ON NEAR-RINGS IN WHICH THE CONSTANTS FORM AN IDEAL

Peter Fuchs

Abstract

Let \mathcal{C} denote the class of all near-rings which have the property that the subnear-ring of constants forms an ideal. Prominent examples are abstract affine near-rings and a generalisation of these by Feigelstock [1]. In this note we show \mathcal{C} forms a variety and construct a proper sub-class $\overline{\mathcal{C}} \subset \mathcal{C}$ such that every $N \in \mathcal{C}$ can be embedded into some $\bar{N} \in \bar{C}$. It turns out that near-rings $N \in \bar{C}$ have an ideal structure which is similar to the ideal structure of abstract affine near-rings, in contrast to the situation for arbitrary elements of \mathcal{C}.

The following result which describes the arithmetic in near-rings $N \in \mathcal{C}$ is implicitly in Pilz [2, p.318]. The centre of a group G will be denoted by $Z(G)$.

Proposition 1. Let $N \in \mathcal{C}, n_{0}, n_{0}^{\prime}, n_{0}^{\prime \prime} \in N_{0}, n_{c}, n_{\mathrm{c}}^{\prime} \in N_{c}$. Then:
(1) $n_{0}+n_{c}=n_{c}+n_{0}$;
(2) $N_{0} N_{c} \subseteq Z\left(N_{c}\right)$;
(3) $n_{0}\left(n_{0}^{\prime}+n_{c}\right)=n_{0} n_{0}^{\prime}+n_{0} n_{c}$;
(4) $n_{0}\left(n_{c}+n_{0}^{\prime} n_{c}^{\prime}\right)=n_{0} n_{c}+n_{0} n_{0}^{\prime} n_{c}^{\prime}$.

We now show that conditions (1), (3) in Proposition 1 already imply that $N \in \mathcal{C}$.
Proposition 2. For a near-ring N the following are equivalent:
(1) $N \in \mathcal{C}$;
(2a) $\forall n_{0} \in N_{0} \quad \forall n_{c} \in N_{c}, n_{0}+n_{c}=n_{c}+n_{0}$,
(2b) $\forall n_{0}, n_{0}^{\prime} \in N_{0} \quad \forall n_{c} \in N_{c}, n_{0}\left(n_{0}^{\prime}+n_{c}\right)=n_{0} n_{0}^{\prime}+n_{0} n_{c}$.
Proof: (1) \Rightarrow (2): by Proposition 1.
$(2) \Rightarrow(1)$: by (2a), $\left(N_{c},+\right)$ is a normal subgroup of $(N,+)$ and since N_{c} is always right invariant it suffices to show that N_{c} is a left ideal. Let $n \in N$, $n^{\prime} \in N, n=n_{0}+n_{c}, n^{\prime}=n_{0}^{\prime}+n_{c}^{\prime}$ and $\bar{n}_{c} \in N_{c}$. Then $\left(n_{0}+n_{c}\right)\left(n_{0}^{\prime}+n_{c}^{\prime}+\bar{n}_{c}\right)$ $-\left(n_{0}+n_{c}\right)\left(n_{0}^{\prime}+n_{c}^{\prime}\right)=n_{0}\left(n_{0}^{\prime}+n_{c}^{\prime}+\bar{n}_{c}\right)+n_{c}-\left(n_{0}\left(n_{0}^{\prime}+n_{c}^{\prime}\right)+n_{c}\right)=n_{0} n_{0}^{\prime}+n_{0}\left(n_{c}^{\prime}+\bar{n}_{c}\right)$ $-n_{0} n_{c}^{\prime}-n_{0} n_{0}^{\prime}=n_{0}\left(n_{c}^{\prime}+\bar{n}_{c}\right)-n_{0} n_{c}^{\prime} \in N_{c}$.

[^0]Theorem 3. \mathcal{C} is a variety and therefore closed under the formation of subnearrings, direct products and homomorphic images.

