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The Sum Score Model 3

Abstract
In principle, structural equation modeling (SEM) is capable of emulating all
approaches based on the general linear model. Yet, modeling sum scores in
a structural equation model is not straightforward. Existing approaches to
studying sum scores in a structural equation model are limited in terms either
of model specification or of model assessment. This paper introduces a specifi-
cation to SEM that allows for directly modeling sum scores and that overcomes
existing approaches’ limitations in dealing with sum scores in the SEM con-
text. The sum score model we present builds on the recently proposed refined
Henseler–Ogasawara (H–O) specification of composites. It allows us to esti-
mate models with sum scores in an integrative way. It can mimic the results
of existing approaches and provides a means of assessing whether a sum score
fully transmits the effects of or on the variables that make up the sum score.
In addition, it allows for taking into account random measurement error in
the variables that form the sum score. Consequently, this model specification
offers researchers an improved way of judging and defending the use of sum
scores empirically and conceptually.
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4 The Sum Score Model

1 Introduction
Sum scores have a long tradition in the social sciences (Richardson, 1936;
Kuder and Richardson, 1937; Traub, 2005). They are calculated as the sum
of observed variables and constitute a straightforward way of creating scores
of theoretical constructs (Nunnally and Bernstein, 1994). Due to the ease of
calculating them, sum scores are very popular in various disciplines, including
psychology (McNeish and Wolf, 2020), biology (Cheniti et al, 2017), medical
research (Wang and Reeve, 2021), and physics (Hardt et al, 2018). Arguably,
sum scores owe their popularity to the fact that using them to build construct
scores ensures comparability and simplifies the reproducibility of different
studies (Widaman and Revelle, 2023). Further, the popularity of sum scoring
is reflected in the ample use of various metrics that build on sum scores, such
as Cronbach’s α (Cronbach, 1951; Sijtsma, 2008), Jöreskog’s ρc (Werts et al,
1974), and the heterotrait-monotrait ratio of correlations (HTMT/HTMT2,
Henseler et al, 2015; Roemer et al, 2021; Rönkkö and Cho, 2022).

Sum scores are used for various reasons. For instance, they are used in
procedures such as item parceling (Little et al, 2002). Moreover, sum scores
are often used as “fallible (i.e., imperfect) estimates of the relative position
of individuals on the dimension implied by the sum scores and pretend to be
nothing more” (Widaman and Revelle, 2023, p. 794). However, a sum score
also constitutes a special type of composite, i.e., a weighted linear combination
of variables, and thus can be used to represent theoretical constructs (Grace
and Bollen, 2008; Saris and Gallhofer, 2014; Cohen et al, 1990). “If a construct
is defined in a way such that the building of a sum score maps on this defini-
tion well (Lundberg et al., 2021), then its use is appropriate” (Edelsbrunner,
2022, p. 3). For example, job satisfaction can be considered as the sum of
different aspects, which include salary and working hours, opportunities for
advancement, job security, autonomy in doing the work, social contacts, and
usefulness of the job for society (Saris and Gallhofer, 2014, Chapter 1). In this
case, a sum score would summarize the effects of or on the variables forming
the sum score, i.e., the collective effects of or on the sum score’s variables. In
the literature, such a summary effect, i.e., the effect of or on the composite, is
also known as the sheaf coefficient (Heise, 1972).

A widely used approach in the social and behavioral sciences for studying
relationships between variables is structural equation modeling (SEM, Bollen,
1989). It provides researchers with several means by which to assess models,
such as the χ2-test (Jöreskog, 1969), various fit indices (Hu and Bentler, 1998),
and information criteria (cf. Bozdogan, 1987). Moreover, SEM is a very ver-
satile and holistic framework, which can in principle emulate all approaches
based on the general linear model (Graham, 2008). Hence, it should be able
to seamlessly incorporate sum scores in SEM. In fact, several suggestions have
been made. Specifically, analysts can use a two-step approach to include sum
scores in a structural equation model or can rely on approaches to model sum
scores in SEM, such as the one-step approach (e.g., Grace and Bollen, 2008)
and the pseudo-indicator approach (Rose et al, 2019).

https://doi.org/10.1017/psy.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.5


The Sum Score Model 5

Unfortunately, the existing approaches that enable incorporating sum
scores in SEM all come with limitations. The two-step approach does not take
the formation of the sum score into account and thus omits the sum score’s
components from the actual model. This prevents researchers from exploiting
the full capabilities of SEM, such as applying the direct maximum likelihood
approach for dealing with missing values in the variables making up the sum
score (e.g., Allison, 2003). Similarly, the one-step approach (Grace and Bollen,
2008) can only model a sum score as a predictor of other variables in the model
(MacCallum and Browne, 1993). Thus, this approach is limited in its flexibil-
ity for modeling sum scores. Further, although the pseudo-indicator approach
permits the flexible modeling of sum scores in SEM, there is currently no avail-
able guidance on how to model a sum score that fully transmits the collective
effects on its components. As a result, none of the current approaches allow for
flexible modeling of sum scores in SEM or miss opportunities to assess them.

To overcome the limitations of the existing approaches to dealing with
sum scores in a structural equation model, we introduce a new way of speci-
fying sum scores in SEM: the sum score model. This model is a special case of
the recently introduced Henseler–Ogasawara (H–O) specification of compos-
ites (Henseler, 2021; Schuberth, 2023; Yu et al, 2023). It allows researchers
to flexibly integrate sum scores into a larger model that also includes other
variables. Moreover, it is possible to assess whether a sum score fully trans-
mits all collective effects of or on the variables that make up the sum score.
This can be useful when a sum score is used to model a theoretical construct
(Grace and Bollen, 2008). Further, we present two ways of accounting for ran-
dom measurement error in the sum score model to avoid attenuation bias in
the parameter estimates. Finally, as our proposed sum score model is based
on the refined H–O specification, it is straightforward to replace a sum score
with a composite whose weights are freely estimated.

The remainder of this article is structured as follows. Section 2 presents
the existing approaches to specifying sum scores in SEM. Particularly, we
discuss the various approaches’ advantages and disadvantages. In Section 3,
we introduce the sum score model based on the refined H–O specification as an
alternative, more flexible approach to model sum scores in SEM. Additionally,
we show how to relax the assumption of the original H–O specification in the
sum score model according to which the sum score fully transmits all collective
effects of or on its components. Further, we present two ways of accounting
for random measurement errors in the sum score model. By means of three
illustrative examples, Section 4 compares the results of our sum score model
with those of existing approaches. This section also highlights the sum score
model’s capabilities. Finally, in Section 5, we close the paper with a discussion.
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6 The Sum Score Model

2 Existing approaches to dealing with sum
scores in SEM

Several approaches have been proposed for dealing with sum scores in SEM.
They can be divided into approaches that include sum scores and approaches
that model sum scores in a structural equation model.

