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Abstract. We review the numerical modeling of the nonlinear pulsa­
tions of classical variable stars with hydro-codes that include the effects 
of turbulent convection. Despite their simplicity these turbulent convec­
tive recipes appear to remove many of the difficulties that radiative codes 
faced. In particular, the numerical modeling of double mode pulsations 
has become possible. 

1. Introduction 

Richard Feynman is said to have once remarked something to the effect "now 
that we have solved the problem of quantum electrodynamics, we will have to 
solve the real hard problems such as how water flows in a pipe". The stellar 
problem, because of convection on top of turbulence and the compressibility 
of the fluid, is even harder to tackle, and several generations of astrophysicists 
have tried to come to terms with this problem. Turbulence and convection (TC) 
are necessarily 3 dimensional phenomena, and with the development of faster 
computers increasingly realistic numerical simulations are being made, although 
it will be a long time before their spatial resolution approaches that required by 
the large stellar Rayleigh and small Prandtl numbers. In the meantime stellar 
physicists continue to attempt to reduce TC to a ID recipe and thus to a mere 
subroutine that can be used in stellar evolution or pulsation calculations (for a 
recent update on astrophysical convection cf., e.g., Buchler & Kandrup 2000). In 
this paper we review some interesting recent developments in nonlinear pulsation 
calculations. 

The seminal and most influential work has been the mixing length theory 
(MLT) of Erika Bohm-Vitense (cf. Cox & Giuli 1968), and many of the newer 
recipes are extensions of MLT. In its original form it consists of an instantaneous, 
local approximation in which the convective flux is proportional to the 3/2 power 
of the convectively unstable entropy gradient, Fc oc (—ds/dr)3/2. 

The TC recipe that works best in stellar evolution is not necessarily the best 
for stellar pulsations. Indeed, in stellar evolution the convective time scales are 
typically many orders of magnitude smaller than the evolutionary time scales. 
Furthermore, convective overshooting is very important because it mixes the 
chemical elements with often drastic consequences for nuclear burning and the 
subsequent evolution. In contrast, mixing plays no role in stellar pulsation 
because the pulsating envelopes are chemically homogeneous. But here we have 
large velocity fields and shear motions, so that time dependence of TC may 
have to be taken into account. Thus the pulsation time scales, while generally 
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longer than the convective time scales, are sufficiently close that there can be a 
feedback between pulsation and convection. This feedback is further enhanced 
because the convective regions that are caused by large opacity are also regions 
where pulsational driving occurs. An illustration of the time dependence of 
the turbulent energy and convective flux during a pulsational cycle has been 
presented in Buchler et al. (1999, [BYKG99], Figs. 1 and 2). 

How good are MLT and its extensions? An important 3D simulation by 
Cattaneo, Brummell, & Toomre (1991) indicated first, that the convective flow 
is dominated by large downflows, but that these flows are 'convectively neutral' 
in the sense that they carry as much kinetic energy downward as enthalpy up­
ward, and second, that the convective flux is dominated by small scale upflows, 
precisely the type of picture that underlies MLT. However, for computational 
reasons, the Prandtl numbers used in the calculations were orders of magni­
tude larger than the stellar ones, and the Rayleigh numbers orders of magnitude 
smaller. Furthermore, the boundary conditions were fixed, whereas in a star con­
vection has to adjust itself so that together with radiation it carries the given 
total energy flux (in a static context). 

We recall the hydrodynamic equations in the context of radial stellar pul­
sation: 

du 18 . GM 

Tt = -pPp + Jh + p^-— (1) 

For the hydrodynamics all we need is a recipe for the turbulent pressure pt, 
the eddy viscous pressure pv, the convective flux Fc, and the source and sink of 
turbulent energy C. 

2. The Turbulent Convective Model Equations 

Many recipes have been suggested to compute these four quantities. A very 
nice, albeit dated, review is that of Baker (1987), and for an update see Gimenez, 
Guinan, & Montesinos (1999). Many of these are far too complicated (e.g. up to 
10 nonlinear PDEs) and numerically tricky to implement in hydro-codes. Since 
this review concerns primarily stellar pulsations with an emphasis on nonlinear 
calculations, we will limit ourselves to mentioning the time-dependent recipes 
that have actually been used in nonlinear hydrodynamics calculations. All these 
recipes involve the addition of a single time-dependent diffusion equation for the 
turbulent energy et: 