Proof: If $n \in N$ and $n=n_{0}+n_{c}$, then $n_{c}=n 0$ and $n_{0}=n-n 0$. Thus equations (2a) and (2b) in Proposition 2 are equivalent to:
($\left.a^{\prime}\right) \quad\left(\forall n, n^{\prime}\right)\left(n-n 0+n^{\prime} 0=n^{\prime} 0+n-n 0\right) ;$
($\left.b^{\prime}\right) \quad\left(\forall n, n^{\prime}, n^{\prime \prime}\right)\left((n-n 0)\left(n^{\prime}-n^{\prime} 0+n^{\prime \prime} 0\right)=(n-n 0)\left(n^{\prime}-n^{\prime} 0\right)+(n-n 0) n^{\prime \prime} 0\right)$.
The result now follows.
It has already been shown that the class of abstract affine near-rings is a variety [2, p.316].

Let G be a group, G_{1}, G_{2} normal subgroups of G such that $G_{1} \oplus G_{2}=G$ and let G_{3} be a subgroup of $Z\left(G_{2}\right)$.

Define $R\left(G_{1}, G_{2}, G_{3}\right)=\left\{m \in M_{0}(G) \mid m\left(G_{1}\right) \subseteq G_{1}, m\left(G_{2}\right) \subseteq G_{3} \&\right.$ $\left.\left(\forall g_{1} \in G_{1}, g_{2} \in G_{2}, g_{3} \in G_{3}\right)\left(m\left(g_{1}+g_{2}\right)=m\left(g_{1}\right)+m\left(g_{2}\right), m\left(g_{2}+g_{3}\right)=m\left(g_{2}\right)+m\left(g_{3}\right)\right)\right\}$ and $C\left(G_{2}\right)=\left\{m \in M_{c}(G) \mid\left(\exists \bar{g} \in G_{2}\right)(\forall g \in G)(m(g)=\bar{g})\right\}$.

Let $N=R\left(G_{1}, G_{2}, G_{3}\right)+C\left(G_{2}\right)=\left\{m_{1}+m_{2} \mid m_{1} \in R\left(G_{1}, G_{2}, G_{3}\right) \& m_{2} \in\right.$ $\left.C\left(G_{2}\right)\right\}$.

We often write simply R, C if it is clear which parameters G_{1}, G_{2}, G_{3} are meant.
Proposition 4. N is a subnear-ring of $M(G), N_{0}=R, N_{c}=C$ and N_{c} is an ideal in N.

Proof: It is easy to check that R is a subnear-ring of $M_{0}(G)$ and that C is a subnear-ring of $M_{c}(G)$. If $m \in R$, then $m\left(G_{2}\right) \subseteq G_{3}$, hence $R C \subseteq C$. Let m_{1}, $m_{2} \in R, m_{3} \in C, m_{3}(g)=\bar{g}$ for all $g \in G$ and let $g \in G, g=g_{1}+g_{2}$. Then $\left(m_{1}+m_{3}\right)(g)=m_{1}(g)+\bar{g}=m_{1}\left(g_{1}\right)+m_{1}\left(g_{2}\right)+\bar{g}=\bar{g}+m_{1}\left(g_{1}+g_{2}\right)=\left(m_{3}+m_{1}\right)(g)$, hence $m_{1}+m_{3}=m_{3}+m_{1}$. Also $m_{1}\left(m_{2}(g)+m_{3}(g)\right)=m_{1}\left(m_{2}\left(g_{1}\right)+m_{2}\left(g_{2}\right)+\bar{g}\right)=$ $m_{1} m_{2}\left(g_{1}\right)+m_{1}\left(m_{2}\left(g_{2}\right)+\bar{g}\right)=m_{1} m_{2}\left(g_{1}\right)+m_{1} m_{2}\left(g_{2}\right)+m_{1}(\bar{g})=m_{1} m_{2}(g)+m_{1} m_{3}(g)$, thus $m_{1}\left(m_{2}+m_{3}\right)=m_{1} m_{2}+m_{1} m_{3}$. Now let $n_{1}=m_{1}+m_{1}^{\prime} \in R+C$ and $n_{2}=m_{2}+m_{2}^{\prime} \in R+C$. Combining our results we get $n_{1}-n_{2}=m_{1}-m_{2}+m_{1}^{\prime}-m_{2}^{\prime} \in N$ and $n_{1} n_{2}=\left(m_{1}+m_{1}^{\prime}\right)\left(m_{2}+m_{2}^{\prime}\right)=m_{1}\left(m_{2}+m_{2}^{\prime}\right)+m_{1}^{\prime}=m_{1} m_{2}+m_{1} m_{2}^{\prime}+m_{1}^{\prime} \in N$. Thus N is a subnear-ring of $M(G)$ and clearly $N_{0}=R, N_{c}=C$. By Proposition 2, N_{c} is an ideal of N.