2.1 Approach to include sum scores
The two-step approach can be considered the classical approach for dealing
with sum scores in SEM. As its name suggests, it includes a sum score in the
model following two steps. In the first step, the sum score is calculated before
the actual analysis, i.e., the variables forming the sum score are simply summed
up. Subsequently, in the second step, the sum score is used as a new observed
variable to replace the original variables in a structural equation model.1

On the one hand, the two-step approach is very easy to implement. On the
other hand, the fact that the creation of the sum score is not modeled and,
thus, the variables making up the sum score are not included in the final model,
holds major disadvantages. Particularly, it is not possible to assess whether the
sum score properly summarizes the collective effects of or on its components.
In other words, it is not possible to examine whether the sum score fully
transmits the effects of or on its components. Hence, this approach misses
opportunities for model assessment. Further, researchers studying sum scores
might not benefit from all of SEM’s capabilities. For instance, researchers
cannot use the direct maximum-likelihood approach (e.g., Allison, 1987, 2003)
also known as full information maximum likelihood approach to deal with
missing values in the variables making up a sum score and need to rely on
alternatives such as the two-stage maximum likelihood approach (e.g., Savalei
and Bentler, 2009; Chen et al, 2020).

2.2 Approaches to model sum scores
Researchers have started to develop approaches that can be used to model
sum scores in SEM. In contrast to the two-step approach, these approaches
model sum scores in a single step, thus considering the creation of a sum score
within the model. Arguably, the most straightforward approach to model sum
scores is the one-step approach. This approach models the sum score as a latent
variable in a causal-formative measurement model (e.g., Bollen and Lennox,

1More recently, it has been proposed to calculate a sum score as the factor score for a parallel
measurement model (McNeish and Wolf, 2020). This approach could also be considered a two-
step approach, as the first step is to extract the factor scores, and the second step is to study
the relationships between the factor scores and potential other variables. Although the factor
score extracted from a parallel measurement model is perfectly correlated with the sum score, the
factor score is not necessarily identical to the sum score because the factor score is likely to have
a different variance depending on the parameterization of the parallel measurement model. This
was also recognized by McNeish and Wolf (2020), who recommend the pseudo-indicator approach
(Rose et al, 2019) for researchers interested in obtaining scores that are exactly equal to sum
scores. As the pseudo-indicator approach is discussed in our paper, we do not discuss the approach
based on the parallel measurement model.
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The Sum Score Model 7

1991). The effects of all indicators on the latent variable are fixed to one and
the variance of the latent variable’s error term is fixed to zero. Consequently,
the latent variable becomes an observed variable, i.e., the sum score. For more
information on the one-step approach, we refer the interested reader to Grace
and Bollen (2008).

The one-step approach allows for directly modeling sum scores in a struc-
tural equation model, thus overcoming the two-step approach’s limitations. It
takes the creation of the sum score in the model into account, and thus allows
researchers to employ the direct maximum likelihood approach to deal with
missing values in the observed variables that make up the sum scores. Further,
it can be used to assess whether a sum score fully transmits the effects of the
variables that make up the sum score on some outcome variables (Grace and
Bollen, 2008). However, this approach also has its limitations. For instance, it
does not allow for modeling effects of other variables on the sum score, i.e.,
modeling the sum score as an outcome variable in the structural model is not
possible. In such cases, the model would not be identified (MacCallum and
Browne, 1993). Hence, it is not possible to model and assess whether a sum
score properly summarizes the collective effects of other variables on the vari-
ables making up the sum score, i.e., whether the sum score fully transmits
the effects on the variables that make up the sum score. Similarly, since this
approach always models the sum score as a dependent variable, it is not possi-
ble to specify covariances between the sum score and other exogenous variables
of the model. A putative solution would be to model covariances between the
error term of the latent variable and other exogenous variables. However, since
the error term’s variance is fixed to zero, this would be a fruitless endeavor.

A more flexible approach to model sum scores is the pseudo-indicator
approach (Rose et al, 2019). This approach takes advantage of the fact that
a sum score is the sum of observed variables. Specifically, one of the observed
variables becomes the pseudo-indicator, which is expressed as the difference
between the sum score and the remaining observed variables. Thereby, the
sum score is modeled as a latent variable with a single indicator, i.e., the
pseudo-indicator. To ensure that the sum score is in fact the sum of its vari-
ables, the variance of the resulting error term of the pseudo-indicator needs to
be fixed to zero. In addition, the effects of the remaining observed variables
on the pseudo-indicator are fixed to minus one. Consequently, the latent vari-
able becomes the sum score. Finally, the covariances between the remaining
observed variables and the sum score (and usually also the covariances between
the remaining observed variables and potential other exogenous variables of
the model) are specified. For more details on the pseudo-indicator approach,
we refer the interested reader to Rose et al (2019).

The pseudo-indicator approach is an elegant way of flexibly modeling sum
scores in SEM. It overcomes the drawbacks of the one-step approach, i.e., it
can model a sum score as a predictor or an outcome variable, and it allows for
specifying covariances between sum scores and other exogenous variables of
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8 The Sum Score Model

the structural equation model. However, the extant literature on the pseudo-
indicator approach currently lacks guidance on how to model a sum score that
fully transmits the collective effects on its components. Originally, the pseudo-
indicator approach models a sum score in such a way that the resulting model
is equivalent to the target model. The target model is the model that includes
the sum score and other variables of interest but not the observed variables
that form the sum score. For this purpose, the constraints created by includ-
ing the sum score’s observed variables are removed. Thereby it is ensure that
the model-implied variance-covariance matrix of the target model remains
unaffected by the inclusion of the sum score’s observed variables. Specifi-
cally, various covariances between the sum score’s observed variables, i.e., all
observed variables that make up the sum score, except the pseudo-indicator,
and other exogenous variables of the model are specified. Although Rose et al
(2019) mention the possibility of fixing these covariances to zero, which allows
one to assess whether a sum score fully transmits the collective of its com-
ponents, they do not currently provide any information on how to fix these
covariances to ensure that the sum score fully transmits the collective effects
on its components. We must therefore conclude that this approach is currently
limited in its ability to assess whether a sum score properly summarizes the
collective effects.

