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Direct numerical simulations are performed to explore the evolution behaviour of the
turbulent/non-turbulent interface (TNTI) in a temporally evolving turbulent plane jet,
using the evolution equation for the TNTI surface area. A novel algorithm is used
to calculate the surface area of the TNTI and entrainment flux. It is shown that the
surface area remains relatively constant, which leads to the mean entrainment velocity
being inversely proportional to the square root of time. On average, the effects of the
stretching and curvature/viscous terms on the TNTI area roughly counterbalance each
other, while the curvature/inviscid term associated with vortex stretching is virtually
zero. More specifically, the stretching term contributes to the production of the surface
area, while the curvature/viscous term is associated with a destruction in the surface
area. The local effect of the curvature/viscous term exhibits high spatial intermittency
with small-scale extreme/intense events, whereas the effect of the large-scale stretching
term is more continuous. To shed light on the contribution of curvature/viscous term
to the evolution of the surface area, we decompose it into three components. The effect
of the curvature/normal diffusion term (the curvature/viscous dissipation term) in the
bulging regions (the valley regions) mainly contributes to the production of the area. The
continuous decrease of the average mean curvature is associated with the production of the
bulging regions and the destruction of the valley regions. Finally, although the entrainment
velocity is mainly dominated by the normal diffusion effect, all three components related
to the viscous effect are indispensable to the production and destruction of the TNTI area.
This numerical study contributes to a better understanding of the evolution of the TNTI
area.

Key words: turbulence theory, jets

† Email address for correspondence: yizhou@njust.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 1001 A39-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yizhou@njust.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2024.1107&domain=pdf
https://doi.org/10.1017/jfm.2024.1107


Y. Xie, X. Zhang, X.-L. Xiong and Y. Zhou

1. Introduction

In free-shear flows (e.g. jets, wakes and mixing layers), the turbulent regions and the
non-turbulent regions are separated by continuous, thin and highly contorted interfacial
layers, which is also known as turbulent/non-turbulent interface (TNTI; see da Silva et al.
(2014) and references therein). The physical properties of the TNTI govern the exchange of
mass and momentum between the turbulent and non-turbulent regions and, consequently,
a thorough understanding of the TNTI is of critical importance to model the growth of
free-shear turbulence and the accompanying scalar mixing.

The pioneering work of Corrsin & Kistler (1955) pointed out that there exists a viscous
superlayer at the outer edge of the TNTI and the thickness of the viscous superlayer is
comparable to the Kolmogorov length-scale. This assumption made by Corrsin & Kistler
(1955) was first confirmed by Taveira & da Silva (2014). The continuous viscous superlayer
is characterised by the overwhelming dominance of pure shear motions without solid-body
rotation (Xie et al. 2023; Yin et al. 2023). The characteristic features of the TNTI and the
entrainment process through which the non-turbulent fluid points at the vicinity of the
TNTI become turbulent have been explored extensively for more than half a century (see,
for example, Westerweel et al. 2009; Holzner & Lüthi 2011; Taveira & da Silva 2013; da
Silva, Lopes & Raman 2015; Xu, Long & Wang 2023). It is commonly believed that there
are two different mechanisms contribute to the entrainment process: small-scale nibbling
and large-scale engulfment and the entrainment process is dominated by the effect of
small-scale nibbling (Holzner & Lüthi 2011; da Silva et al. 2014). Until now, understanding
of the turbulent entrainment remains challenging. As a matter of fact, in a quite recent
work by van Reeuwijk, Vassilicos & Craske (2021), it is suggested that ‘understanding of
turbulent entrainment (the transport of fluid from regions of relatively low to relatively
high levels of turbulence) remains fragmented’. One of the challenges is related to the
fact that the local entrainment velocity vn is thought to be comparable to the Kolmogorov
velocity (Holzner & Lüthi 2011), and the TNTI can be strongly contorted with fractal-like
geometry covering a wide range of length scales (de Silva et al. 2013).

The growth rate of free shear turbulent flows is directly determined by the local
entrainment velocity and the corresponding instantaneous contorted surface area. It is
worth mentioning that albeit the entrainment process across the TNTI has been studied
extensively both experimentally and numerically, only a few studies (Holzner & Lüthi
2011; Jahanbakhshi & Madnia 2016) have strictly checked the balance between the
integral volume flux, i.e. integrating the local entrainment velocity vn(t) over the highly
contorted area of the TNTI, Q(t) = ∫

vn(t) dA(t) and the global volume flux Q0(t) =
−dVJ(t)/dt. The global volume flux can also be given by Q0(t) = ueA0 with ue being
the mean entrainment velocity and A0 being the projected area of the TNTI (Sreenivasan,
Ramshankar & Meneveau 1989). Recently, an alternative but probably less-direct way
to model the turbulent entrainment process across the TNTI is proposed by Zhou &
Vassilicos (2017) and Er, Laval & Vassilicos (2023). The Corrsin length ηI ∼ ν/〈vn〉,
which is based on the mean entrainment velocity and the thickness of the TNTI, and the
fractal property of the TNTI are involved for an indirect estimation of the surface area
(Zhou & Vassilicos 2017; Er et al. 2023). The Corrsin length and the fractal property are
expected to only be accurately observed at high Reynolds numbers, albeit the recent work
by Zhou & Vassilicos (2017) and Er et al. (2023) suggested that one could predict the
scaling of the mean entrainment velocity based on the characteristics of the Corrsin length
and the fractal property even at moderate Reynolds numbers.

Another aspect, perhaps equally significant but less noticed is that for self-similar/self-
preserving turbulent shear flow the entrainment process across the TNTI is closely related
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Interface of a turbulent plane jet

to the newly reported non-equilibrium dissipation law (Vassilicos 2015; Zhou & Vassilicos
2017). The dissipation assumption, which is also referred to as the zeroth law of turbulence
(Benzi & Toschi 2023), is normally required to derive the growth law of free shear flows.
Different dissipation assumptions (i.e. equilibrium dissipation law and non-equilibrium
dissipation law) can normally lead to distinctly different growth behaviour of turbulent
shear flows (Nedić, Vassilicos & Ganapathisubramani 2013; Dairay, Obligado & Vassilicos
2015; Cafiero & Vassilicos 2020). It is worth mentioning that aside from classical
self-similar analysis (Townsend 1956, 1976), there are other methods to derive the scaling
law of shear flows (see, for example, George 1989; Sadeghi, Oberlack & Gauding 2018).
Furthermore, based on the variation of the TNTI surface area in a self-similar period,
the mean entrainment velocity can also be derived from the scaling law, as shown below,
which can provide a simple law of entrainment velocity and has not been done in previous
studies.

The temporal evolution equation of a non-material infinitesimal element of area δA,
derived by Phillips (1972), has been widely used to investigate the production and
destruction mechanisms of the turbulent flame surface area (Candel & Poinsot 1990;
Trouvé & Poinsot 1994; Echekki & Chen 1999), which is also applicable to the evolution
of the TNTI surface area. The growth of the TNTI area strongly depends on the turbulent
entrainment process and the surface curvature (Phillips 1972). However, a few studies
have directly analysed the evolution of the three-dimensional (3-D) TNTI surface area and
combined it with the surface curvature. Recently, Neamtu-Halic et al. (2020) studied the
effect of nearby coherent structures on the evolution of the two-dimensional (2-D) TNTI
surface area, but the comprehensive understanding of the coupling between the production
and destruction of the TNTI surface area, surface curvature and the entrainment process
remains elusive. Furthermore, the Reynolds number (the inflow Reynolds number Re0 =
uh0/ν = 3700) used in the work of Neamtu-Halic et al. (2020) is relatively low to draw
conclusions about the evolution characteristics of the TNTI at high Reynolds numbers. It
is well-known that chemical reactions often occur near the TNTI in non-premixed flames
(Cleary & Klimenko 2009; Gampert et al. 2014) and the TNTI governs the mixing rates
between different species (da Silva et al. 2014). Thus, fully understanding the evolution
of the TNTI surface area is related to the modelling of the scalar dissipation rate (or
some other related quantity) in numerical simulations of reacting flows and is an important
research topic.

In this paper, a temporally evolving turbulent plane jet is numerically investigated by
means of direct numerical simulation (DNS). The numerical data of a temporally shear
flow allow a quantitative assessment of the turbulent entrainment across the TNTI. The
remaining parts of the paper are organised as follows. In § 2, we present the DNS details
along with the validation of the numerical data. A theoretical analysis of the mean flow
scaling law based on the computational results of the TNTI area is presented in § 3. In § 4,
we further explore the physical mechanisms responsible for the production/destruction of
the TNTI area. Finally, our main findings are summarised in § 5.