Let $\overline{\mathcal{C}}$ denote the class of all near-rings of the form $N=R\left(G_{1}, G_{2}, G_{3}\right)+C\left(G_{2}\right)$.
We are now ready to state our main result.
Theorem 5. For a near-ring S, the following are equivalent:
(1) $S \in \mathcal{C}$;
(2) S can be embedded into some near-ring $N \in \overline{\mathcal{C}}$.

Proof: Clearly (2) implies (1), by Theorem 3 and Proposition 4.
Conversely, let $S \in \mathcal{C}$. Let $(G,+)=(S,+) \times\left(\mathbf{Z}_{2},+\right),\left(G_{1},+\right)=\left(S_{0},+\right) \times\left(\mathbf{Z}_{2},+\right)$, $\left(G_{2},+\right)=\left(S_{c},+\right) \times\{0\}$ and $\left(G_{3},+\right)=\left(\sum_{a_{c} \in S_{c}} S_{0} s_{c},+\right) \times\{0\}$. By Proposition 1 each subgroup $S_{0} s_{c}$ is contained in $Z\left(S_{c}\right)$, hence G_{3} is a subgroup of $Z\left(G_{2}\right)$. Define a $\operatorname{map} \phi_{0}: S_{0} \rightarrow M_{0}(G), \phi_{0}(s)=f_{s}$, by $f_{s}\left(\left(s^{\prime}, z\right)\right)=\left(s s^{\prime}, 0\right)$ if $s^{\prime} \notin S_{c}$ or $z=0$, $f_{s}\left(\left(s^{\prime}, z\right)\right)=\left(s+s s^{\prime}, 0\right)$ if $s^{\prime} \in S_{c}$ and $z=1$.

Let $s_{1}, s_{2} \in S_{0}$ and $s^{\prime} \in S_{c}$. Then

$$
\begin{aligned}
& f_{o_{1}+s_{2}}\left(\left(s^{\prime}, 1\right)\right)=\left(s_{1}+s_{2}+\left(s_{1}+s_{2}\right) s^{\prime}, 0\right)=\left(s_{1}+s_{2}+s_{1} s^{\prime}+s_{2} s^{\prime}, 0\right) \\
&=\left(s_{1}+s_{1} s^{\prime}+s_{2}+s_{2} s^{\prime}, 0\right)=f_{s_{1}}\left(\left(s^{\prime}, 1\right)\right)+f_{s_{2}}\left(\left(s^{\prime}, 1\right)\right)
\end{aligned}
$$