3 A new approach for modeling sum scores in
SEM

In this section, we present a new approach for modeling sum scores in SEM:
the sum score model. The sum score model is based on the refined Henseler–
Ogasawara (H–O) specification (Schuberth, 2023; Yu et al, 2023). As sketched
by Henseler (2021), the H–O specification to flexibly model composites in
SEM uses the idea, which Ogasawara (2007) also introduced in the context of
canonical correlation analysis, of expressing the relationship between a com-
posite and the variables making up the composite in terms of (composite)
loadings. This explains the name of this specification. Subsequently, the H–
O specification has been elaborated (Schuberth, 2023) and refined to reduce
its complexity (Yu et al, 2023). Since a composite is a weighted linear com-
bination of other variables (e.g., Cohen et al, 1990; Edwards and Bagozzi,
2000), a sum score can be viewed as a special type of composite, namely a
composite created with unit weights. Therefore, the H–O specification seems
to be well suited for modeling sum scores in SEM. In the following subsec-
tions, we present the refined H–O specification and modifications of it that
are potentially relevant to researchers dealing with sum scores. Specifically, in
the next subsection, we present the refined H–O specification for composites,
where the composite weights are free model parameters. Next, we show the
parameter constraints necessary to obtain unit weights and thus sum scores,
i.e., the sum score model. Further, we demonstrate in the sum score model
how to relax the assumption of the original refined H–O specification that all
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The Sum Score Model 9

effects on or of the variables that make up the composite are fully transmit-
ted by the composite. In this way, the sum score model can achieve the same
results as the pseudo-indicator approach. Finally, in the last subsection, we
show how random measurement error in the variables that make up a sum
score can be taken into account in the sum score model. To present the H–O
specification and the sum score model, we use the SEM framework proposed
by Jöreskog (1970); see also Jöreskog (1978). In particular, we assume that
the observed variables follow a multivariate normal distribution, and for the
sake of simplicity, we assume that the observed variables are mean-centered.

3.1 Modeling composites using the refined H–O
specification

The starting point is a set of observed variables x1, . . . , xK with variance-
covariance matrix Σ that composes a composite η: η =

∑K
i=1 wixi.2 The H–O

specification exploits the fact that K distinct composites can be extracted
from these observed variables. For this reason, in addition to the composite
of interest η, K − 1 further composites are extracted from the set of observed
variables, as Equation (1) shows.(

η
ν

)
= W ′x (1)

The additional composites ν =
(
ν1 . . . νK−1

)′ are referred to as excrescent
variables and together with the composite of interest η they span the entire
space of the observed variables. The square matrix W of dimension K, in its
columns, contains the weights to form the composite of interest and the K −1
excrescent variables.

As is known from principal component analysis, the relations between com-
posites and their observed variables can be expressed both by means of weights
and by means of composite loadings:

x = (W ′)−1
(

η
ν

)
= Λ

(
η
ν

)
(2)

where the square matrix Λ of dimension K contains the loadings of the com-
posite η and the excrescent variables ν in its columns. As Equation (2) shows,
the weights can, in principle, be obtained as the elements of the inverse of the
transposed composite loading matrix: W = (Λ′)−1.

To ensure that the H–O specification is identified and that the loading
matrix is invertible, some parameters need to be fixed (Schuberth, 2023; Yu
et al, 2023). To determine the scale of the composites, i.e., the composite of
interest and the excrescent variables, one loading can be fixed for each compos-
ite. Usually, these composite loadings are set to one. Each observed variable

2We assume that the observed variables are not perfectly linearly dependent, i.e., their variance-
covariance matrix Σ is of full rank.
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10 The Sum Score Model

may only be used once for scaling purposes. In addition, we need to determine
how the excrescent variables are extracted from the observed variables. In gen-
eral, there are various different ways to do this, as long as the identification of
the parameters is ensured. In this study, we use the parameterization of the
refined H–O specification (Yu et al, 2023). Therefore, only two observed vari-
ables are allowed to load on each excrescent variable and we have to ensure
that no excrescent variables are connected to exactly the same observed vari-
ables. Further, no observed variable is allowed to be related to more than two
excrescent variables. Finally, the excrescent variables are allowed to correlate
freely with each other, but they have to be uncorrelated with the composite
of interest η. This ensures that the variance-covariance matrix of the observed
variables that form a composite can be perfectly reproduced, i.e., no con-
straints are imposed on the variance-covariance matrix Σ of the composite’s
observed variables. Furthermore, as the weights are freely estimated in this
H–O specification, the composite of interest η must not be isolated, i.e., it
must have a relationship, e.g., a path coefficient or covariance, with at least
one other variable of the model besides its observed variables (see also Dijk-
stra, 2017). This is supported by the fact that the H–O specification based on
free weights without additional variables related to the composite of interest
shows a negative number of degrees of freedom if more than one variable forms
the composite. Similarly, this highlights that the freely estimated weights are
context-specific, i.e., the weights depend not only on the variables that make
up the composite but also on the other variables of the model, including their
metrics (Heise, 1972). The same holds for the one-step approach if the weights
are freely estimated.

Figure 1 shows an example of the refined H–O specification for a composite
η made up of three observed variables x1, x2, and x3. For the sake of clarity,
the variances of the exogenous variables are not shown in this figure. In this
example model, the six collective effects of the observed variables x making
up the composite of interest η on the two outcome variables y are calculated
as: γw′, where the column vector γ contains the two summary effects of the
composite on the outcome variables and the column vector w contains the
three weights used to form the composite of interest. We provide the derivation
of the collective effects in Appendix 6.1.
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x1

x2

x3

η

y1

y2

ζ1

ζ2

γ1

γ2

ν1

ν2

1

λ21

λ31

λ12

1

λ23

1

Fig. 1: Example of the refined Henseler–Ogasawara specification with free
weights

3.2 The sum score model based on the refined H–O
specification

A sum score is a special type of composite, namely a composite created using
unit weights. To account for this fact in the refined H–O specification, further
constraints have to be imposed to ensure that the weights are equal to one.
Therefore, we first change the scaling condition for the composite of interest.
Instead of fixing one loading of the observed variables to one, we fix the sum
of the loadings to one. In the context of latent variable models, this approach
is also known as effects coding (e.g., Little et al, 2006; Klopp and Klößner,
2021). Next, we fix the loadings of each excrescent variable in such a way that
their sum equals zero, e.g., by fixing one loading to one and the other loading
to minus one. Figure 2 depicts an H–O specification in which the composite
of interest η constitutes a sum score, i.e., it depicts a sum score model. For
the sake of clarity, the variances of the exogenous variables are not depicted
in this figure. It is noted that, in contrast to the refined H–O specification, it
is no longer necessary that the sum score be connected to other variables of
the model as the weights are fixed in the sum score model.