2. DNS of a temporally evolving turbulent plane jet

The DNS data with a high spatial resolution are the essential prerequisites for an
accurate evaluation of the local turbulence characteristics near the TNTI along with
the corresponding entrainment process. An open-source high-fidelity parallel solver
‘Incompact3d’ (Laizet & Lamballais 2009; Laizet, Lamballais & Vassilicos 2010; Laizet
& Li 2011) with spectral-like resolution (Lele 1992) is used for the DNS of the temporally
evolving turbulent plane jet with a moderate Reynolds number.
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2.1. Numerical details
Following previous numerical studies (da Silva & Métais 2002; Hayashi, Watanabe
& Nagata 2021), a hyperbolic-tangent function is employed to describe the vertical
distribution of the initial mean streamwise velocity Uin(Y), i.e.

Uin(Y) = UJ

2
+ UJ

2
tanh

[
HJ

4θ0

(
1 − 2|Y|

HJ

)]
, (2.1)

where UJ = 1 and θ0/HJ = 35 with θ0 and HJ being the initial momentum thickness
and the width of the nozzle, respectively. The mean initial velocity in the two other
directions is set to zero, i.e. Vin(Y) = 0 and Win(Y) = 0. Throughout the paper, unless
otherwise defined, the values of the mean velocity components and the corresponding
fluctuating components are presented by uppercase and lowercase letters, respectively.
The periodic boundary conditions are adopted in the two quasi-homogeneous directions
(i.e. X and Z directions), whereas the free slip boundary condition is used in the vertical
direction.

For an efficient transition to the self-similar/self-preserving state, artificially generated
3-D disturbances are superimposed onto the initial mean velocity field (Uin, Vin, Win)
within the vertical range −1/2 ≤ Y/HJ ≤ 1/2. The generation of the initial disturbances
is based on the diffusion procedure proposed by Kempf, Klein & Janicka (2005).
Relatively small-amplitude disturbances (i.e. the root-mean-square (r.m.s.) values of
the velocity fluctuations in three directions are only 0.02UJ) be superposed onto the
initial mean velocity field to allow a natural outward growth of the turbulent plane
jet.

The computational details and the corresponding geometric parameters are listed in
table 1. Here, the initial Reynolds number ReJ = UJHJ/ν, where ν is the kinematic
viscosity, is set to 4000. This moderate Reynolds number is chosen to ensure a sufficiently
fine spatial resolution and, consequently, accurately capture the instantaneous TNTI along
with the nearby turbulent flow dynamics. For instance, the first-order and second-order
derivatives of vorticity are required to compute the local turbulent entrainment (Holzner &
Lüthi 2011). The lengths LX , LY and LZ denote the sizes of the computational domain along
the streamwise, vertical and spanwise directions, respectively. Hereafter, X, Y and Z refer
to the streamwise, vertical and spanwise directions, respectively. The size of the simulation
domain is LX × LY × LZ = 8HJ × 12HJ × 8HJ and a total number of NX × NY × NZ =
768 × 1025 × 768 grid mesh points are used for the spatial discretisation. With respect to
the finite-difference discretisation, a sixth-order central compact scheme with spectral-like
resolution (Lele 1992) is employed. A third-order Adams–Bashforth scheme is adopted for
time advancement with �t/(HJ/UJ) = 0.0015. It is worth mentioning that the size of the
simulation domain and the corresponding mesh number are comparable to or even better
than those used in Hayashi et al. (2021). To avoid the normal boundary conditions affecting
the evolution of the turbulent region, we carefully selected the box size along the normal
direction, i.e. LY = 12H. This box size is larger than the normal length used in previous
studies (Watanabe et al. 2017; Silva, Zecchetto & da Silva 2018; Hayashi et al. 2021) and
is nearly twice that used by Silva et al. (2018). Further validation of the choice of the
streamwise and spanwise simulation domains is confirmed by performing an additional
DNS with a larger simulation domain, i.e. LX × LY × LZ = 16HJ × 12HJ × 16HJ and
the corresponding number of grids is NX × NY × NZ = 1536 × 1025 × 1536 (� 2.4 ×
109). The numeral treatment of the additional DNS is the same as that with a small
domain.
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Interface of a turbulent plane jet

ReJ θ0/HJ LX LY LZ NX NY NZ �t/(HJ/UJ)

4000 1/35 8HJ 12HJ 8HJ 768 1025 768 0.0015

Table 1. Computational and geometric details.
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Figure 1. The distributions of the normalised mean flow velocity and r.m.s. velocities. For comparison,
results from previous investigations (i.e. Gutmark & Wygnanski 1976; Thomas & Prakash 1991; da Silva &
Métais 2002; Stanley et al. 2002; da Silva & Pereira 2008; Watanabe et al. 2014b; Hayashi et al. 2021) are
included.

2.2. Simulation validation and spatial resolution
Figure 1 shows the vertical distributions of the normalised one-point statistics (i.e. the
mean streamwise velocity U and r.m.s. velocities Urms, Vrms and Wrms) at two different
time steps (T/Tref = 25.5 and 36.0, where Tref = HJ/UJ). The corresponding results from
previous numerical (i.e. da Silva & Métais 2002; da Silva & Pereira 2008; Watanabe
et al. 2014b; Hayashi et al. 2021) and experimental (i.e. Gutmark & Wygnanski 1976;
Thomas & Prakash 1991; Stanley, Sarkar & Mellado 2002) investigations are included for
comparison. It can be seen that our simulation results are in reasonably good accord with
those in previous studies. Here, UC and bU denote the centreline mean velocity and the jet
half-width, respectively. Hereafter, the subscript C denotes a variable along the centreline
and the half-width bU is defined as the vertical distance between the jet centreline and the
location where U(Y)/UC = 0.5.

To capture small-scale flow dynamics across the TNTI and the small-scale local
entrainment velocity vn, high-order derivatives (e.g. the first-order and second-order
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Figure 2. (a) Vertical distributions of the normalised spatial resolution (�X�Y�Z)1/3/η at T/Tref = 25.5
and (b) the PDF distribution of the local resolution at the TNTI for three different thresholds |ω|th/|ω|max =
1.0 × 10−5 (red solid line), 1.6 × 10−4 (cyan solid line) and 1.0 × 10−3 (green solid line) with |ω|max being
the maximum vorticity magnitude.

derivatives of the vorticity) need to be accurately solved. In this study, a high-order
compact scheme is adopted, and the global Reynolds number is set to be moderately
low. The current spatial resolution follows the suggestion by Laizet, Nedić & Vassilicos
(2015) that a spatial resolution less than 2η is necessary to have a correct reproduction
of the strain-rate and rotation tensors when using the solver Incompact3d. As shown
in figure 2(a), the normalised spatial resolution (�X�Y�Z)1/3/η is always below 1.2,
with �X, �Y and �Z being the mesh sizes in the streamwise, vertical and spanwise
directions, respectively, and η is the Kolmogorov scale. Figure 2(b) shows that the spatial
resolution (�X�Y�Z)1/3/η at the TNTI detected by a wider range of vorticity magnitude
(1.0 × 10−5 ≤ |ω|th/|ω|max ≤ 1.0 × 10−3) is mostly smaller than 1.0 and the peaks of
the probability distribution function (PDF) profiles are found around (�X�Y�Z)1/3/η �
0.45. Further validation of the current spatial resolution is done by assessing the balance
between the integral volume flux and the global volume flux, as will be demonstrated
below.

2.3. Evaluation of the self-similarity property
Figure 1(a) suggests that the vertical distribution of mean velocity is self-similar/self-
preserving. To further evaluate the self-similar behaviour of the mean flow, the jet shape
factor F(t) (Hickey, Hussain & Wu 2013) is computed (see figure 3). The jet shape factor
F(t) is the ratio of the displacement thickness δJ = ∫

U(Y)/UC dY to the momentum
thickness θJ = ∫

U(Y)2/U2
C dY , that is F(t) = δJ(t)/θJ(t). The time evolution of δJ and θJ

are also included in figure 3. The jet shape factor F remains nearly constant, i.e. F � 1.37
after T/Tref = 10.0.

The self-similar behaviour of the mean velocity and the corresponding constant jet shape
factor F have been confirmed in the previous discussion. The self-similar/self-preserving
state can be further evaluated by the second-order statistics such as r.m.s. velocity
(Almagro, García-Villalba & Flores 2017). Figure 4 shows the vertical distributions of
the normalised r.m.s. velocity components and the Reynolds stress as a function of Y/bU .
It can be seen that although the profiles are not smooth and exhibit oscillations to some
extent, which is probably related to the insufficient data samples for a given time step, a
reasonably good profile can still be obtained. A quantitative assessment of self-similarity
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Figure 3. Time evolution of the shape factor F(t), the displacement thickness δJ(t) and the momentum
thickness θJ(t). The horizontal line indicates F � 1.37.

is determined by calculating the area enclosed within the normalised profiles. Take, for
instance, the integral function Su for the normalised profiles of urms is defined by Su =∫

urms dY/umax
rms bU . It is evident from figure 5 that the profiles evaluating the self-similar

states become roughly constant for T/Tref > 20.0. The corresponding turbulent Reynolds
number Reλ based on the Taylor microscale λ remains nearly constant at approximately
Reλ = urmsλ/υ � 58.8 for T/Tref > 20.0.