Also $f_{s_{1} s_{2}}\left(\left(s^{\prime}, 1\right)\right)=\left(s_{1} s_{2}+s_{1} s_{2} s^{\prime}, 0\right)$ and

$$
\begin{aligned}
f_{o_{1}} \circ f_{s_{2}}\left(\left(s^{\prime}, 1\right)\right) & =f_{s_{1}}\left(f_{s_{2}}\left(s^{\prime}, 1\right)\right)=f_{s_{1}}\left(s_{2}+s_{2} s^{\prime}, 0\right) \\
& =\left(s_{1}\left(s_{2}+s_{2} s^{\prime}\right), 0\right)=\left(s_{1} s_{2}+s_{1} s_{2} s^{\prime}, 0\right)
\end{aligned}
$$

by Proposition 1.
In a similar way we can prove that $f_{s_{1}+s_{2}}\left(\left(s^{\prime}, z\right)\right)=f_{s_{1}}\left(\left(s^{\prime}, z\right)\right)+f_{s_{2}}\left(\left(s^{\prime}, z\right)\right)$ and $f_{s_{1} s_{2}}\left(\left(s^{\prime}, z\right)\right)=f_{s_{1}} \circ f_{s_{2}}\left(\left(s^{\prime}, z\right)\right)$ for all $\left(s^{\prime}, z\right) \in S \times \mathbf{Z}_{2}$ where $s^{\prime} \notin S_{c}$ or $z=0$. Thus ϕ_{0} is a homomorphism and ϕ_{0} is also injective, since $s_{1} \neq s_{2}$ implies

$$
f_{s_{1}}((0,1))=\left(s_{1}, 0\right) \neq\left(s_{2}, 0\right)=f_{s_{2}}((0,1)) .
$$

If $s \in S_{0}$ then clearly $f_{s}\left(G_{1}\right) \subseteq G_{1}$ and $f_{s}\left(G_{2}\right) \subseteq G_{3}$. Let $g_{1}=\left(s^{\prime}, z\right) \in G_{1}$, $g_{2}=(\bar{s}, 0) \in G_{2}$ and $g_{3}=\left(s^{*}, 0\right) \in G_{3}$. If $g_{1}=(0,1)$ then $f_{s}\left(g_{1}+g_{2}\right)=f_{s}((\bar{s}, 1))=$ $(s+s \bar{s}, 0)=(s, 0)+(s \bar{s}, 0)=f_{s}((0,1))+f_{s}((\bar{s}, 0))$. If $g_{1} \neq(0,1)$ then either $z \neq 1$ or $s^{\prime}+\bar{s} \notin S_{c}$, hence

$$
f_{s}\left(g_{1}+g_{2}\right)=f_{s}\left(\left(s^{\prime}+\bar{s}, z\right)\right)=\left(s\left(s^{\prime}+\bar{s}\right), 0\right)=\left(s s^{\prime}, 0\right)+(s \bar{s}, 0)=f_{s}\left(g_{1}\right)+f_{s}\left(g_{2}\right)
$$

By Proposition 1 and by induction it is easy to see that $s_{1}\left(s_{2}+s_{3}\right)=s_{1} s_{2}+s_{1} s_{3}$ for all $s_{1} \in S_{0}, s_{2} \in S_{c}, s_{3} \in \sum_{s_{c} \in S_{c}} S_{0} s_{c}$.

Thus $f_{s}\left(g_{2}+g_{3}\right)=\left(s\left(\bar{s}+s^{\star}\right), 0\right)=\left(s \bar{s}+s s^{\star}, 0\right)=f_{s}\left(g_{2}\right)+f_{s}\left(g_{3}\right)$. We have shown that $\phi_{0}\left(S_{0}\right) \subseteq R\left(G_{1}, G_{2}, G_{3}\right)$.

Let $\phi_{c}: S_{c} \rightarrow M_{c}(G), \phi_{c}(s)=m_{s}$, where $m_{s}: G \rightarrow G, m_{s}(g)=(s, 0)$ for all $g \in G$. Evidently ϕ_{c} is an embedding and $\phi_{c}\left(S_{c}\right)=\left\{m \in M_{c}(G) \mid\left(\exists \bar{g} \in G_{2}\right)(\forall g \in G)\right.$ $(m(g)=\bar{g})\}=C\left(G_{2}\right)$.