x1

x2

x3
∑3

i=1 λi1 = 1

η

y1

y2

ζ1

ζ2

γ1

γ2

ν1

ν2

λ11

λ21

λ31

−1

1

−1

1

Fig. 2: Example of a sum score model based on the refined Henseler–
Ogasawara specification
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12 The Sum Score Model

To demonstrate that these constraints lead to a sum score, we recall that in
the H–O specification the weights are obtained as the inverse of the transposed
composite loading matrix. Thus, the product of the transposed composite
loading matrix and the weight matrix equals the identity matrix of dimension
K × K:

W = (Λ′)−1 ⇔ (Λ′)W = I (3)

where the first column of Λ contains the composite loadings of η and the
remaining columns contain the composite loadings of ν. Similarly, the first
column of W contains the weights to form η, while the remaining columns
contain the weights to form ν. Consequently, the product of the composite of
interest’s loadings and its weights must equal one:

K∑
i=1

λi1wi1 = 1 (4)

Similarly, the product of each individual excrescent variable’s loadings and the
weights of the composite of interest must be equal to zero:

K∑
i=1

λijwi1 = 0 (5)

where j refers to the excrescent variables, i.e., j = 2, ..., K. In addition,
each excrescent variable is related to exactly two observed variables xk and
xl. Therefore, Equation (5) simplifies to: λkjwk1 + λljwl1 = 0. As the two
loadings are fixed in such a way that they sum up to zero, the two weights
wk1 and wl1 must be equal. Moreover, no observed variable is related to
more than two excrescent variables and no excrescent variables are connected
to the same observed variables. This implies that the weights forming the
composite of interest are all equal, i.e., w11 = w21 = ... = wK1 = w.
Consequently, Equation (4) becomes:

∑K
i=1 λi1w = 1. Since the sum of the

composite of interest’s loadings is constrained to be equal to one for identifi-
cation purposes, the weights that form the composite of interest are all equal
to one: w = 1/

∑K
i=1 λi1 = 1/1 = 1.3 Consequently, the composite of interest

constitutes a sum score.
The sum score model we have presented has several advantages. For

instance, it provides a versatile way of integrating sum scores into structural
equation models. Similar to the pseudo-indicator approach, it offers us the
flexibility to model a sum score as a predictor or an outcome variable within a
structural model. Further, our proposed sum score model can be used to model
the sum score as a variable that transmits all collective effects of or on the

3As can be seen immediately, if the sum of the loadings of the composite of interest were fixed
to the number of variables that make up the composite, the composite of interest would be the
average of its components.
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The Sum Score Model 13

variables that make up the sum score. In this case, the sum score η accounts
for all covariances between its observed variables x and other variables of the
model y, i.e., cov(x,y|η) = 0. In other words, the excrescent variables show
no correlation with any other variable in the model. As a result, the covari-
ance matrix of the sum score’s observed variables and all other variables of the
model is of rank one, i.e., rank(cov(x,y)) = 1. We call this the full transmis-
sion assumption. As Grace and Bollen (2008) explained, for a composite with
free weights, the effects of the components on the outcome variables, i.e., the
collective effects, must be proportional, otherwise the effects of the composite
on the outcome variables, i.e., the summary effects, will provide a distorted
picture and the full transmission assumption will be violated.4 Consequently,
the full transmission assumption depends on the scale of the variables forming
the composite and the other variables in the model.

In the sum score context, the full transmission assumption implies that
the collective effects of the components on an outcome variable must be equal.
For our example model shown in Figure 2, the collective effects of the three
variables x forming the sum score η on the outcome variables y are calculated
as follows: γ1′, where the two column vectors γ and 1 contain the two sum-
mary effects and ones, respectively. Note that when there is only one outcome
variable, the components can always be scaled so that the full transmission
assumption is satisfied. However, if there is more than one outcome variable
in the model, this is no longer necessarily the case. Similar can be shown
for the case in which a sum score is used to summarize the collective effects
on the variables making up the sum score. The full transmission assump-
tion offers researchers the opportunity to assess whether a sum score properly
summarizes the collective effects. However, this assumption is in general not
necessary for the use of sum scores in SEM and its usefulness depends on the
specific research context. Therefore, the following subsection shows how this
assumption can be relaxed.

3.3 Relaxing the full transmission assumption in the
sum score model

Our sum score model presented above implies that all covariances between the
sum score’s observed variables and other variables of the model are accounted
for by the sum score. Since the weights are fixed in the sum score model,
this assumption can be relaxed. For this purpose, the covariances between the
excrescent variables and other exogenous variables of the model need to be
specified as free model parameters. These covariances account for the covari-
ation between the sum score’s observed variables and other variables of the
model that the sum score does not account for. In other words, the covari-
ances capture the covariances and/or effects that are not transmitted by the
sum score. Relaxing the full transmission assumption allows us to mimic the
results of the pseudo-indicator approach, as is also illustrated in Section 4.

4In the case of free weights, this assumption cannot be violated if there is only one other variable
in the model besides the composite and its components.
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14 The Sum Score Model

Therefore, this specification is particularly useful if the goal is to model sum
scores without affecting the variance-covariance matrix implied by the target
model (see also Rose et al, 2019). The target model is the model that does
not contain the observed variables making up the sum scores, i.e., the model
of the second step in the two-step approach.

To demonstrate how the full transmission assumption can be relaxed, we
consider the example model from Figure 2, where a researcher is studying the
effect of a sum score on two observed outcome variables y1 and y2. As can be
seen in Figure 3, to relax the assumption that the sum score fully transmits
all collective effects of the observed variables making up the sum score on the
two outcome variables y1 and y2, we can specify free covariances between the
excrescent variables ν1 and ν2 and the error terms ζ1 and ζ2 of the outcome
variables. Note that the variances of the exogenous variables are omitted in
the figure.

x1

x2

x3∑3
i=1 λi1 = 1

η

ν1

ν2

λ11

λ21

λ31

−1

1

−1

1

y1 ζ1

y2 ζ2

γ1

γ2

Fig. 3: Example of a sum score model in which the full transmission assump-
tion has been relaxed