3. Surface area of the TNTI and the scaling law of the mean flow

The entrainment processes of free shear flows are closely related to turbulent flow
dynamics near the TNTI. We first explore the identification of the TNTI and temporal
evolution of the TNTI surface area, and also establish the relationship of the turbulent
entrainment process and the TNTI surface area, which enables us to derive the scaling law
of the mean flow.

3.1. Identification and surface area of the TNTI
Figure 6 shows the contours of the magnitude of the vorticity field |ω| in a randomly
chosen 2-D X–Y plane at T/Tref = 19.5 and the isocontour lines corresponding to three
different vorticity magnitudes (represented by solid lines) are also included. Here, ω stands
for the vorticity vector with ωi = εijk∂uk/∂xj, where the subscripts i = 1, 2 and 3 represent
X, Y and Z directions, respectively. Throughout this paper, the bold letters indicate vectors,
and the symbol ‘| |’ represents the magnitude of a vector. The symbol ωmax denotes the
maximum magnitude of vorticity within the turbulent region for a particular time step.
Based on the interface orientation relative to the mean streamwise velocity, the TNTI can
generally be classified into three different types as conducted by Watanabe et al. (2014b):
leading edge (oriented towards the streamwise velocity), trailing edge (oriented opposite
to the streamwise direction) and cross-streamwise edge (aligned with the mean flow or,
equivalently, perpendicular to the cross-stream Y–Z plane), as shown in figure 6.

As can be seen from figure 6, for a wide range of vorticity magnitudes 1.0 ×
10−5 ≤ |ω|th(t)/|ω|max(t) ≤ 1.0 × 10−3, the turbulent regions surrounded by TNTI rarely
change as it should be. Following the previous study by Zhou & Vassilicos (2017), the
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Figure 5. Time evolution of the integrals, i.e. Su(t), Sv(t), Sw(t) and Suv(t).

vorticity norm, which is based on the maximum vorticity magnitude |ω|max(t), is used
to identify the TNTI. The dependence of the volume fraction on the threshold value
and the derivative of the volume fraction with respect to the threshold are plotted in
figure 7. A distinct plateau where −dVT/dlog10(|ω|th) � 0 within the range 1.0 × 10−7 ≤
|ω|th(t)/|ω|max(t) ≤ 1.0 × 10−3 can be readily identified. In order to accurately identify
the TNTI, it is crucial to carefully choose an appropriate vorticity threshold. Based on the
joint probability density distribution of the normalised vorticity magnitude |ω|th/|ω|max
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Figure 6. The logarithmic contours of the magnitude of vorticity at T/Tref = 19.5. The three solid lines
correspond to |ω|th(t)/|ω|max(t) = 1.0 × 10−5 (white one), 1.6 × 10−4 (black one) and 1.0 × 10−3 (blue one),
respectively. Only part of the simulation domain is plotted.

1.2

1.0

0.8

0.6

0.4

0.2

0

10–9 10–7 10–5 10–3 10–1 10–9 10–7 10–5 10–3 10–1

1.2

1.0

0.8

0.6

0.4

0.2

0

T/Tref = 19.5

T/Tref = 24.0

T/Tref = 28.5

T/Tref = 33.0

T/Tref = 37.5

T/Tref = 42.5

–
d
V T

/d
lo

g
1
0
(|ω

th
|)

VT

(a) (b)

|ωth|/|ωmax| |ωth|/|ωmax|
Figure 7. (a) The volume fraction of the turbulent region with |ω| ≥ |ω|th as a function of the threshold
|ω|th/|ω|max and (b) the derivative of the volume fraction with respect to the threshold. The vertical dashed
line indicates |ω|th(t)/|ω|max(t) = 1.6 × 10−4 and the shadowed areas correspond to the range 1.0 × 10−5 ≤
|ω|th(t)/|ω|max(t) ≤ 1.0 × 10−3.

and vertical height Y/bU (not shown herein), we also confirm that the presence of
numerical noise (Zhang, Watanabe & Nagata 2018) within the range 1.0 × 10−7 ≤
|ω|th(t)/|ω|max(t) ≤ 1.0 × 10−5, despite the turbulence volume hardly changes with the
threshold |ω|th/ωmax. Therefore, any threshold selection within the range 1.0 × 10−5 ≤
|ω|th(t)/|ω|max(t) ≤ 1.0 × 10−3 can be employed to detect TNTI and similar results can
be obtained. Hereafter, the threshold |ω|th(t)/|ω|max(t) = 1.6 × 10−4 corresponding to the
black line in figure 6 is adopted for the identification of the TNTI.

The method introduced by Yurtoglu, Carton & Storti (2018), which employs a grid-based
approach for computing implicitly defined surface integrals, is adopted to compute the
surface area A(t) and the integral volume flux Q(t) = ∫

vn(t) dA(t), where vn(t) denotes
the local entrainment velocity closely associated with the development of the plane jet.
The method uses the divergence theorem along with the characteristics of surface normal
vectors to transform the surface integral into a volume integral, i.e.

Q(t) =
∫

vn(t) dA(t) = −
∑
I,J,K

(vn)I,J,K
∇χ(|ω|)I,J,K · ∇|ω|I,J,K√∇|ω|I,J,K · ∇|ω|I,J,K

�X�Y�Z, (3.1)
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Figure 8. Time evolution of the normalised surface area A(t) of the TNTI. The surface area A(t) is normalised
by the initial surface area 2LXLZ . The purple solid squares stand for the corresponding results from the
simulation with a larger computational domain size. The two horizontal lines indicate A(t)/(2LXLZ) � 2.12
and dA(t)/dt � 0, respectively.

where

χ(|ω|) =
{

1, |ω| ≥ |ω|th,
0, |ω| < |ω|th, (3.2)

represents the occupancy function, which is based on the vorticity threshold |ω|th.
The indices I, J and K correspond to the grid nodes along the three directions in
the computational coordinate system. The occupancy function χ(|ω|) is numerically
computed using a fourth-order central finite-difference scheme, ensuring conformity with
the connection coefficients of Daubechies wavelets for genus 2. When the integrand
function vn equals 1, the value of the surface integral is identical to the surface area A(t),
that is, Q(t) = ∫

dA(t) = A(t). The occupancy function χ(|ω|) exhibits self-adaptation
to the highly contorted surface of the TNTI, enabling us to accurately estimate the time
evolution of surface area A(t) and integral volume flux Q(t) = ∫

vn(t) dA(t).
Figure 8 suggests that the time evolution of the normalised surface area A(t)/(2LXLZ)

and the corresponding time derivative dA(t)/dt. The surface area A(t) of the TNTI closely
related to the turbulent entrainment process increases rapidly through wrinkling and
deformation for T/Tref ≤ 20.0, which is attributed to the interactions of the multiscale
vortex structures (da Silva & dos Reis 2011) during the turbulent transition. It is worth
mentioning that the area A(t) remains roughly constant within the whole self-similarity
period, i.e. A(t)/(2LXLZ) � 2.12 with dA(t)/dt � 0 after T/Tref = 20.0. The roughly
constant surface area at T/Tref ≥ 20.0 is distinctly different from the slow expansion of
the area of the passive scalar isosurface (Blakeley, Olson & Riley 2022).

The surface area calculation method proposed by Yurtoglu et al. (2018) was originally
developed for relatively smooth surfaces. Considering the highly distorted nature of the
TNTI surface area, we further verified the accuracy of the calculation method using
the open-source software ParaView. The verification results indicate that the maximum
surface area error is only 0.58 % after T/Tref = 20.0. Furthermore, the method proposed
by Yurtoglu et al. (2018) has been successfully utilised by Blakeley et al. (2022) and
Huang, Burridge & van Reeuwijk (2023) for the direct calculation of the surface area
and entrainment flux. It is worth mentioning that compared with the algorithm embedded
in ParaView, this method significantly reduces the computational workload by eliminating
the need to remesh the surface grid.
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Interface of a turbulent plane jet

It has been argued that the surface area of the TNTI is adjusted continuously by
stretching until the integral volume flux Q(t) = ∫

vn(t) dA(t) balances the integral scale
entrainment flux (Holzner & Lüthi 2011; Van Reeuwijk & Holzner 2014). The current
result clearly indicates that this is indeed the case in the developing period with T/Tref <

20.0. However, the surface area remains nearly unchanged after T/Tref = 20.0. A possible
explanation is that the adjustment of the local entrainment velocity vn near the TNTI
may be more closely related to the local mean curvature. The constant surface area for
T/Tref ≥ 20.0 allows us to establish the scaling law of the mean entrainment velocity, as
shall be discussed below.