^ + (* + * ) £ = ~ f ( r 3 * ) + C. (3) 
at at pri or 

The ancillary, defining equations are 
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For the sake of simplicity these equations disregard some features of con­
vection and therefore have their shortcomings. They are based on a diffusion 
approximation (Fc oc ds/dr and Ft oc det/dr) and ignore nondiffusive transport, 
e.g. by plumes. They also disregard pressure fluctuations and are limited to 
subsonic convective velocities. Radiative losses in the convection, however, can 
easily be incorporated (Wuchterl & Feuchtinger 1998; Buchler & Kollath 2000 
[BK00]). It is only a comparison with observational constraints that will ul­
timately decide on the quality of the approximations in the context of stellar 
pulsations. 

The recipes that have been used in the nonlinear codes fall into three groups 
depending on the choice of the functional relationships of Fc and C on et and 
the dimensionless entropy gradient which we call y = (Hp/cp) ds/dr (not to 
be confused with the helium abundance). We refer to BK00 for further details. 
They are: 1) the Stellingwerf (1982) [S] formulation, used by the Italian group 
(Bono k Stellingwerf 1994; Bono et al. 1997 [BCCM97]) and by Gehmeyr (1992), 
2) the Kuhfufi (1986) [K] formulation (cf. also Gehmeyr & Winkler 1992) used 
in the Vienna code (Feuchtinger 1998, 1999a [F99a]), and 3) a hybrid Florida 
[FL] formulation (Yecko, Kollath, & Buchler 1998 [YKB98]) that has been used 
by Kollath et al. (1998 [KBBY98]). The Florida hydro-code has recently been 
extended to run with all three schemes (see below), and, importantly, also to 
perform a iinear stability analysis (linear periods and growth-rates). 

Fc 
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Figure 1. Linear stability of sequence of models. Comparison of 
different approximations with exact results. Left: fundamental mode, 
right: first overtone mode. 

The recipes involve a total of 7 dimensionless a parameters that are of order 
unity, but for which theory gives little guidance. They ultimately have to be 
calibrated by comparing the numerical results to the stellar observations. 

The three schemes have been compared in BKOO. In the stationary limit 
and with the disregard of overshooting (no Ft) eq. 3 reduces to C = 0. In 
other words, it gives an expression for et in terms of the local, instantaneous 
physical quantities such as density and temperature and their gradients, and 
the ancillary equation 6 provides the convective flux. This is then equivalent to 
standard MLT. However, in standard MLT the pt and pv are omitted (which is 
not a good approximation; see below), although they could be readily included 
once et is known. 

In the time-dependent context one might expect the three formulations to 
have a very different behavior. However, as shown in BKOO, the growth-rates 
differ very little, and furthermore the three recipes give essentially the same 
limit cycles as well (Figs. 3 and 6 of BKOO). 

From these albeit limited comparisons, one is tempted to conclude that 
most of the differences between the published nonlinear results have more to do 
with the choice of the a parameters1 than with the choice of the time-dependent 
diffusion equation for the turbulent energy. 

aand some modifications such as flux limiters (Wuchterl & Feuchtinger 1998), small Peclet 
number corrections (BKOO), or sonic dissipation (Gehmeyer h Winkler 1992). 
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3. Linear Stability Properties 

In evolutionary computations it is often customary to compute also the linear 
stability of the evolving models to delineate the instability strips. For expedi­
ency several approximations are often made. We want to stress again (YKB98, 
BYKG98) that some of these approximations are not very good, as we go on 
to show in Fig. 1. From right to left we display the normalized growth-rates 
11 = 2KP of the fundamental and first overtone, respectively, for a sequence of 
Cepheid models (M = 5M®, L = 2060ZS, Z = 0.02) as a function of Teff (« is 
the growth-rate and P the period.) 

The solid lines denote the nonadiabatic growth-rates, consistent with the 
hydro and TC equations. The crossed solid lines correspond to the frequently 
used frozen flux approximation: the MLT flux is included in the computation 
of the static equilibrium model, but it is ignored in the computation of the 
linear eigenvalues, and the eddy viscous pressure is also disregarded. Clearly 
this approximation misses even the blue edge by «600 K for the F mode and 
indicates instability for the 01 mode which is solidly stable. In the next two 
approximations everything is linearized correctly except 1) the perturbation of 
the turbulent pressure is disregarded (dotted line), and 2) the perturbation of 
the convective flux is disregarded (long-dashed line) - neither of these a good 
approximation. The best 'simple' approximation is (dashed line): MLT expres­
sion for the flux (derived from C — V • Ft = 0), its linearization and inclusion 
of the eddy viscous pressure. Of course, it is also important to choose 'proper' 
values of the a parameters. A survey of the model behavior makes it quite clear 
that both a convective flux and a turbulent pressure are needed if one wants to 
get a reasonable IS. This importance of the eddy viscous pressure was already 
pointed out a dozen years ago by Baker (1987). 

