a coalescent tree

In the standard neutral coalescent process without
recombination, the waiting time Tn (in units of 4N
generations) until two lineages among n have a com-
mon ancestor is exponentially distributed with par-
ameter n (nx1) (Kingman, 1982b). The probability
density of Tn is thus

fTn
(t)=n(nx1)exn(nx1)t: (A1)

The density of the sum Ln of the lengths of the
branches of a coalescent tree with n tips is given
by Tavaré (1984, unlabelled equation at the top of
p. 153) as

fLn
(t)=(nx1)ext(1xext)nx2: (A2)
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Fig. 4. Effect of the number of loci on the probability of
rejecting the neutral panmictic model for nine neutrality
tests. (A) Differences between the sizes of FS and FShU
procedures with no recombination in the upper 2.5% tail,
given different numbers of loci. (B) Differences between
the sizes of FS and FShU procedures with no
recombination in the lower 2.5% tail, given different
numbers of loci. Abbreviations are explained in Section 2.
Critical values are not calculated for B (lower tail), and for
Kw, and Hw (upper tail), because these statistics are not
conservative with recombination. S was fixed at 20 for
each locus. Plots obtained using S values from a
distribution compatible with h=0.0057 gave equivalent
results (not shown) although for a small number of loci we
observed a large variance.
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The mean and variance of Ln are

E(Ln)=a1(n)= g
nx1

i=1

1

i
, (A3)

V(Ln)=a2(n)= g
nx1

i=1

1

i 2
: (A4)

In order to characterize the shape of a coalescent tree,
we introduce a shape index X/Yn where X is the length
of the two branches from the second-last coalescent to
the last (in the upper part of the coalescent tree) and
Yn is the length of the rest (the branches in the lower
part) of the coalescent tree (see Fig. 1). The density of
X follows from equation (A1):

fX(t)=ext: (A5)

As shown in Appendix 2, the density of Yn is

fYn
(t)=(nx1)(nx2)ex2t(1xext)nx3: (A6)

(ii) Branch lengths in the procedures Fh and FS

In the standard procedure Fh, but also in the FS
simulation procedures, all simulated coalescent trees
are used and thus the posterior density of tree length
is the same as the prior density fLn

(equation A2).

(iii) Branch lengths in the FSh and
FShprior procedures

In the FSh simulation procedure, trees are sampled
from the prior distribution according to the prob-
ability of observing exactly S mutations given a
known mutational parameter h. The number of mu-
tations in the coalescent tree follows a Poisson distri-
bution with parameter hLn. Thus the probability of
observing Smutations in a sample of n lines given h is
(Tavaré, 1984, unlabelled equation on p. 153)

P(S=kjn, h)=
Z ?

0

(ht)kexht

k!
fLn

(t)dt,

and the posterior density of Ln given S and h follows
from the definition of the posterior density :

fLnjS, h(t)=
(ht)kexht

k!P(S=kjn, h) fLn
(t): (A7)

In the FSh procedures that consider the uncertainty
of the value of h (FShprior), a prior distribution of h
with density g is assumed. Thus the probability of
observing S mutations in a sample of n lines is

P(S=kjn, g)=
Z ?

0

Z hmax

hmin

(ht)kexht

k!
fLn

(t)g(h)dhdt,

FSθU

FSθ

FS

Fr
ac

tio
n

Ln (in 4N generations)

Fig. 5. Posterior densities of the total length Ln of a coalescent tree with n=20 are shown for the different procedures and
no recombination. Results based on the FS, FSh and FShU procedures are displayed. For FSh the h parameter was
arbitrarily set to 20/a2(20).

Table 3. Mean and standard deviation (in
parentheses) of the posterior distribution of L20

Simulation procedure R=0 R=?a

FS 3.548 (1.262) 3.548 (0.179)

FS hb S=10 2.358 (0.497) 3.460 (0.176)
S=20 3.493 (0.657) 3.548 (0.174)
S=30 4.800 (0.814) 3.632 (0.172)

FS hU gUniform 3.158 (1.110) 3.539 (0.179)

a Assuming m=50 recombining fragments (equation 3).
b Assuming h=20/a1(20).
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and the posterior density of Ln given S and the prior
density g is

fLn jS, g(t)=
fLn

(t)

P(S=kjn, g)r
Z hmax

hmin

(ht)kexht

k!
g(h)dh:

(A8)

If a uniform density gu is assumed for h, gu is
constant (equation 2) and the posterior density in

equation (A8) becomes

fLnjS, g(t)=
fLn

(t)
R hmax

hmin

(ht)kexht

k!
dhR?