The turbulent motion near the TNTI is highly inhomogeneous due to the influence of
large-scale motion (Zecchetto & da Silva 2021). One may argue that the roughly constant
the surface area A(t) may be caused by the effect of size of the computational domain,
which inhibits the stretching of the surface area and suppresses the development of the
turbulent plane jet. Therefore, to investigate the dependence of the area A(t) on the size
of the computational domain, we perform an additional DNS on a larger computational
domain in the present study. The purple solid squares in figure 8 depict the temporal
evolution of the surface area A(t) after T/Tref = 20.0 from the simulation with a larger
domain. It can be seen that the corresponding area A(t) is virtually the same, which further
enhances the credibility of the obtained results. We confirm that there is a notable effect of
the normal boundary condition on the evolution of the TNTI surface area A(t) only after
T/Tref = 48. The current study only considers the range of 0 ≤ T/Tref ≤ 40 to mitigate
the effect of the normal boundary condition on the evolution of surface area.

3.2. Turbulent entrainment process of the TNTI
Following Holzner & Lüthi (2011) and Wolf et al. (2012), the local entrainment velocity
vn can be decomposed into two components with the enstrophy transport equation:
contributions from viscous and inviscid effects, namely,

vn = −2ωiSijωj

|∇|ω|2| − 2υωi∇2ωi

|∇|ω|2| = vP
n + vvis

n , (3.3)

where vP
n and vvis

n are related to the inviscid and viscous effects, respectively. Here, Sij =
(∂ui/∂Xj + ∂uj/∂Xi)/2 denotes the flow strain rates tensor.

The PDF distributions of the normalised local entrainment velocity vn and the two
components vP

n and vvis
n for T/Tref = 37.5 are plotted in figure 9(a). The distribution of the

inviscid component vP
n is symmetrical, leading to 〈vP

n 〉 � 0. The average value of 〈vn〉 �
〈vvis

n 〉 is negative, corresponding to the propagation of the TNTI towards the non-turbulent
region, accompanied by the growth of turbulent volume. It is well known that high-order
derivatives of velocity can be highly spatially intermittent and the probability distribution
is considerably departure from a normal distribution (Davidson 2004). In other words,
extreme/rare events are manifest in statistics of high-order derivatives (Sreenivasan &
Antonia 1997), which is the case for the viscous component vvis

n . Figure 9(a) clearly
suggests that the local entrainment process is mainly determined by the small-scale
viscous effects, as suggested by Holzner & Lüthi (2011). The small-scale viscous
effects dominating the entrainment process are also found in a high-Reynolds-number
axisymmetric jet (Mistry, Philip & Dawson 2019).

The viscous component vvis
n of the local entrainment velocity vn can be further

decomposed into three parts: the local tangential diffusion term vT
n , normal diffusion term
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Figure 9. PDF distributions of (a) the normalised local entrainment velocity vn and the two components vP
n

and vvis
n and (b) the three components of viscous term, vT

n , vN
n , and vε

n for T/Tref = 37.5. The entrainment
velocity and its components are normalised by the Kolmogorov velocity vη = (εv)1/4 of the jet centreline.

vN
n and viscous dissipation term vε

n (Holzner & Lüthi 2011; Dopazo et al. 2018), namely,

vvis
n = −υ(∇ · n) − υ(∂2|ω|2/∂2X2

n)

∂|ω|2/∂Xn
+ 2υ∇ωi : ∇ωi

|∇|ω|2| = vT
n + vN

n + vε
n, (3.4)

where n = ∇|ω|/|∇|ω|| denotes the unit normal vector and ∂|ω|2/∂Xn = ∇|ω|2 · n
indicates the gradient along the normal direction of the TNTI. The term vT

n is also
referred to as the curvature term by introducing the local mean curvature H, i.e. vT

n = 2υH
(Van Reeuwijk & Holzner 2014). This implies that the contribution of curvature to the
entrainment velocity vn is linear, with the slope corresponding to the kinematic viscosity
υ of the fluid. Wolf et al. (2013) demonstrated that the local entrainment velocity depends
strongly on the geometry of the TNTI surface, with the detrainment process (where
vn > 0) being more likely to manifest in a concave shape. An extended introduction of
the local mean curvature H along with an in-depth analysis of surface shape shall be
presented below. The viscous dissipation term vε

n always takes a positive value according
to the above definition, which means the effects of vε

n correspond to the inwards movement
of TNTI towards the turbulent region.

The PDF distributions of the three components are given in figure 9(b). Comparing
figures 9(a) and 9(b) shows that the normal diffusion term vN

n plays a dominant role in
the outwards growth of the TNTI. The tangential viscous term vT

n also contributes to the
outwards growth of the TNTI, albeit to a far lesser extent. In contrast, the effects of the
viscous dissipation term vε

n always suppress the spreading of the TNTI, as it should be. It
can be seen from figure 9(b) that when compared with the velocity caused by tangential
viscous term vT

n (or, equivalently, the mean curvature H), the molecular transport velocity
in the normal direction exhibits a much wider range of scales accompanied by intense
events. It is worth noting that although only a single threshold at one snapshot T/Tref =
37.5 is shown in figure 9, we confirm that the reported findings can be applied to other
thresholds (e.g. |ω|th(t)/|ω|max(t) = 1.0 × 10−5) and time steps (e.g. T/Tref = 22.5).
Therefore, our conclusion is expected to be robust, at least for a fully developed temporally
evolving turbulent plane jet (not shown herein for economy of space).

The instantaneous entrainment flux Q(t) can be computed directly by integrating the
local entrainment velocity vn over the surface of the TNTI (Krug et al. 2017; Zhou &
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Figure 10. Time evolution of (a) the integral volume flux Q(t) and its two components QP(t) and Qvis(t) and
(b) the ratio of the integral volume flux to the global volume flux, Q(t)/Q0(t) (presented by red solid squares).

Vassilicos 2017), which is given by

Q(t) = −dVJ(t)
dt

=
∫

vn(t)dA(t) = A(t)〈vn(t)〉, (3.5)

where VJ(t) denotes the turbulent volume, and the operator 〈 〉 represents a surface-area
weighted average over the top and bottom surfaces of the TNTI. The mean entrainment
velocity 〈vn(t)〉 is determined by the local entrainment velocity vn and the surface area A.

Following (3.3), we have Q(t) = ∫
vP

n (t) dA(t) + ∫
vvis

n (t) dA(t) = QP(t) + Qvis(t).
Figure 10(a) shows the time evolution of the integral volume flux Q(t) and its two
components QP(t) and Qvis(t). As expected, the integral volume flux is mainly determined
by the viscous effects. The temporal evolution of the integral volume flux Q(t) also
indicates a continuous decay of the jet growth rate over time. In figure 10(b), we
plot a quantitative description of the balance between the integral volume flux Q(t) =∫

vn(t) dA(t) and the global volume flux Q0(t) = −dVJ(t)/dt. The ratio Q(t)/Q0(t) is
approximately 1.0 and for the worst case, the deviation is within 8 %. Note that the
entrainment velocity vn, as a small-scale variable being comparable to the Kolmogorov
velocity, involves the calculation of both the second- and third-order derivatives of the
velocity. The good balance between Q(t) and Q0(t) further confirms the accuracy of the
computation of small-scale variables.

3.3. Scaling law of the plane jet flow
The expansion of the turbulent volume can be approximately estimated by the growth
rate of jet half-width bU , that is, VJ(t) = 2kLXLZbU(t), where k denotes a dimensionless
constant coefficient. The time independence verification of the dimensionless constant
coefficient k = (dVJ/dt)/(2LXLZ dbU/dt) is demonstrated in figure 11. The coefficient k
remains roughly constant with a negligibly weak oscillation, which is in reasonably good
agreement with the results of Er et al. (2023). Moreover, they also verified that the value
of coefficient k is almost independent of the selected vorticity threshold. This indicates
that the turbulent volume can thus be given as

VJ(t) ∼ LXLZbU(t). (3.6)

By applying self-similarity analysis to the Reynolds stress and the average turbulent kinetic
energy transport equations, combined with the turbulence dissipation scaling law, the
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Figure 11. Time evolution of dimensionless constant coefficient k = (dVJ/dt)/(2LXLZ dbU/dt). The
horizontal dotted line represents k � 1.44.

following relations are obtained for the jet half-width bU and the mean velocity along
the centreline UC:

bU(t) ∼ (HJUJ)
1/2t1/2, (3.7)

UC(t) ∼ (HJUJ)
1/2t−1/2. (3.8)

More detailed explanations can be found in the works of Ewing et al. (2007) and Er et al.
(2023). One interesting finding is that the scaling law bU(t) ∼ (HJUJ)

1/2t1/2 can also be
found in compressible temporally evolving plane jets (Nagata, Watanabe & Nagata 2018).
Note that we assume the virtual origin to be located at the coordinate origin, i.e. the scaling
laws of self-similar/self-preserving free shear turbulent flow.