In addition, it should be remembered that nonlinear effects can shift the 
linear IS boundaries by a. few hundred degrees (cf. Fig. 2 below). 

4. RR Lyrae Models, RRab and RRc 

There have been several recent large surveys of nonlinear pulsations of single 
mode RR Lyrae stars, both fundamental and first overtone pulsations by Bono 
et al. [BCCM97] and by Feuchtinger (1999b) [F99b]. F99b also compares these 
results to each other and to the available observations. He finds that the light-
curve Fourier decomposition coefficients of both calculations agree fairly well 
with Observations, but that there are discrepancies both between the two cal­
culations, and with observations in the low temperature models, i.e. in the most 
convective models. The pulsation amplitudes of both calculations agree well 
with observations. (It should be noted though that this is not as stringent a test 
as the Fourier parameters). 

As far as the shapes of the light curves are concerned, BCCM97 obtain 
sharp, but unobserved spikes (cf. their Figs. 2 and 4). F99b (cf. also Wuchterl & 
Feuchtinger 1998) shows that these spikes are due to the fact that the convective 
flux becomes larger than its physically allowed upper limit, viz. Fc < pcpTuconv. 
This is a result of the breakdown of the diffusion approximation that is inherent 
in the TC equations. They propose the introduction of a 'flux limiter' to prevent 
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the flux from exceeding this upper limit. As a result F99b obtains light curves 
that look much more like the observed ones. 

The RR Lyrae light-curves obtained by the Florida group do not have any 
unphysical spikes either, despite the fact that no flux limiter has been used. 
Feuchtinger (private communication) has traced the absence of spikes to a dif­
ferent choice of a parameters, those of the FL group giving rise to lower overall 
turbulent energies and velocities. 

The computed radial velocity curves do not agree very well with the obser­
vations (F99b). It seems that a more thorough calibration of the a parameters 
is required before the final word is in on whether such a simple ID TC equation 
is capable of capturing the essence of convection. 

We also note that there are further constraints on the alphas that need to 
be taken into account. For example, the observed temperature (color) variations 
can be taken into account. Second, the double-mode RR Lyrae (RRd) stars im­
pose a number of sensitive additional constraints, namely the range of periods 
and of temperatures over which they occur, as well as the values of the compo­
nent amplitudes. Finally, we recall that the very frequent Blazhko amplitude 
modulations have not yet been satisfactorily explained, but that they are likely 
to also add constraints. 

We note a propos the Blazhko effect that a possible mechanism for this 
effect could be an interaction between pulsation and convection. This becomes 
particularly favored if normally real and stable convective (diffusion) modes 
become oscillatory. If these additional vibrational modes are only mildly stable, 
and if their frequencies are in an re : 1 resonance with the excited pulsational 
mode, then a resonance condition could cause the convective mode to interact 
nonlinearly with the pulsation and lead to amplitude modulations. We have 
checked on realistic stellar models that convective modes can indeed become 
oscillatory, but we had to increase the time scale for convection by a very large 
factor, and no nonlinear computations have yet been performed. 

5. Morphology of the Instability Strip - Modal Selection 

On the observational side the microlensing projects have produced global pic­
tures of the Cepheid instability strips for the SMC that are absolutely stunning 
(Udalski et al. 1999; Beaulieu et al. 1995). On the theoretical side, the tur­
bulent convective hydrodynamics codes have shed new light on the problem of 
modal selection in both Cepheids and RR Lyrae stars. Simultaneously, but to­
tally independently, Feuchtinger (1998) and KBBY98 found RR Lyrae models 
and Cepheid models, respectively, that pulsated in the fundamental and first 
overtone modes simultaneously, with stable, and steady amplitudes (i.e. the 
models were NOT switching modes). 