0

R hmax

hmin

(ht)kexht

k!
fLn

(t)dhdt
:

Using hmin=0, we see that for no3 a limit of the
posterior distribution of Ln exists when hmax is very
large (this condition is necessary for the integral in the

Table 4. Mean and standard deviation (in parentheses) of the tree shape

Simulation procedure Xa Yn
a X/Yn

FS 1.000 (1.000) 2.548 (0.770) 0.429 (0.468)

FShb S=10 0.388 (0.345) 1.970 (0.447) 0.219 (0.225)
S=20 0.879 (0.655) 2.613 (0.622) 0.392 (0.368)
S=30 1.725 (1.020) 3.075 (0.839) 0.675 (0.553)

FShU gUniform 0.782 (0.815) 2.376 (0.719) 0.355 (0.395)

a See Figure 1. Assuming no recombination and n=20.
b Assuming h=20/a1(20).
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Fig. 6. Probability distribution of Ln for four alternative models using n=20 and S=20. The FS and FShU procedures
are displayed in each case. Parameter values are the same as in Table 1 but intragenic recombination was set to 4Nr=10
(except for panel D where it was zero). (A) Island model. (B) Logistic expansion model. (C) Bottleneck model.
(D) Hitchhiking model.
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denominator of equation A9 to converge) :

lim
hmax!?

fLn jS;gu (t)=
t�1fLn

(t)R?
0

t�1fLn
(t) dt

: (A9)

It is noteworthy that this distribution is independent
of the observed number of mutations S and may be
denoted as fLnjgu .

Appendix 2. Proof of equation (A6)

(i) Notation and preliminary results

In this section the density function of a random vari-
able X will be denoted as fX. We introduce a new
random variable Pk=kTk (see equation A1). It is
straightforward to show that Pk is exponentially dis-
tributed with parameter kx1, thus

fPk
(t)=(kx1)ex(kx1)t, (A10)

and Yn is defined by Yn=gn

k=3Pk (see Fig. 1). Yn is the
sum of nx2 independent exponentially distributed
random variables with parameters 2, …, (nx1). As
we show below, the density function of Yn can be
obtained using simple order statistics.

The following properties of the exponential distri-
bution will be used:

’ Minimum of independent exponentially distributed
random variables : Consider k independent random
variables Xli exponentially distributed with par-
ameters li (i=1, …, k). Then min(Xli ) is exponen-

tially distributed with parameter l=gk

i=1li.
’ Memoryless property of the exponential distri-

bution: Consider a random variable Xl exponen-
tially distributed with parameter l :

8xo0, P(XlxxftjXlox)=1xexlt=P(Xlft):

(ii) Density function of Yn

We consider nx1 independent random variables
Ei(i=1, …, nx1), exponentially distributed with

parameter 1, and denote the smallest one as E(1)
. E(1) is

exponentially distributed with parameter nx1, and
the nx2 remaining random variables are independent
and such that EixE(1) is exponentially distributed
with parameter 1. Then the difference between the
second and the first smallest random variables
E(2)xE(1) is exponentially distributed with parameter
nx2 and the nx3 remaining random variables are
independent and such that EixE(2) is exponentially
distributed with parameter 1. If we define E(0)=0, it is
straightforward to show that the difference between
two successive sorted random variables (EkxE(kx1))
is exponentially distributed with parameter nxk.

E(nx2) can be rewritten as E(nx2)=gnx2
k=1(E(k)xE(kx1)).

This is the sum of nx2 independent exponentially
distributed random variables with parameters
2, …, (nx1), thus E(nx2) and Yn have the same dis-
tribution. Because E(nx2) is the (nx2)th random vari-
able among the nx1 random variables Ei sorted in
increasing order, the density function of E(nx2) and Yn

is (Pitman, 1992, p. 326) :

fYn
(t)=(nx1)(nx2)ex2t(1xext)nx3: (A11)
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Donnelly, P. & Tavaré, S. (1995). Coalescent and genea-
logical structure under neutrality. Annual Review of
Genetics 29, 401–421.

Fay, J. C. & Wu, C.-I. (2000). Hitchhiking under positive
Darwinian selection. Genetics 155, 1405–1413.

3.0

3.1

3.2

3.3

3.4

3.5

3.6

0 20 40 60 80 100
4Nr

av
er

ag
e 

L
n

FS

FSθU

FSθ

Fig. 7. Effect of recombination on average Ln for the FS,
FSh (h=0.0057) and FShU procedures in a neutral
panmictic population using n=20 and S=20.

Population genetic inference 243

https://doi.org/10.1017/S0016672307008877 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672307008877


Fu, Y.-X. (1994). Estimating effective population size or
mutation rate using the frequencies of mutations of vari-
ous classes in a sample of DNA sequences. Genetics 138,
1375–1386.

Fu, Y.-X. (1996). New statistical tests of neutrality for DNA
samples from a population. Genetics 143, 557–570.

Fu, Y.-X. (1997). Statistical tests of neutrality of mutations
against population growth, hitchhiking and background
selection. Genetics 147, 915–925.

Fu, Y.-X. & Li, W.-H. (1993). Statistical tests of neutrality
of mutations. Genetics 133, 693–709.

Glinka, S., Ometto, L., Mousset, S., Stephan, W. & De
Lorenzo, D. (2003). Demography and natural selection
have shaped genetic variation in Drosophila melanoga-
ster : A multi-locus approach. Genetics 165, 1269–1278.
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