Figure 12 shows the time evolution of the square of the jet half-width b2
U along with

the product bUUC. Figure 12(a) demonstrates that the square of the jet half-width b2
U

obtains a well-defined 1 power-law scale for T/Tref ≥ 20. The approximately unchanged
bUUC shown in figure 12(b) is consistent with the theoretical predictions mentioned above.
This will provide a theoretical basis for establishing the scaling of the mean entrainment
velocity in the subsequent analysis.

Using (3.5) for the surface area of the TNTI with (3.6)–(3.8), the following relation is
obtained for the surface area of the TNTI:

A(t) ∼ LXLZHJUJ

bU(t)〈vn(t)〉 . (3.9)

Figure 8 suggests the surface area A(t) remains roughly constant, i.e. A(t) = const.
This implies that the product of bU(t) and 〈vn(t)〉 remains approximately constant, i.e.
bU(t)〈vn(t)〉 = const. (see figure 13). By combining (3.7), the scaling relationship for the
mean entrainment velocity in a temporally evolving plane jet can be expressed as

〈vn(t)〉 ∼ (HJUJ)
1/2t−1/2. (3.10)

This indicates that the mean entrainment velocity 〈vn〉 is inversely proportional to the
square root of time. It is worth mentioning that the above derivation is not affected by
the choice of the dissipation scaling law. In other words, both the classical dissipation
scaling law and the non-equilibrium dissipation scaling law lead to the same scaling of
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Figure 12. Time evolution of (a) the square of the jet half-width b2
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Figure 13. Time evolution of bU〈vn〉/(HJUJ) for T/Tref ≥ 20.

the mean entrainment velocity (Vassilicos 2015, 2023). The constant TNTI surface area
and the scaling law for the mean entrainment velocity are also valid for a higher Reynolds
number, i.e. ReH = 8000 (see the Appendix).

Quite recently, the same scaling law of the mean entrainment velocity in a temporally
evolving plane jet has been derived by Er et al. (2023). It is worth mentioning that our
analysis framework is based on the direct computation of the surface area A(t), which is
distinctly different from the approach in Zhou & Vassilicos (2017) and Er et al. (2023).
Their approach involves the fractal or fractal-like properties of the TNTI and the use
of the Corrsin length ηI ∼ ν/〈vn〉. In this study, our derivation does not require the two
assumptions above.

In summary, the present analysis derives from the results of the temporally developing
jet based on mass conservation, i.e. bU(t)UC(t) = const (see figure 12b). Considering
different flow types, such as temporally evolving flows and spatially evolving flows, is
expected to result in distinctly different growth behaviours of turbulent shear flows (Nedić
et al. 2013; Cafiero & Vassilicos 2019; Er et al. 2023). This means that applying similar
analytical methods to spatially evolving flows that preserve momentum flux conservation
(i.e. bU(x)U2

C(x) = const.) requires careful consideration.
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4. Evolution mechanism of TNTI surface area and the related turbulent entrainment

4.1. Time evolution of the surface area of the TNTI
It still remains to be seen what mechanism is responsible for the approximately constant
surface A(t) for T/Tref ≥ 20.0. The temporal evolution of a non-material infinitesimal
element of area δA, derived by Phillips (1972), has a great degree of generality and is
applicable to the evolution of isosurfaces in many physical fields. In this study, the equation
is used to explore the mechanisms responsible for the production and destruction of the
TNTI, i.e.

1
δA(t)

dδA(t)
dt

= (δij − ninj)Sij + vn∇ · n = Sω + Hω. (4.1)

The stretching term Sω = (δij − ninj)Sij is associated with flow tangential strain rate. Here,
δij is the Kronecker delta, and ni being the ith component of the unit normal vector n
of the surface of the TNTI. For incompressible flow, we have (δij − ninj)Sij + ninjSij =
∂ui/∂Xi = 0.

The curvature/propagation term Hω = vn∇ · n represents the combined influences of
the local entrainment velocity vn and the corresponding surface curvature H, which can
also be further written as a function of the mean curvature H: Hω = vn∇ · n = 2vnH =
vn(κ1 + κ2). The two principal curvatures κ1 and κ2 are the two non-zero eigenvalues of
the curvature tensor ni,j, i.e.

ni,j = 1
∂|ω|/∂Xn

(δik − nink)
∂2|ω|

∂Xj∂Xk
, (4.2)

where ∂|ω|/∂Xn = ∇|ω| · n denotes the gradient along the normal direction of the TNTI.
Throughout this study, the local mean curvature H = (κ1 + κ2)/2 is negative for bulges
with convex shapes and positive for valleys with concave shapes. The mean curvature H
equals 0 for a flat surface, resulting in Hω = 0.

The time evolution of the average mean curvature 〈H〉 of the surface for T/Tref ≥ 20.0
and the PDF distribution of H for T/Tref = 37.5 are shown in figure 14. Here, the
average mean curvature is calculated by 〈H〉 = (1/2A)

∫
(κ1 + κ2) dA. There is a gradual

and consistent decrease in the average value of H, corresponding to an increase in the
characteristic length scale of the TNTI. Although the decrease of the average mean
curvature 〈H〉 suggests that the turbulent motion causes continuous deformation of the
surface, the total surface area of the TNTI remains nearly constant. The PDF profile of H is
not symmetrical and shows a left-skewed distribution resulting in a positive average value
and thus a prevalence of concave shapes. Figure 15 clearly indicates that the 3-D contour
of the TNTI is strongly convoluted with multiscale bulges/valleys. The large positive
values of Sω and Hω (represented by the red colour) are more likely to be found at the
leading edges. The local surface area δA(t) of the leading edge is more likely to expand,
despite the fact that, as is shown below, the surface area 〈A(t)〉 remains relatively constant.
This observation was also reported by Neamtu-Halic et al. (2020), somewhat echoing
the argument by Watanabe et al. (2014b) that the vortex stretching and compression near
the TNTI are significantly influenced by the interface orientations. Another less noted
but likely equally important observation is that figure 15 clearly indicates the spatial
distribution of Hω appears significantly more intermittent to that of Sω. One may conclude
that the stretching term Sω is related to the large-scale turbulence and Hω are more likely
to be related to the small-scale motions.

Figure 16 shows the PDF distributions of the stretching term Sω, the curvature/
propagation term Hω and the unsteady term ((1/δA(t))dδA(t)/dt = Hω + Sω) at T/Tref =
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Figure 14. (a) Time evolution of the average mean curvature 〈H〉 of the surface for T/Tref ≥ 20.0 and (b) PDF
distribution of the mean curvature H for T/Tref = 37.5. Note that the left- and right-hand sides of the vertical
dotted line represent convex and concave shapes, respectively.
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Figure 15. Top view of the TNTI (i.e. isosurfaces of the vorticity magnitude with |ω|th(t)/|ω|max(t) =
1.6 × 10−4). The colour of the TNTI represent (a) the value of the strain term Sω and (b) the value of the
curvature/propagation term Hω for T/Tref = 37.5.

37.5. The PDF distributions of Hω and Sω are distinctly different even though their average
influences counterbalance each other (i.e. 〈Sω〉 = 0.068 and 〈Hω〉 = −0.074). The profile
of Hω exhibits significant fat tails compared to that of Sω, implying the existence of
intense/extreme events in small-scale turbulence (Sebastien & Thierry 1990). The fat tails
of local entrainment velocity vn (see figure 9) imply that the local entrainment velocity vn
exhibits a large range of values but with a mean negative value which is of the order of the
Kolmogorov scale. Taking into account the right-skewed PDF of the mean curvature H, the
intermittent and extensive events of Hω are somehow related to the fact. We further confirm
that the correlation efficiency between the local mean curvature H and the entrainment
velocity vn is considerably small. It is thus not surprising that extreme/intense events are
more likely to be related to the curvature/propagation term. The above discussions imply
the intrinsic properties of Hω and Sω are distinctly different from each other.

Similar extreme events can also be found in the unsteady term, which is manifest in the
fat tails of the distribution of Hω + Sω. This implies that small-scale areas of the TNTI
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Figure 16. PDF distributions of Hω, Sω and the unsteady term Hω+ Sω at T/Tref = 37.5.

can experience intense changes, either through production or destruction effects. The rare
events involving intense area changes arise from the non-Gaussian distributions of the
entrainment velocity vn and the mean curvature H.

When taking an averaging over the TNTI, (4.1) becomes (Neamtu-Halic et al. 2020)

1
A(t)

dA(t)
dt

= 〈Sω〉 + 〈Hω〉, (4.3)

where the operator 〈 〉 denotes an average over the top and bottom surfaces of the TNTI.
It can be seen that the average production/destruction of the TNTI area A(t) stems from
the combined effects of 〈Sω〉 and 〈Hω〉. Obviously, if the sum of the average strain and
average curvature/propagation terms, i.e. 〈Sω〉 + 〈Hω〉 is positive (negative), the surface
area of the TNTI will increase (decrease) with time. One can reasonably expect that for
T/Tref ≥ 20 the average unsteady term dA(t)/(A(t) dt) is relatively small (or equal zero),
the contributions of the flow tangential strain rate Sω and the effect of the local mean
curvature Hω balance each other.