On the basis of these computations (cf. BYKG 99 and Kollath (2000)) 
we can infer the following (schematic) Cepheid instability strips (IS) in an HR 
diagram as shown in Fig. 2. The left subfigure depicts a linear IS. The first 
overtone IS in the form of a sugarloaf becomes stable above a certain luminosity 
(and mass). For simplicity we have omitted the second overtone from the picture. 

Of course, nonlinear effects change the domain in which the corresponding 
limit cycles are stable. The right-hand subfigure depicts a schematic of the 

https://doi.org/10.1017/S0252921100058036 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100058036


Nonlinear Pulsations 349 

. 
-

-

-

- / 

' 7 

/ ° 
, i , 

1 ' i 

\ 
\ 
\ 

, , i 

F 

1 

i i i i 

1 ' *' 
/. 
jL 

/ • 

i -

! " 

\ ~ 

\\ , 
, 

I 
| 

I 

7 / 

/ / F / O \ 

r \ \ 

0 

\ 
v. 

w 
DM l< 

i l i | 

F — 1 

3 

1 

i 
f 

i 
i i i ii 

/ 
i 
i -
j -

-

B-V B-V 

Figure 2. Schematic Cepheid instability strip, left: linear, right: non­
linear; cf. text. 

nonlinear Cepheid instability diagram. The lines from the left side subfigure 
that are shown as solid lines are the blue and red boundaries of the fundamental 
(F) and first overtone (0) ISs. (The now irrelevant parts of the previously shown 
linear edges are shown as thin dotted lines.) The new additional solid lines are 
the nonlinear blue and red edges for the fundamental and first overtone modes. 
Thus the overtone red edge is shifted somewhat to the left, but the fundamental 
blue edge can be shifted substantially to the right. 

Double-mode behavior occurs in the lower wedge-shaped region, delineated 
on the left by overtone red edge and on the right by a dashed line. Either 
fundamental or first overtone (F /0 ) behavior occurs in the higher luminosity 
region that is shown as dotted. There may be a narrow region at the interface of 
the DM and F regimes in which either DM or fundamental behavior can occur.2 

We note that a good global understanding of all these regimes can be obtained 
with the help of the amplitude equation formalism (e.g. BYKG99). 

More specifically, for example at level 1 (high luminosity) in Fig. 2 only F 
pulsations can occur. At level 2 we have, going from high to low Tefj, a regime 
first overtone pulsations, then a regime of either 0 or F pulsations (hysteresis), 
and then F only pulsations. At low luminosities, level 3, there is first a regime 
of 0 only, then of DM only, with possibly a narrow regime of either DM or F, 
followed by F only pulsations. 

The hydrodynamic calculations indicate that DM behavior occurs only at 
luminosities that can be noticeably lower than the tip of the overtone instability 
strip. This is in agreement with the SMC observations (Fig. 5 of Udalski et al. 
1999) which show a higher luminosity regime in which both F and 0 Cepheids 

2In some computations, with different a parameters, slightly more complicated interfaces have 
also been obtained. 
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occur, and a lower luminosity one in which the DM Cepheids lie (with the 
exception of a single star). 

The RR Lyrae stars, at least within a given cluster, have essentially the same 
luminosity, mass and composition. The modal selection diagram is therefore 
essentially the same as for a narrow horizontal strip in the lower part of Fig. 2. 

6. Classical Cepheid Pulsations 

The classical Cepheids are much more diverse than the RR Lyrae stars. They 
span a wide range of masses, luminosities and metallicities. There are a great 
deal more observational constraints as well many of which have been summarized 
in BKOO. 

For example, the overtone Cepheids have a maximum period P1
max which 

occurs at the high luminosity tip of the IS. Next, resonances play an important 
role, viz. a P2/P0 = 1/2 resonance at about 10 d and a P4/P1 = 1/2 resonance 
around 3-4.5 d. This is evidenced by the structure of the Fourier decomposition 
coefficients of the light and radial velocity curves. We note that in principle it 
is possible to obtain a purely 'pulsational' mass-luminosity relation by taking 
advantage of these two resonances. The periods and Tefj at which DM behavior 
can occur, as well as the F/O, respectively O2/O1 amplitude ratios add a very 
tight constraint as well. 

Radiative Cepheid models were found wanting in many respects, besides 
the obvious one of not providing a red edge (for a review cf. Buchler 1998). In 
particular the discrepancies are largest for the low Z models for which the linear 
growth-rates and consequently the pulsation amplitudes are much too large. 
The resonance masses are also much too small to agree with stellar evolution 
calculations as was discussed in Buchler et al. (1996). The question therefore 
arises whether convection can provide a differentially stronger dissipation for the 
low Z models. 