3.4 Taking into account random measurement error in
the sum score model

In the sum score model we assumed that the observed variables making up
the sum score are free of random measurement error. However, this does not
necessarily need to be the case, and in practice the observed variables making
up a sum score may be contaminated by random measurement error: x = x∗ +
ε, where x∗ are the variables free from random measurement error, and ε are
the random measurement errors. The random measurement errors are assumed
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to be mutually uncorrelated and uncorrelated with x∗ (and potential other
variables of the model). In this case, the relationships between the sum score
made up of measurement error contaminated variables and other variables
of the model will most likely be distorted due to attenuation (Cohen et al,
1990; Bollen and Lennox, 1991). Similar is known from factor score regression
in which composites are used as approximations for latent variables (e.g.,
Skrondal and Laake, 2001; Devlieger and Rosseel, 2017; Schuberth et al, 2023).
To correct for random measurement error, we follow an approach frequently
mentioned in the literature (Hayduk, 1996; Hayduk and Littvay, 2012; Cole
and Preacher, 2014; Savalei, 2019), i.e., to model the random measurement
error contaminated variable as a single indicator of a latent variable with
a fixed error term variance. Consequently, for the sum score model random
measurement error can be corrected in at least two ways: 1) on the sum score
level, or 2) on the observed variable level.5

To account for random measurement error on sum score level, the sum
score can be modeled as a single indicator of a latent variable. Specifically,
the loading of the sum score on the single-indicator latent variable is fixed
to one and the variance θ of the resulting error term δ needs to be fixed to
(1−reliability of the sum score) × the variance of the sum score η (Nunnally
and Bernstein, 1994, Equation 7-6). In this way, the variance in the sum score
that is due to random measurement error is partialled out and the variance of
the latent variable accounts for the remaining variance in the sum score, i.e.,
the variance that is not caused by random measurement error.

Figure 4 demonstrates this approach for our example model from Figure 2.
If no correction takes place, i.e., if a researcher specifies the model from Figure
2, the collective effects of x on y are calculated as: γ̂1′, where the estimated
summary effects γ̂ (and thus the collective effects) will likely be distorted due
to attenuation. Since the sum score η (=

∑3
i=1 (x∗

i + εi) = η∗ + δ) contains
random measurement error, the estimated summary effects, i.e., the effect of η
on y will converge in probability to γ(1−var(δ)/(var(η)), where γ is the prob-
ability limit of the summary effects in case of no random measurement error.
In contrast, if random measurement error is accounted for on sum score level,
the estimated summary effects are calculated based on η∗, i.e., the sum score
corrected for random measurement error. Given a correct reliability estimate
of the sum score, these estimated summary effects will converge in probabil-
ity to γ. Consequently, the collective effects are corrected for attenuation and
equal the effects of x∗ on y, i.e., the effects of the sum score’s components
without random measurement error on the outcome variables.

5In the literature on causal-formative measurement models, it has been proposed to partition the
causal indicators into at least two composites and to use these composites as reflective indicators
of a latent variable to allow for random measurement error in the composites (Treiblmaier et al,
2011). Although this approach no longer models the sum score as a single variable, this approach
is also conceivable for our sum score model. For more details, we refer the interested reader to the
original study of Treiblmaier et al (2011).
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x1

x2

x3

η

ν1

ν2

λ11

λ21

λ31

−1

1

−1

1

∑3
i=1 λi1 = 1

η∗

δ

y1

y2

ζ1

ζ2

γ1

γ2

1

θ

Fig. 4: Accounting for random measurement error at the sum score level in
the sum score model

Although correcting for measurement error on sum score level can address
the issue of distorted path coefficient estimates between the sum score and the
other variables of the model, the composite loadings and thus the free weights,
i.e., the weights to form the excrescent variables, remain uncorrected because
the correction takes place on sum score level. This is particularly problematic
if a sum score is used to summarize the collective effects on its components.

To address this issue, we can take random measurement error on observed
variable level into account. Specifically, each contaminated observed variable
can be specified as a single indicator of a latent variable. The loading of
the single indicator is fixed to one and the variance of the resulting error
term is fixed to (1−reliability of the observed variable) × the variance of the
observed variable. In this way, the latent variable captures the measurement
error adjusted variance of the corresponding observed variable. As a result,
the composites, i.e., the sum score and the excrescent variables, are formed
from measurement error corrected variables, i.e., the single-indicator latent
variables. Consequently, not only the relationships between the sum score and
other variables of the model, but also the relationships between the composites,
i.e., the sum score and the excrescent variables, and their observed variables
are corrected for attenuation. Hence, the composite loadings, and therefore
the free weights, are corrected for random measurement error.

Taking random measurement error in the ways described above into
account requires reliability estimates, which might be difficult to obtain in
practice. If the variables making up a sum score are assumed to be unidimen-
sional measures of a construct, Mosier’s (1943, Equation 5) formula can be
used to determine the reliability of the sum score. Note that this way of cor-
recting for random measurement error requires reliability estimates for each

The Sum Score Model
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observed variable that makes up the sum score. Alternatively, Cronbach’s α
(Cronbach, 1951) can be used if the observed variables are assumed to be
essential tau-equivalent measures of a construct. Moreover, although the pro-
posed corrections can address potential attenuation bias in the parameter
estimates given a correct reliability estimate, fixing the variance of an error
term to a value derived from a data-based reliability estimate such as Cron-
bach’s α ignores the uncertainty in the reliability estimate. This carries the
risk of drawing incorrect statistical inference (e.g., Oberski and Satorra, 2013).
Furthermore, the two ways of correcting for random measurement error intro-
duce additional variables. In the case of correcting for random measurement
error on sum score level, the latent variable η∗ and the corresponding error
term δ need to be specified (see Figure 4). However, as the effect of the latent
variable on the sum score and the variance of the error term are fixed, no
additional free parameters are added to the model. The same holds for the pro-
posed correction on observed variable level. Consequently, the two approaches
to accounting for random measurement error do not alter the number of free
model parameters; thus, the model’s degrees of freedom remain unchanged.
Yet, the fit of the model can be altered compared to the sum score model
without a correction as the parameters are corrected for attenuation. Further,
taking random measurement error into account does not limit the flexibility of
our sum score model. Particularly, it is still possible to model a sum score as
an outcome variable and to allow for covariances between the sum score and
other variables of the model. Similarly, it is possible to relax the full trans-
mission assumption, i.e., to allow for free covariances between the excrescent
variables and other exogenous variables of the model.