The time evolution of the three terms in (4.3), i.e. dA/(A dt), 〈Sω〉 and 〈Hω〉 for
T/Tref ≥ 20 are plotted in figure 17. The residual term 〈R〉, which is the difference
between the left- and right-hand sides of (4.3), that is 〈R〉 = 〈Sω〉 + 〈Hω〉 − dA/(A dt) is
also included for comparison. The residual term 〈R〉 is considerably small, which further
implies that the entrainment process across the TNTI and the surface area are captured
accurately. As expected, there is an approximately instantaneous balance between 〈Sω〉
and 〈Hω〉 and both magnitudes appears to continuously decay with time, similar to the
observations of Neamtu-Halic et al. (2020) in turbulent flows with or without stable
stratification. The positive values of the term 〈Sω〉 indicate that the flow inhomogeneity
always contributes to the growth of the surface area A(t). In contrast, the negative 〈Hω〉
term is related to the destruction of the surface area A(t). The decrease in the magnitude of
the stretching term 〈Sω〉 can find its roots in the fact that the mean velocity profile becomes
flat with time evolution. Moreover, one could reasonably argue that the negative value of
〈Hω〉 arises due to the overall concave shapes exhibiting 〈H〉 > 0 (see figure 14) and the
spreading of the planar jet with 〈vn〉 < 0 (see figure 9a). Although on average the strain
and curvature/propagation terms counterbalance each other, resulting in an approximately
constant TNTI area for T/Tref ≥ 20.0, their intrinsic properties are distinctly different.
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Figure 17. Time evolution of the two average terms 〈Sω〉 and 〈Hω〉 involved in the growth of surface area for
T/Tref ≥ 20. For reference, the residual term 〈R〉 = 〈Sω〉 + 〈Hω〉 − dA/(Adt) is also included.

The local effects of the curvature/propagation term are highly spatially intermittent with
small-scale extreme/intense events, whereas the effects of the large-scale stretching term
are more continuous.

4.2. Contributions of the viscous and inviscid effects and curvature effects
The large-scale motions are associated with the cumulative structure of the surface area,
while the curvature/propagation term Hω related to small-scale turbulent motions plays
a more significant role in the production/destruction of the surface area, as reported
by Catrakis, Aguirre & Ruiz-Plancarte (2002). Two of the key quantities effecting
the production/destruction of the area A(t) are the local entrainment velocity vn and
the mean curvature H considering the observation A(t) = const. The effect of nearby
coherent structures on the evolution of the TNTI surface area in a turbulent flow with
and without stable stratification was recently studied by Neamtu-Halic et al. (2020).
However, in their study, the entrainment velocity was determined using an interface
tracking technique, similar to the method employed by Wolf et al. (2012). The application
of the interface tracking technique makes the direct decomposition of the local entrainment
velocity impossible, thereby preventing comparisons of viscous and inviscid contributions
or exploration of their relationship to the TNTI geometry. It is shown that the local
entrainment velocity vn somewhat depends on the shape of the TNTI. The viscous effects
are predominant for convex surfaces, whereas the inviscid effect accompanied by vortex
stretching plays a more critical role for concave surfaces (Wolf et al. 2012, 2013). One
may expect that the surface change depends on the shape of the TNTI. To take the
observation 〈Hω〉 < 0 one step further, the contributions of the viscous and inviscid effects
and curvature effects are explored.

Using (3.3) for the local entrainment velocity vn, the curvature/propagation term 〈Hω〉
in (4.3) can be further expressed as

〈Hω〉 = 〈vP
n ∇ · n〉 + 〈vvis

n ∇ · n〉, (4.4)

which enables us to distinguish between the contributions of the viscous and inviscid
components to the growth of the surface area. By substituting (3.4) into (4.4), we obtain

〈Hω〉 = 〈vP
n ∇ · n〉 + 〈vT

n ∇ · n〉 + 〈vN
n ∇ · n〉 + 〈vε

n∇ · n〉, (4.5)
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Figure 18. Time evolution of the average stretching term 〈Sω〉 and the two components 〈vP
n ∇ · n〉 and

〈vvis
n ∇ · n〉 for T/Tref ≥ 20.0.

where vT
n ∇ · n, vN

n ∇ · n and vε
n∇ · n represent the contributions of the curvature/tangential

diffusion term, the curvature/normal diffusion term together with the curvature/viscous
dissipation term to the surface area of TNTI, respectively. It can be seen that the
contributions of 〈vT

n ∇ · n〉 to the surface area are always negative given by 〈vT
n ∇ · n〉 =

−υ(∇ · n)2 = −4υH2, and 〈vε
n∇ · n〉 to the surface area of TNTI depend entirely on

the geometric characteristics of the interface. With respect to dissipation effects, as vε
n

consistently remains negative (vε
n > 0), vε

n∇ · n is negative (positive) for convex (concave)
shapes.

The two components of the average curvature/propagation term 〈Hω〉, i.e. the
curvature/inviscid term 〈vP

n ∇ · n〉 and the curvature/viscous term 〈vvis
n ∇ · n〉 as well as

the time evolution of the stretching term 〈Sω〉 are shown in figure 18. The average
term 〈vvis

n ∇ · n〉 plays a dominant role in the destruction of the surface area of TNTI,
i.e. 〈Hω〉 � 〈vvis

n ∇ · n〉. In contrast, the average term 〈vP
n ∇ · n〉 remains virtually zero,

implying 〈vP
n ∇ · n〉 has a negligibly small effect on the evolution of the surface area.

Previous studies (da Silva et al. 2014; Watanabe et al. 2014b) have already shown that
the viscous diffusion effect near the TNTI dominates the enstrophy transport, and inviscid
processes associated with vortex stretching and compression can be neglected.

Figure 19(a) shows the PDF distributions of the two components of Hω, vP
n ∇ · n

and vvis
n ∇ · n for T/Tref = 37.5. The PDF distribution of vP

n ∇ · n is approximately
symmetrical with the peak value being around zero. The profile of vvis

n ∇ · n is similar to
that of term Hω, further confirming that the contribution of inviscid effects to the surface
change can be somewhat neglected.

To further investigate the viscous processes on the surface change, we decompose
the curvature/viscous term vvis

n ∇ · n into three components, i.e. the curvature/tangential
diffusion term vT

n ∇ · n, the curvature/normal diffusion term vN
n ∇ · n and the

curvature/viscous dissipation term vε
n∇ · n. The PDF distributions of the three components

of vvis
n ∇ · n are shown in figure 19(b). The always negative values of vT

n ∇ · n are expected
considering its definition. The PDF distributions of vN

n ∇ · n and vε
n∇ · n exhibit significant

differences. In terms of the destruction of surface area, vN
n ∇ · n have a higher probability

for the large negative values compared with vε
n∇ · n. The average values of vT

n ∇ · n,
vN

n ∇ · n and vε
n∇ · n are −0.45, −0.94 and 1.32, respectively. One could also reasonably
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n ∇ · n and (b) vT
n ∇ · n, vN

n ∇ · n and vε
n∇ · n for

T/Tref = 37.5.

draw the conclusion that on average vT
n ∇ · n and vN

n ∇ · n lead to the destruction of surface
area, whereas vε

n∇ · n contributes to the growth of surface area. Meanwhile, the PDF
profiles of all three components consistent with Hω demonstrate fat tails, implying the
existence of intense/extreme events at the TNTI.

In light of the above discussion, the geometric properties of the surface are
intimately related to the local production/destruction of the surface area. We further
calculate the conditional statistics (in relation to the local mean curvature H) involved
in the production/destruction of the surface. Here, for any variable f , the statistics
conditional 〈 f | H〉 are weighted based on the local mean curvature H, namely, 〈 f | H〉 =∫

P( f | H)f df , where P( f | H) represents the local probability distribution of the
conditional variable H. The conditional average statistics on the local shapes are presented
below.

Figure 20 shows the conditional averages of 〈Sω | H〉, 〈Hω | H〉 and 〈Hω + Sω | H〉. It
is evident that in terms of conditional averages, the curvature/propagation term 〈Hω〉 is
dominant, albeit 〈Hω〉 and 〈Sω〉 counterbalance each other. The stretching effects 〈Sω〉
produce the surface area for both bulge surfaces with H < 0 and valley surfaces with
H > 0, albeit with a relatively smaller contribution. In contrast, the curvature/propagation
term 〈Hω〉 is intricately related to the local mean curvature. Figure 20 further indicates that
the curved local surfaces with large mean curvatures are usually associated with a strong
production/destruction of surface area.