There have been a number of Cepheid computations by the Italian, Vienna 
and Florida groups, but no comprehensive calculations have yet been made to see 
if all observational constraints can be simultaneously satisfied. However, there is 
some good news. For example, with the convective hydro-codes it seems possible 
to improve the light and radial velocity curves, and in particular to obtain 
the wide excursion in the observed <p2i Fourier phase of the overtone Cepheids 
in which purely radiative models had failed. The most dramatic achievement 
though is the modeling of DM behavior in beat Cepheids (KBBY98). 

Interestingly, despite seven adjustable a parameters, it was not possible 
to impose both the observed upper limit for the period of the first overtone 
Cepheids and obtain a reasonable width of the fundamental instability strip! 
This problem was solved when we included the physically required correction 
for inefficient convection (small Peclet number) (BKOO), but at the expense of 
an additional, eighth free a parameter. 

Some properties, such as period-radius relations seem relatively insensitive 
to the values of the alphas. In Fig. 3 we show the P—R relation that we obtain 
for Galactic Cepheid models, compared to the observational data. A very similar 
agreement has been obtained by Bono et al. (1999). 
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Observations show that the SMC, LMC and Galactic Cepheids are remark­
ably similar. For example, the maximum first overtone periods lie around 6 d.3 

They have approximately the same luminosity, the same pulsation amplitudes, 
the same Fourier decomposition coefficients, and the dominant F and 01 reso­
nances are almost in the same place, i.e. near 10 d and 3-4.5 d, respectively. 
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Figure 3. Period-radius relation for Galactic Cepheids. Theoretical 
convective Cepheid models: fundamental - solid dots, first overtones -
open circles; Baade-Wesselink radii: Laney (1997) - solid line, Gieren, 
Fouque, & Gomez (1997) - dashed line. 

The not-so-good news is that at this time it does not seem possible to obtain 
good models both for the Galactic, and for the low Z Magellanic Cloud Cepheids 
with the same calibration of the eight a parameters. Turbulent convection does 
not provide larger dissipation for the low Z models. The difficulty that was 
encountered with the radiative models thus persists with the convective models, 
and one may wonder whether the difficulty still lies with the opacities, this time 
with H, He or with the lower temperature H~ and molecular opacities. 

7. Pop. II Cepheid Pulsations 

Pop. II Cepheids are variable stars that have lower metallicity than their classical 
siblings. They also are believed to have much smaller masses for the same 
luminosity, which makes them on the one hand much more linearly unstable to 
vibrations, and on the other hand causes much larger pulsation amplitudes. 

3If one disregards V440 Per which may be an oddball. 

https://doi.org/10.1017/S0252921100058036 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100058036


352 Buchler 

Observationally, these stars, known as W Vir and RV Tau stars, range from 
periodic at short periods to strongly irregular at cycling times of 70 d. The 
irregular behavior seems to set in at period of about 25-30 d (Arp 1955, Pollard 
et al. 2000). 

The recent nonlinear analysis of the AAVSO observational data of R Set 
(Buchler et al. 1995) and of AC Her (Kollath et al. 1998) showed very clearly 
that the mechanism for the irregular behavior is the nonlinear interaction be­
tween the excited (linearly unstable) mode and a (linearly stable) overtone. 
Technically speaking, the dynamics take place in a 4D subspace of phase-space, 
thus the pulsations are low-dimensional chaos. 

This analysis corroborates numerical hydrodynamical results obtained a 
decade ago which showed that the irregular behavior of W Vir models was also 
due to low-dimensional chaos (Buchler & Kovacs 1986; Kovacs & Buchler 1997; 
Aikawa 1987; Buchler, Goupil, & Kovacs 1987). However, the onset of the 
irregular behavior occurred in these radiative models with periods as low 8 d, 
i.e. much lower than observations indicate. Glasner & Buchler (1990) included 
a very simplistic MLT model in the hydro-code, and this pushed the onset of 
chaos to higher periods. More recent calculations with the TC Florida code also 
show a shift in the same direction. 

The basic nature of the irregular behavior is now understood, but clearly 
more work is necessary to obtain more detailed agreement with the observations. 

8. Mira Pulsations 

Convection plays an essential role in the cool and very extended Mira variables, 
and they are hard to model with much confidence. There is still a debate about 
whether the stars pulsate in the fundamental or the first overtone mode. 