4 Illustrative example
We demonstrate the capabilities of the sum score model based on the H–O
specification by means of three illustrative examples. For this purpose, we
consider three different scenarios. In each scenario, we make use of a different
population model. Scenarios 1 and 2 present a situation in which a researcher
uses a sum score to summarize the collective effects of or on the sum score’s
components. In both scenarios we use a population model with the same struc-
ture. However, in Scenario 2 the components making up the sum score are
contaminated by random measurement error. This allows us to demonstrate
how random measurement error can be taken into account on observed vari-
able level in the sum score model. Finally, in Scenario 3, we apply the sum
score model to a latent variable population model, i.e., sum scores are used
as approximations for latent variables. This scenario allows us to demonstrate
how random measurement error can be taken into account on sum score level
in the sum score model.

In each scenario, we use the corresponding population variance-covariance
matrix as input for the model estimation. Hence, strictly speaking, the
model parameters were retrieved, not estimated. This allows us to provide
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explanations for the source of potential model misfit in the absence of sam-
pling uncertainty. The exact model specifications used in each scenario are
illustrated in the Appendix 6.2. All calculations were carried out in the sta-
tistical programming environment R (R Core Team, 2022). The different
models were estimated using the full-information maximum likelihood estima-
tor as implemented in the R package lavaan (Rosseel, 2012) based on 200
observations.6

4.1 Scenario 1: Comparison of approaches to deal with
sum scores

In the first scenario, we consider the population model shown in Figure 5.Scenario 1

X

m1

m2

m3

Y

.900

.600

.300

.326

.619

.186

ζ1

ζ2

ζ3

.300

ζ4

ε1

ε2

ε3

1

1

1

4.610

1.354

1.111

1.000

1.000

5

Fig. 5: Population model used in Scenarios 1 and 2

This population model consists of 5 observed variables, i.e., one exogenous
variable X, three mediator variables m1 to m3, and one outcome variable Y .
All observed variables are mean centered. The collective effects of X on the
three mediator variables are 0.9, 0.6, and 0.3, and the collective effects of the
mediator variables on the outcome variable Y are 0.326, 0.619, and 0.186. The
variance of X is set to 1 and the variances of error terms ζ1 to ζ4 are set to
4.610, 1.354, 1.111, and 1.000, respectively. The error terms of the mediator
variables are allowed to covary as follows: cov(ζ1, ζ2)=-1.062, cov(ζ1, ζ3)=-
0.237, cov(ζ2, ζ3)=0.222. Finally, in this scenario, we assume that all variables
have no random measurement error. Therefore, the variances of the random
measurement errors ε are set to 0, i.e., var(εi)=0, ∀i = 1, 2, 3.

6The complete R code and the results can be accessed via the following link: https://osf.io/
y3m4r/?view_only=e2b016994d764bd28645c346a933409d.
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To summarize the collective effects on and of the three mediator variables
m1, m2, and m3, a researcher replaces them by a sum score. This could, for
example, represent a situation in which a researcher studies a mother’s avail-
ability to interact with and monitor her children. Specifically, the mother’s
availability can be regarded as the sum of the number of children, the mother’s
illness, and hours of maternal employment (Cohen et al, 1990). For this
purpose, the researcher used the following four approaches:

1) The sum score model assuming full transmission,
2) The sum score model relaxing the full transmission assumption,
3) The pseudo-indicator approach using unit weights, and
4) The two-step approach, which is the conventional way of dealing with

sum scores in SEM, i.e., in the first step the sum score is created, and
second, the sum score is used in a path analysis together with the other
variables.

In addition, as a fifth approach, we consider the refined H–O specification. In
this specification, the mediator variables m1 to m3 form a composite of which
the weights are freely estimated. We did not include the one-step approach,
i.e., we did not use the approach in which the sum score is modeled as a
formatively measured latent variable, because this approach does not permit
modeling a sum score as an outcome variable.

Table 1 shows the results of the five approaches. For all approaches using
the sum score, i.e., Approaches 1) to 4) above, the weights were equal to one.
In contrast, in the refined H–O specification, where m1, m2, and m3, instead
of a sum score, form a composite with free weights, we obtained the following
weights: wm1 = 0.407, wm2 = 0.773, and wm3 = 0.232. Also, Table 1 reports
the results for the two summary effects, i.e., the path coefficient estimates
between X and M , and M and Y , the direct effect of X on Y , the collective
effects of X on m1 to m3 and m1 to m3 on Y , and various model fit statistics,
i.e., χ2-test statistic with its degrees of freedom (df), the root mean square
error of approximation (RMSEA, Hu and Bentler, 1999), and the standardized
root mean square residual (SRMR, Hu and Bentler, 1998). The collective
effects are no model parameters in the different sum score models and the
refined H–O specifications, but they can be derived as indirect effects of X on
m1 to m3, and m1 to m3 on Y , respectively. The values in parentheses show
the population values of the parameters (see also Figure 5). For the two-step
approach, the collective effects cannot be derived as the mediator variables
are not part of the model of the second step. Similarly, the collective effects
are not reported for the pseudo-indicator approach.
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As can be seen from Table 1, all approaches using sum scores, i.e.,
Approaches 1) to 4), produced the same direct effect of X on Y and the
same summary effects of X on M , and M on Y , i.e., 0.435, 1.800, and 0.325
respectively. Similarly, the corresponding standard errors (SEs) were the same.
However, the approaches differed in respect of the model fit statistics, i.e.,
χ2-test statistic, RMSEA, SRMR, and the collective effects.

The sum score model which relaxes the full transmission assumption
showed no misfit, and in fact, it showed the exact same χ2-test statistic, num-
ber of df, and the RMSEA value as the pseudo-indicator approach and the
two-step approach. This was expected as this sum score model emulates the
pseudo-indicator approach which was designed to model the sum score in such
a way that its inclusion does not affect the model-implied variance-covariance
matrix of the target model (Rose et al, 2019).7 In our example, the target
model is identical to the model of the second step of the two-step approach.
Since this model is saturated, all three approaches show a perfect fit.

Considering the sum score model that assumes full transmission, the vari-
ous model fit criteria showed a misfit. This is because the sum score does not
fully transmit the collective effects of and on its components. This is also evi-
denced by the derived collective effects, which differ from the collective effects
in the population model. Consequently, a researcher would likely draw the
wrong conclusions from the summary effects. Finally, the refined H–O specifi-
cation could perfectly reproduce the variables’ variance-covariance matrix as
the overall model fit criteria highlight. Moreover, the derived collective effects
are identical to the ones of the population model. Consequently, although it
was not possible to properly summarize the collective effects of the mediator
variables using a sum score, allowing for different weights, the collective effects
could be properly summarized.