The curvature/propagation term 〈Hω〉 increases the surface area in bulging regions while
destroying it in the valleys, ensuring that the total surface area of the TNTI remains roughly
unchanged. More specifically, the outwards expansion of the TNTI with vn < 0 leads to an
increase of the surface area within bulging regions (Hω = 2vnH > 0), whereas it destroys
the surface area within valley regions (Hω = 2vnH < 0). We can also reasonably argue
that the continuous decrease of the average mean curvature (see figure 14a) is caused by
the destruction of the valley region and the production of the bulging region.

The conditional averages of the two components of the curvature/propagation term Hω,
vP

n ∇ · n and vvis
n ∇ · n, are plotted in figure 21(a). The conditional average of vvis

n ∇ · n
exhibits a discernible negative correlation with the local mean curvature H. Figure 21(b)
suggests that the negative correlation between 〈vvis

n ∇ · n〉 and H is caused by the influence
of vN

n ∇ · n. A pronounced positive correlation between 〈vε
n∇ · n〉 and H is observed.
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T/Tref = 37.5.

Figure 21(b) also shows that the growth of surface area in bulging regions is attributed
to the relatively large positive values of 〈vN

n ∇ · n〉, which counteract the destruction of
surface area caused by terms 〈vT

n ∇ · n〉 and 〈vε
n∇ · n〉. In the Appendix, it is further

demonstrated that the results are also valid at a higher Reynolds number, i.e. ReH = 8000.
Concerning the outwards movement of the TNTI, the contribution of the tangential

diffusion term vT
n is considerably smaller than the normal diffusion term vN

n
(see figure 9b). However, the conditional average of all three components of the
curvature/viscous term vvis

n ∇ · n, are comparable to each other (〈vT
n ∇ · n〉 = −0.45,

〈vN
n ∇ · n〉 = −0.94 and 〈vε

n∇ · n〉 = 1.32), which results in a relative small sum 〈vvis
n ∇ ·

n〉 = −0.07. Therefore, all three components (i.e. vT
n , vN

n and vε
n) of vvis

n are indispensable
for the constant surface area at T/Tref ≥ 20.0.
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5. Conclusion

Owing to the complex multiscale nature of the entrainment mechanism, the characteristics
concerning the TNTI area growth remain somewhat unclear. The main objective of this
paper was to develop an accurate understanding of the evolution of interface surface
and the corresponding entrainment process in a temporally evolving turbulent plane jet
by using high-fidelity and high-resolution DNS data. The method proposed by Yurtoglu
et al. (2018) has been applied to compute the surface area and the corresponding local
entrainment velocity. By evaluating the balance between the integral volume flux Q(t) =∫

vn(t) dA(t) and the global volume flux Q0(t) = −dVJ(t)/dt, we confirm the accuracy of
the assessment of the entrainment process.

It is revealed that the surface area in the temporal evolution of the TNTI remains
approximately constant, which constitutes the establishment of the scaling law for the
mean entrainment velocity, i.e. 〈vn(t)〉 ∼ (HJUJ)

1/2t−1/2. This derivation approach is
distinctly different from the analytical framework presented in Er et al. (2023) and Zhou
& Vassilicos (2017). Note that the present analysis results from mass conservation in the
temporally developing jet, i.e. bU(t)UC(t) = const. The constant TNTI surface area allows
us to directly deduce the scaling of the mean entrainment velocity. However, experiments
with higher Reynolds numbers are required to lend further credence to the validity of the
scaling law. Therefore, strong conclusions are difficult to draw, especially in a first study.

The underlying mechanisms responsible for the constant surface area have been
explored by using the surface area evolution equation, which has been used to explore
the growth of the turbulent flames surface area (Candel & Poinsot 1990; Trouvé
& Poinsot 1994; Echekki & Chen 1999). The values of both the stretching term
Sω and curvature/propagation term Hω can be either positive, corresponding to local
area production, or negative, corresponding to local area destruction. On average,
however, the stretching term contributes to the increase of the surface area, while the
curvature/propagation term is associated with a decrease in the surface area. The stretching
and curvature/propagation terms approximately counterbalance each other, which is
similar to the study of Neamtu-Halic et al. (2020). Compared with the stretching effects,
the curvature/propagation effects exhibit considerable spatial intermittency associated
with small-scale mechanisms. One interesting finding is that the PDF distribution of
the curvature/propagation term is much broader than the stretching term. This implies
that extreme or intense events of area production and destruction are more likely to be
related to the effect of the curvature/propagation term. The non-Gaussian distribution of
the curvature/propagation term can find its roots in the highly intermittent entrainment
velocity vn.

The broad PDF distribution of Hω is manifest in the wider range of entrainment velocity
vvis

n and the right-skewed local mean curvature H, albeit the average velocity is of the
order of the Kolmogorov velocity. The curvature effects on the production and destruction
of the surface area, which have rarely been explored in previous studies, were further
investigated. On average the growth of the curvature/propagation term Hω, is mainly
caused by the curvature/viscous term vvis

n ∇ · n, while the curvature/inviscid term vP
n ∇ · n

associated with vortex stretching is virtually zero. The local production and destruction
of the area caused by the curvature/viscous effects strongly depends on the local mean
curvature. The stretching effects produce the surface for both bulge and valley surfaces.
In contrast, the curvature/viscous term intricately relates to the local mean curvature,
contributing to the production of surface area in bulging regions and its destruction in
the valleys.
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We have further investigated the effects of the three components of the curvature/viscous
term on the surface area change. On average, the average curvature/normal diffusion term
〈vN

n ∇ · n | H〉 and the average curvature/viscous dissipation term 〈vε
n∇ · n | H〉 produce

and destroy the surface area within bulging regions, respectively, and vice versa within the
valley regions. The local surfaces with the large mean curvatures are usually associated
with a greater production and destruction of the area. The gradual decrease of the
average mean curvature 〈H〉 is caused by the destruction of the valley regions and the
production of the bulging regions. All three components vT

n ∇ · n, vN
n ∇ · n and vε

n∇ · n
of the curvature/viscous term are critical to the evolution of the surface area, albeit the
entrainment velocity vn is mainly determined by the normal diffusion term vN

n .
It has been shown that several aspects of small-scale motions within the TNTI of various

kinds of shear flows are universal (Zecchetto & da Silva 2021). Whether our current
findings can be applied to other types of free-shear flows (e.g. mixing layer, wake and
shear-free flow) is a quite pertinent question, which should be pursued in the future. In
numerical simulations of reacting flows, understanding the temporal evolution of scalar
isosurfaces is also crucial for modelling the scalar dissipation rate, such as the mixing
fraction (Watanabe et al. 2014a). The growth/spread rates of free shear flows are directly
related to the local entrainment velocity and the TNTI surface. Hickey et al. (2013)
demonstrated that turbulent planar wakes exhibit multiple self-similar states with varying
spread rates. The investigation of the characteristics of the TNTI and the corresponding
entrainment process for multiple self-similar states remains another important subject for
future research.
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Appendix. The Reynolds number dependence of the time evolution of TNTI surface
area

Considering that the scaling for the mean entrainment velocity derived based on a constant
TNTI surface area is discussed at a relatively low Reynolds number ReH = 4000 in the
main body of the paper, there are doubts considering the validity of maintaining a constant
surface area in a high-Reynolds-number configuration. This appendix further examines
the dependence of the time evolution of the TNTI surface area on the Reynolds number by
performing an additional DNS with a higher Reynolds number.

For the DNS simulation of the TNTI of higher-Reynolds-number jets, in addition to the
huge computational costs, additional difficulty requires special attention. With increasing
Reynolds number, the TNTI surface becomes more distorted, accompanied by a larger
surface area (Zhang, Watanabe & Nagata 2023) and stronger unphysical oscillations
(Er et al. 2023). In particular, these numerical oscillations at the outer edge of TNTI
become significant under the strong shear effect as the threshold value goes to zero.
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ReJ θ0/HJ LX LY LZ NX NY NZ �t/(HJ/UJ)

8000 1/35 8HJ 12HJ 8HJ 1152 1729 1152 0.0008

Table 2. Computational and geometric details for the high-Reynolds-number case.
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Figure 22. The logarithmic contours of the magnitude of vorticity at T/Tref = 40.0: (a) ReH = 4000;
(b) ReH = 8000. The outer edge of the TNTI is delineated in solid white lines.

The unphysical strong local oscillations on the TNTI will introduce significant problems in
calculating the surface area and affect the time evolution of the surface area. To suppress
the unphysical oscillations near the interface and avoid the contamination of the detection,
a modified compact finite difference scheme with additional numerical dissipation is
used to solve the viscous term (Lamballais, Fortuné & Laizet 2011). Nevertheless, the
maximum inlet Reynolds number we can currently simulate is ReH = 8000, which is
comparable to the recent work of Silva et al. (2018) in a high-Reynolds-number case.
It is worth mentioning that the unphysical oscillations of the outer edge of the TNTI at
high Reynolds numbers were not rigorously examined in their study. The computational
details and the geometric parameters are listed in table 2. The turbulent Reynolds number
Reλ for the high-Reynolds-number case based on the Taylor microscale λ is approximately
80.4 for T/Tref = 40.0, and the corresponding spatial resolution of the jet centreline is
(�X�Y�Z)1/3/ηC = 0.88.