Finally define $\phi: S \rightarrow R+C, \phi\left(s_{0}+s_{c}\right)=\phi_{0}\left(s_{0}\right)+\phi_{c}\left(s_{c}\right)$. One can check that f is an embedding.

In [1] Feigelstock generalised the notion of an abstract affine near-ring (a.a.n.r.). It is easy to see that these generalised abstract affine near-rings (g.a.a.n.r.) are just all near-rings N which have the property that N_{c} is an ideal of $N,\left(N_{c},+\right)$ is abelian and $n_{0}\left(n_{c}+\bar{n}_{c}\right)=n_{0} n_{c}+n_{0} \bar{n}_{c}$ for all $n_{0} \in N_{0}, n_{c} \in N_{c}$ and $\bar{n}_{c} \in N_{c}$. If $N \in \mathcal{C}$ and $N_{0} N_{c}=N_{c}$ then it readily follows from Proposition 1 that N is a g.a.a.n.r. Feigelstock showed that if N is a g.a.a.n.r., then I is an ideal of N if and only if $I=I_{0}+I_{c}$, where I_{0} is an ideal of N_{0} and $\left(I_{c},+\right)$ is a subgroup of $\left(N_{c},+\right)$ such that $I_{0} N_{c} \subseteq I_{c}$ and $N_{0} I_{c} \subseteq I_{c}$. This is well-known for a.a.n.r. For near-rings $N \in \overline{\mathcal{C}}$ we have a similar result.

TheOrem 6. For a near-ring $N \in \overline{\mathcal{C}}, N=R\left(G_{1}, G_{2}, G_{3}\right)+C\left(G_{2}\right)$ the following are equivalent:
(1) I is an ideal of N;
(2) $I=I_{0}+I_{c}$, where I_{0} is an ideal of N_{0} and $\left(I_{c},+\right)$ is a normal subgroup of $\left(N_{c},+\right)$ such that $I_{0} N_{c} \subseteq I_{c}$ and $N_{0} I_{c} \subseteq I_{c}$.

Proof: $(1) \Rightarrow(2)$: similar to the a.a.n.r. case.
(2) \Rightarrow (1): it follows readily from Proposition 1 that $(I,+)$ is a normal subgroup of $(N,+)$ and that I is right invariant. Let $i \in I, m, n \in N, i=i_{0}+i_{c}, n=n_{0}+n_{c}$, $m=m_{0}+m_{c}$. Using Proposition 1 we get

$$
\begin{aligned}
\left(n_{0}+n_{c}\right)\left(m_{0}+m_{c}+i_{0}+i_{c}\right)-\left(n_{0}\right. & \left.+n_{c}\right)\left(m_{0}+m_{c}\right) \\
& =n_{0}\left(m_{0}+i_{0}\right)-n_{0} m_{0}+n_{0}\left(m_{c}+i_{c}\right)-n_{0} m_{c} .
\end{aligned}
$$

We need to show that $j=n_{0}\left(m_{c}+i_{c}\right)-n_{0} m_{c} \in I_{c}$. Let $C\left(G_{3}\right)$ denote the set of all $m \in N_{c}$ which map into G_{3}. Clearly $j \in C\left(G_{3}\right)$. If $i_{c} \in C\left(G_{3}\right)$, then

$$
n_{0}\left(m_{c}+i_{c}\right)-n_{0} m_{c}=n_{0} m_{c}+n_{0} i_{c}-n_{0} m_{c}=n_{0} i_{c} \in I_{c} .
$$

Suppose that $i_{c} \notin C\left(G_{3}\right)$ and let $h \in G_{3}$. Define a function $f \in M_{0}(G)$ by $f\left(g_{1}+g_{2}\right)=h$ if $g_{1} \in G_{1}, g_{2} \in G_{2} \backslash G_{3}$ and $f(g)=0$ otherwise. One checks that $f \in R\left(G_{1}, G_{2}, G_{3}\right)$ and that $f i_{c}(g)=h$ for all $g \in G$. Since $f i_{c} \in I_{c}$ we have $C\left(G_{3}\right) \subseteq I_{c}$.