Ya'ari & Tuchman (1996) have modeled the nonlinear pulsations of these 
stars with very interesting results (see also Dorfi, Feuchtinger, & Gautschy 2000). 
The large amplitude pulsations that develop cause a structural rearrangement of 
the star. Consequently the nonlinear period is quite different from both the lin­
ear fundamental and first overtone periods. However, convection is treated with 
a standard time-independent MLT approach, and unfortunately eddy viscosity 
is ignored in their computations. The latter reduces the pulsational amplitude, 
and could cause a qualitative change in the results. 

9. Conclusions 

In recent years several groups have included a description of turbulent convec­
tion in their hydro-codes. The addition of a simple nonlinear time-dependent 
diffusion equation for turbulent energy with concomitant convective flux and 
eddy viscous pressure has led to important improvements in RR Lyrae and 
Cepheid models. Most striking has been the ability of these codes to model DM 
pulsations in both RR Lyrae stars and Cepheids. 

However, it is clear that small discrepancies remain in the RR Lyrae models, 
both the single mode RRab and RRc, as well as in the double-mode RRd. The 
next step is to see if a better calibration of the free a parameters can bring us 
in a better agreement with the plethora of observational data. 
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In the Cepheid modeling, one obtains reasonable agreement for the Galactic 
Cepheids, even with a preliminary crude calibration, but for the time being it 
remains a puzzle why the low Z models fail so strikingly. 
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Discussion 

Pawel Moskalik: You have mentioned the possibility of constraining the M—L 
relation with two resonances. I have done that for the Galactic Cepheids. For 
p2/P0 = 0.5 at 10 d and P4lPx = 0.5 at 4.6 d, and metallicity Z = 0.02, I 
find that both resonances are simultaneously satisfied for the relation logi = 
3.68 x logM + 0.65. The slope has been adopted from the paper of Becker, Iben, 
& Tuggle, but the zero point is constrained by the resonances. For a zero point 
of 0.65 both resonances are reproduced with the same M—L relation. 

Harold McNamara: It might be an interesting exercise to apply your theory to 
S Scuti stars to see: 
1. why the width of the instability strip for the high amplitude stars is narrow 
(about 300K); and 
2. if you can predict some parameter to distinguish between fundamental mode 
and first overtone pulsations. 

Shashi Kanbur: The Type II Cepheids should also obey a Tm;n , Tmax constraint 
such that short-period Type II Cepheids have a Tmjn constraint, and long-period 
Type II Cepheids have a Tmax constraint. 

Douglas Gough: It is interesting that you were unable to match your theory to all 
the observational constraints with a unique set of parameters, even though you 
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have seven of them. Perhaps it is because you implicitly set an eighth parameter 
to zero. Your mixing-length prescription appears to be based on fluxes derived 
from gradients of the mean state; that is a common outcome of analyses of 
systems using kinetic theory, which is basically what mixing-length theory is, and 
is valid provided information travels at a speed much less than the mean speed 
of the transporting 'particles' - here fluid elements. When approximating the 
Liouville equation for such particles under such conditions, advection in phase 
space is fast and one is left with a diffusion equation (whose solutions formally 
propagate with infinite speed). But, if the finite advection speed is taken into 
account, an additional term arises in the equation; its relative importance might 
be scaled by the eighth parameter in the uncertain theory. The importance 
of this parameter comes about because, by including it, one does not merely 
distort a function (representing the solution), but one changes the mathematical 
structure of the governing equations: as the parameter increases from zero, 
the equations change from diffusion-like to wave-like, and the solutions can be 
qualitatively different. If, therefore, this phase-space advection is important in 
Galactic Cepheids, but not in low-Z Cepheids, or vice versa, one would expect 
that one cannot calibrate a theory to both, if that theory ignores this process. 
Alternatively, your parameters may not be universal constants, which is, perhaps 
just as likely. 

Giuseppe Bono: Just two comments: 
1. I am very much interested in nonlinear calculations you and M. Feuchtinger 
recently provided. In particular, let me note that the RR Lyrae instability strip 
predicted by Michael differs by no more than 100-150 K from our predictions 
(Bono et al. 1997). This fact is supporting the reliability of nonlinear codes. 
2. Fortunately Cepheids present a lot of robust observables, and I think in 
the near future we should focus on the comparison between the theory and 
observations to assess the reliability of our physical assumptions. 
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