4.2 Scenario 2: Correcting for random measurement
error on the observed variable level

Scenario 2 demonstrates how random measurement error can be taken into
account on the observed variable level in the sum score model. For this reason,
we use the population model of Scenario 1, see Figure 5. However, and in
contrast to Scenario 1, in this scenario, the mediator variables m1, m2, and
m3 are contaminated by random measurement error, i.e., the variances of
the random measurement errors εi are positive. Specifically, we contaminated
each mediator variable by random measurement error in such a way that the
reliabilities of the mediator variables are 0.935, 0.852, and 0.659, respectively.
In this scenario, we consider the following three approaches:

7As Rose et al (2019) explained, the pseudo-indicator approach, and thus the sum score
model with relaxed full transmission assumption, produces the exact same χ2 test statistic, df
and RMSEA as the target model. However, between the target model and the pseudo-indicator
approach the SRMR value can differ because the number of residuals is different. To ensure that
the pseudo-indicator approach and the sum score model produce the SRMR of the target model,
the calculation of the SRMR needs to be adjusted (Rose et al, 2019).
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22 The Sum Score Model

6) The sum score model assuming full transmission and not taking measure-
ment error into account,

7) The sum score model assuming full transmission and taking random
measurement error into account on the observed variable level, and

8) The refined H–O specification with free weights, thus assuming full trans-
mission, and taking random measurement error on the observed variable
level into account.

The Approaches 7) and 8) take random measurement on the observed vari-
able level into account . For this purpose, we model each mediator variable as
a single indicator of a latent variable, as described in Subsection 3.4. Specifi-
cally, we use the population reliabilities, and therefore fix the variances of the
resulting error terms to 0.38, 0.3, and 0.6276. As a result, the sum score and
composite, respectively, are made up of random measurement error-corrected
variables. In contrast, in the sum score model that assumes full transmission
and does not take random measurement into account, i.e., in Approach 6), the
sum score is made up of the original mediator variables. Consequently, due to
attenuation, its parameter estimates are expected to be biased.
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Table 2 shows the results for the three approaches. The two sum score mod-
els yielded unit weights and the refined H–O specification produced weights
of 0.407, 0.773, and 0.232 for m1, m2, and m3, respectively. The sum score
model that does not account for random measurement error, i.e., Approach
6), produced biased parameter estimates, i.e., a biased direct effect of X on Y
and biased collective effects. In addition, the model fit criteria showed a model
misspecification, which is caused by attenuation and the fact that the sum
score cannot fully transmit the collective effects. Similarly, although Approach
7) corrects for random measurement error, it produced biased parameter esti-
mates. As in Scenario 1, this is because the sum score cannot fully transmit
the collective effects. This is also evidenced by the various model fit criteria
which indicate a model misfit. Finally, the refined H–O specification taking
random measurement error into account was able to retrieve the population
parameters, and the model fit criteria showed no misfit.

4.3 Scenario 3: Correcting for random measurement
error on the sum score level

In the third scenario, we consider a latent variable population model as
depicted in Figure 6. This population model consists of three latent variables
Scenario 3

x21 x22 x23x11 x12 x13 x31 x32 x33

ε21 ε22 ε23ε11 ε12 ε13 ε31 ε32 ε33

f2f1 f3

ζ1 ζ2

1.0 1.3 1.2 1.0 0.9 1.1 1.0 0.7 0.6

0.9 0.7

1.0 0.7 0.5 1.2 1.5 1.3 0.6 0.5 0.6

1.0 1.0

1.0

14

Fig. 6: Population model used in Scenario 3

f1, f2, and f3, where each is measured by three observed variables. The values
of the population parameters are given in the figure.
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In this scenario, the researcher uses sum scores to approximate the latent
variables. Therefore, the researcher’s main interest is in studying the relation-
ships between the latent variables and not in summarizing collective effects.
For this reason, we relax the full transmission assumption in all sum score
models. In particular, we consider the following four approaches:

9) The sum score model relaxing the full transmission assumption,
10) The two-step approach,
11) The sum score model relaxing the full transmission assumption and taking

random measurement error on the sum score level into account, and
12) The two-step approach with a correction for random measurement error.

The Approaches 9) and 10), and the Approaches 11) and 12), respectively,
are expected to produce the same results. For the sum score model and the
two-step approach that do not correct for random measurement error, the
estimated relationships between the latent variables are expected to be biased
due to attenuation (Cohen et al, 1990; Schuberth et al, 2023). In contrast,
Approaches 11) and 12) correct for random measurement error on the sum
score level, i.e., each sum score is modeled as a single indicator of a latent
variable with a fixed loading and error term’s variance. For more details, see
Section 3.4 above. We have not included the pseudo-indicator approach in this
scenario as it produces the exact same results as the sum score model that
relaxes the full transmission assumption. Similarly, we have not included the
one-step approach as it does not permit modeling a sum score as an outcome
variable.

Table 3 presents the results for the various approaches. The sum score
model and the two-step approach that do not correct for random measurement
error produced the same standardized path coefficient estimates. As expected,
the estimated standardized path coefficient estimates differed from the stan-
dardized population path coefficients because of attenuation. Also, the χ2-test
statistic, the df, and the RMSEA were the same for the two approaches, indi-
cating a model misfit. The SRMR differed for the two approaches because the
number of residuals is different. Similarly, the sum score model and the two-
step approach that correct for random measurement error showed the same
results. However, in this case, the distortion in the standardized path coeffi-
cient estimates diminished when random measurement error was taken into
account. Finally, the model fit criteria indicated no misfit.
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5 Discussion
Traditionally, sum scores are studied in SEM following a two-step procedure,
which omits the creation of the sum score from the model and, therefore,
does not permit researchers to rigorously assess their sum scores and exploit
SEM’s full potential. More recent approaches to model sum scores in structural
equation models address some of the drawbacks of the traditional approach
(Grace and Bollen, 2008; Rose et al, 2019). However, they also show some
limitations. Particularly, the one-step approach shows limited flexibility in
modeling sum scores in a structural equation model. Moreover, the literature
on the pseudo-indicator approach currently lacks guidance on modeling a sum
score that fully transmits the collective effects on its components, making
it difficult for applied researchers to generally assess the full transmission
assumption using this approach.