The following example however shows that Theorem 6 does not remain true in general for near-rings $N \in \mathcal{C}$ if $N_{0} N_{c} \neq N_{c}$, not even if $(N,+)$ is abelian.

Example 7. Let R, Q, Z denote the sets of all reals, rationals and integers respectively. Let $G_{1}=\{0\}, G_{2}=\mathbf{R}, G_{3}=\mathbb{Q}$ and $R=\left\{m \in M_{0}(\mathbf{R}) \mid m(\mathbf{R}) \subseteq\right.$ $\left.\mathbf{Q} \&\left(\forall x_{1} \in \mathbf{R}, x_{2} \in \mathbb{Q}\right)\left(m\left(x_{1}+x_{2}\right)=m\left(x_{1}\right)+m\left(x_{2}\right)\right)\right\}$.

By Proposition 4, $N=R+M_{c}(\mathbf{R})$ is a subnear-ring of $M(\mathbf{R})$ and $M_{c}(\mathbf{R})$ is an ideal of N.

Let $x \in \mathbf{R} \backslash \mathbf{Q}$ and let H denote the subgroup generated by $\{x\} \cup \mathbf{Z}$. Define $R^{\prime}=\{m \in R \mid m(H) \subseteq \mathbf{Z}\}$. It is easy to see that $N^{\prime}=R^{\prime}+M_{\mathbf{c}}(\mathbf{R})$ is a subnearring of N, hence, by Theorem $3, M_{c}(\mathbf{R})$ is an ideal of N^{\prime}. For each $c \in \mathbf{R}$ let m_{c} denote the function $m_{c}: \mathbf{R} \rightarrow \mathbf{R}, m_{c}(y)=c$ for all $y \in \mathbf{R}$. Define $I_{0}=\{0\}$ and $I_{c}=\left\{m_{c} \mid c \in H\right\}$. Evidently I_{c} is a subgroup of $M_{c}(\mathbf{R})$ and $R^{\prime} I_{c} \subseteq I_{c}$. Denote by \bar{H} the subgroup generated by $H \cup \mathbb{Q}$ and let $\bar{x} \in \mathbf{R} \backslash Q, \bar{x} \notin \bar{H}$. Let $\bar{q} \in \mathbb{Q} \backslash H$ and define a function $m: \mathbf{R} \rightarrow \mathbf{R}$ by $m(\bar{x}+q)=\bar{q}$ for all $q \in \mathbb{Q}, m(y)=0$ otherwise. One can check that $m \in R^{\prime}$.

Since $\bar{x}+x \notin \bar{x}+\mathbb{Q}, m\left(m_{\bar{x}}+m_{x}\right)-m m_{\bar{x}}=0-m_{\bar{q}} \notin I_{c}$, thus I_{c} is not an ideal of N^{\prime}.

From the proof of Theorem 6 we get:
Theorem 8. Let $N \in \mathcal{C}$. Then I is an ideal of N if and only if $I=I_{0}+I_{c}$, where I_{0} is an ideal of N_{0}, I_{c} is an ideal of the N_{0} group N_{c} and $I_{0} N_{c} \subseteq I_{c}$.

References

[1] S. Feigelstock, 'The near-ring of generalized affine transformations', Bull. Austral. Math. Soc. 32 (1985), 345-349.
[2] G. Pilz, Near-rings, 2 ${ }^{\text {nd }}$ Edition (North Holland, Amsterdam, 1983).

Institut für Mathematik, Johannes Kepler Universität Linz, A- 4040 Linz ,
Austria.

[^0]: Received 20 April, 1988