Figure 22 shows a colour contour of the vorticity magnitude |ω| and the outer edge of
the TNTI on a X–Y plane. Consistent with the moderate Reynolds number ReH = 4000,
the vorticity threshold |ω|th(t)/|ω|max(t) = 1.6 × 10−4 is adopted for the identification
of the TNTI. The geometry of the outer edge of the TNTI is significantly different for
ReH = 4000 and 8000. For the high-Reynolds-number case, the outer edge of the TNTI
is more contorted and the characteristic length scale of the turbulent region is smaller.
Furthermore, finer vorticity structures can be found in figure 22(b), as expected.

The time evolution of the normalised surface area A(t)/(2LXLZ) at a high Reynolds
number is plotted in figure 23(a). It can be seen that the surface area of the TNTI
also remains roughly constant within the self-similarity period, i.e. A(t)/(2LXLZ) � 2.66.
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Figure 23. (a) Time evolution of the normalised surface area A(t) of the TNTI for a high Reynolds number
ReH = 8000. The horizontal dashed line indicates A(t)/(2LXLZ) = 2.66. (b) Time evolution of the spatial
average of the stretching term 〈Sω〉 (red) and the curvature/propagation term 〈Hω〉 (blue) is involved in the
growth of surface area for ReH = 8000.
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Figure 24. Conditional averages of (a) the local strain effects 〈Sω | H〉 and 〈Hω + Sω | H〉 and (b) the local
curvature/propagation effects 〈Hω | H〉 and 〈Hω + Sω | H〉 at T/Tref = 37.6 for a high Reynolds number
ReH = 8000.

As shown in figure 23(b), the stretching term 〈Sω〉 roughly balances the curvature/propagation
term 〈Hω〉, which further confirms that the surface area of the TNTI remains nearly
unchanged in a high-Reynolds-number case, i.e. dA(t)/dt � 0. This finding implies
that the characteristic of constant surface area is also applicable to the current
high-Reynolds-number case ReH = 8000. Therefore, the scaling of the mean entrainment
velocity derived from the analytical framework of the constant surface area may be
considered to be robust, at least for the two simulation cases. However, drawing strong
conclusions is difficult, especially in a first study. Experiments with higher Reynolds
numbers are required to further validate the scaling law.

In light of the discussion in § 4.2, the surface curvature of the TNTI is intimately related
to the local production/destruction mechanisms of the surface area. The Reynolds number
dependence should also be examined to understand the relationship between the growth
of surface area and surface curvature. Figure 24 shows the conditional averages of the
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Figure 25. Conditional averages of (a) vP
n ∇ · n and vvis

n ∇ · n and (b) vT
n ∇ · n, vN

n ∇ · n and vε
n∇ · n at

T/Tref = 37.6 for a high Reynolds number ReH = 8000.

stretching term Sω and the curvature/propagation term Hω for a higher-Reynolds-number
case with ReH = 8000. The surface evolution also exhibits a similar dependence on
the shape of the TNTI as in the case of ReH = 4000. The conditional averages of
all five components (e.g. vP

n ∇ · n, vvis
n ∇ · n, vT

n ∇ · n, vN
n ∇ · n and vε

n∇ · n) of the
curvature/propagation term Hω are plotted in figure 25. One interesting finding is that,
compared with the lower-Reynolds-number case, the magnitudes of the conditional
average statistics are smaller in a higher-Reynolds-numbers case. Considering that the
high-Reynolds-number case is accompanied by a smaller mean entrainment velocity vn
(Pope 2000), this observation is, perhaps, not so surprising.

In summary, in this study, the characteristics related to the time evolution of the TNTI
surface area have been demonstrated to be somewhat similar, at least for the two simulation
cases (ReH = 4000 and 8000) considered.

REFERENCES

ALMAGRO, A., GARCÍA-VILLALBA, M. & FLORES, O. 2017 A numerical study of a variable-density
low-speed turbulent mixing layer. J. Fluid Mech. 830, 569–601.

BENZI, R. & TOSCHI, F. 2023 Lectures on turbulence. Phys. Rep. 1021, 1–106.
BLAKELEY, B.C., OLSON, B.J. & RILEY, J.J. 2022 Self-similarity of scalar isosurface area density in a

temporal mixing layer. J. Fluid Mech. 951, A44.
CAFIERO, G. & VASSILICOS, J.C. 2019 Non-equilibrium turbulence scalings and self-similarity in turbulent

planar jets. Proc. R. Soc. A 475 (2225), 20190038.
CAFIERO, G. & VASSILICOS, J.C. 2020 Nonequilibrium scaling of the turbulent-nonturbulent interface speed

in planar jets. Phys. Rev. Lett. 125 (17), 174501.
CANDEL, S.M. & POINSOT, T.J. 1990 Flame stretch and the balance equation for the flame area. Combust.

Sci. Tech. 70 (1-3), 1–15.
CATRAKIS, H.J., AGUIRRE, R.C. & RUIZ-PLANCARTE, J. 2002 Area–volume properties of fluid interfaces

in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid Mech. 462, 245–254.
CLEARY, M.J. & KLIMENKO, A.Y. 2009 A generalised multiple mapping conditioning approach for turbulent

combustion. Flow Turbul. Combust. 82, 477–491.
CORRSIN, S. & KISTLER, A.L. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. 1224,

1033–1064.
DAIRAY, T., OBLIGADO, M. & VASSILICOS, J.C. 2015 Non-equilibrium scaling laws in axisymmetric

turbulent wakes. J. Fluid Mech. 781, 166–195.
DAVIDSON, P.A. 2004 Turbulence, An Introduction for Scientists and Engineers. Oxford University Press.

1001 A39-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
07

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1107


Y. Xie, X. Zhang, X.-L. Xiong and Y. Zhou

DOPAZO, C., MARTIN, J., CIFUENTES, L. & HIERRO, J. 2018 Strain, rotation and curvature of non-material
propagating iso-scalar surfaces in homogeneous turbulence. Flow Turbul. Combust. 101 (1–6), 1–32.

ECHEKKI, T. & CHEN, J.H. 1999 Analysis of the contribution of curvature to premixed flame propagation.
Combust. Flame 118 (1-2), 308–311.

ER, S., LAVAL, J.-P. & VASSILICOS, J.C. 2023 Length scales and the turbulent/non-turbulent interface of a
temporally developing turbulent jet. J. Fluid Mech. 970, A33.

EWING, D., FROHNAPFEL, B., GEORGE, W.K., PEDERSEN, J.M. & WESTERWEEL, J. 2007 Two-point
similarity in the round jet. J. Fluid Mech. 577, 309–330.

GAMPERT, M., KLEINHEINZ, K., PETERS, N. & PITSCH, H. 2014 Experimental and numerical study of the
scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbul. Combust. 92, 429–449.

GEORGE, W.K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent
structures. Adv. Turbul. 3973, 39–72.

GUTMARK, E. & WYGNANSKI, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (3), 465–495.
HAYASHI, M., WATANABE, T. & NAGATA, K. 2021 Characteristics of small-scale shear layers in a temporally

evolving turbulent planar jet. J. Fluid Mech. 920, A38.
HICKEY, J.P., HUSSAIN, F. & WU, X. 2013 Role of coherent structures in multiple self-similar states of

turbulent planar wakes. J. Fluid Mech. 731, 312–363.
HOLZNER, M. & LÜTHI, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13),

134503.
HUANG, J., BURRIDGE, H.C. & VAN REEUWIJK, M. 2023 Local entrainment across a TNTI and a TTI in a

turbulent forced fountain. J. Fluid Mech. 977, A13.
JAHANBAKHSHI, R. & MADNIA, C.K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid

Mech. 797, 564–603.
KEMPF, A., KLEIN, M. & JANICKA, J. 2005 Efficient generation of initial- and inflow-conditions for transient

turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74 (1), 67–84.
KRUG, D., HOLZNER, M., MARUSIC, I. & VAN REEUWIJK, M. 2017 Fractal scaling of the turbulence

interface in gravity currents. J. Fluid Mech. 820, R3.
LAIZET, S. & LAMBALLAIS, E. 2009 High-order compact schemes for incompressible flows: a simple and

efficient method with the quasi-spectral accuracy. J. Comput. Phys. 228 (16), 5989–6015.
LAIZET, S., LAMBALLAIS, E. & VASSILICOS, J.C. 2010 A numerical strategy to combine high-order

schemes, complex geometry and parallel computing for high resolution DNS of fractal generated
turbulence. Comput. Fluids 39 (3), 471–484.

LAIZET, S. & LI, N. 2011 Incompact3d, a powerful tool to tackle turbulence problems with up to O(105)

computational cores. Intl J. Numer. Meth. Fluids 67 (11), 1735–1757.
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