To address this issue, we introduce the sum score model based on the
refined H–O specification. The sum score model overcomes the limitations of
the existing approaches. First, our sum score model explicates the creation
of a sum score, i.e., it models the sum score, and allows us to specify a sum
score as an outcome variable in the structural model. Thus, it overcomes the
limitations of both the two-step approach and the one-step approach, which
either do not model sum scores or have limited flexibility in modeling sum
scores. Second, as our illustrative example shows, our sum score model can
mimic the results of the pseudo-indicator approach, which was proposed to
emulate the results of the two-step approach, and thus offers all the advantages
of the pseudo-indicator approach. Particularly, it allows researchers to include
a sum score retaining its components in the model without affecting the model-
implied variance-covariance matrix of the target model, i.e., the model that
contains the sum score and other variables of interest but not the sum score’s
components. Third, our sum score model offers researchers the opportunity
to assess whether the sum score fully transmits the collective effects of or
on the variables that make up a sum score. This is not possible with the
two-step approach because the components of a sum score are not modeled
in this approach. Similarly, the one-step approach is limited in this regard
because it does not allow a sum score to be modeled as a dependent variable.
Moreover, considering the pseudo-indicator approach, Rose et al (2019, p. 6)
mention that “some of the rules may be relaxed to simplify the model or
to consider specific assumptions.” In addition, they provide an example in
which they fix the covariances between the components of a sum score and the
measurement error variances of the indicators of one or more latent variables
to zero to ensure that the covariances between the sum scores’ components
and the latent variables’ indicators are fully accounted for by the sum score.
Although this way of specifying the covariance allows for modeling a sum
score that fully transmits the collective effects of its components, there is
currently no guidance on how to constrain these covariances to ensure that a
sum score fully transmits the collective effects on its components. It is up to
future research to show whether it is possible to assess the full transmission
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assumption in general using the pseudo-indicator approach and, if so, how it
should be done. Note that the usefulness of assessing the full transmission
assumption depends on the specific research context and is not a requirement
for using composite scores including sum scores in SEM. Therefore, researchers
are encouraged to carefully consider the exact specification of the sum score
model. Fourth, the H–O specification allows us to freely estimate weights,
which gives researchers more flexibility and overcomes a further limitation of
the pseudo-indicator approach. Although our illustrative example and first
studies provide arguments for using composites with free weights (e.g., Heise,
1972; Grace and Bollen, 2008), future research needs to provide sophisticated
guidelines and further recommendations as to when free weights should be
preferred over fixed weights such as unit weights. Against this background, the
sum score model based on the H–O specification allows researchers to better
judge and defend the use of sum scores. They can do this empirically, by means
e.g., of model comparisons using a chi square difference test or information
criteria such as the Akaike information criterion (AIC, Akaike, 1998) or the
Bayesian information criterion (BIC, Schwarz, 1978), as well as conceptually,
in that researchers can better understand whether the model containing sum
scores reflects their theoretical arguments. Table 4 juxtaposes the properties
of the different approaches for dealing with sum scores in SEM.

Table 4: Properties of the different approaches for dealing with sum scores in
SEM

Two-step
approach

One-step
approach

Pseudo-indicator
approach

Sum score model
based on H–O

Allows for...

...taking the sum
score’s formation into
account

✗ ✓ ✓ ✓

...modeling a sum score
as an outcome variable

✓ ✗ ✓ ✓

...assessing whether
the sum score fully
transmits the effects of
or on its components

✗ ❍ ? ✓

...freely estimating the
weights of a composite

✗ ✓ ✗ ✓

Note: ✓: possible; ❍: limitedly possible; ✗: not possible; ?: currently unclear

Further, our study presents two ways of accounting for random measure-
ment error in the sum score model, i.e., on the observed variable or the
sum score level. Note that these ways of dealing with random measurement
errors are not unique to our sum score model, but can also be applied to the
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other approaches presented. Accounting for random measurement error allows
researchers to address attenuation bias in the parameter estimates (Cohen
et al, 1990). For this purpose, reliability estimates of the variables that make
up a sum score or a reliability estimate of the sum score are required to
perform these corrections. Empirical researchers can obtain such reliability
estimates from existing literature or they could use the test-retest method
(Guttman, 1945) to estimate the reliability of an observed variable or a sum
score. Further, Cronbach’s α can be used to determine the reliability of a sum
score if its variables are essential tau-equivalent measures (Novick and Lewis,
1967).8 Alternatively, if various measures for the variables that make up a sum
score are available, the original variables can be replaced by latent variables
using the measures as indicators. If possible, the latter approach is preferred
because the researcher does not risk incorrect statistical inference by ignoring
uncertainty in the reliability estimate (Oberski and Satorra, 2013).

A potential drawback of the presented sum score model could be its
complexity as it additionally introduces new composites, i.e., the excrescent
variables. Compared to the two-step approach, which omits the creation of
the sum score from the model, this is certainly true. However, the two-step
approach sacrifices technical rigor in favor of practicality (Li and Calantone,
1998). In comparison to the one-step approach, our sum score model is not
more complex. Although additional variables need to be specified in the sum
score model, the number of free model parameters and thus degrees of freedom
remain the same. While in the one-step approach, the variances and covari-
ances of the variables that make up a sum score are free model parameters, in
our sum score model these parameters are replaced by the same number of free
model parameters, i.e., variances of the excrescent variables and the sum score,
covariances between the excrescent variables, and composite loadings. Note
that the use of more complicated parameterization to achieve a specific goal is
not uncommon in SEM. For instance, Rindskopf (1984) introduced phantom
and imaginary variables to model equality and inequality constraints in SEM.

A limitation of our sum score model is that we followed the SEM framework
proposed by Jöreskog (1970), and we, therefore, assumed that the observed
variables of a model, including those making up a sum score, follow a multi-
variate normal distribution. However, in empirical studies this assumption is
likely to be violated. To account for this fact, ML estimation with robust stan-
dard errors and test statistics could be used (e.g., Satorra and Bentler, 1994).
Further, the observed variables are often categorical in empirical research, e.g.,
as responses to five or seven point Likert scales (Rhemtulla et al, 2012). In
such cases, treating the observed variables as continuous could lead to biased
parameter estimates (Johnson and Creech, 1983). Although weighted least
squares estimators have been proposed in the SEM context to deal with cate-
gorical observed variables (e.g., Muthén, 1984; Lee et al, 1990), future research
needs to show whether these estimators are compatible with the sum score
model.

8Otherwise, if these variables are congeneric measures, Cronbach’s α still provides a lower bound
estimate for the reliability of a sum score (Sijtsma, 2008).
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6 Appendix
6.1 Collective effects for the example model from

Figure 1
In the following, we derive the collective effects of the observed variables x
making up the composite of interest η on the outcome variables y for the
example model shown in Figure 1. For this example model, the collective effects
are calculated as the coefficients of the regression y on x, i.e., y = Bx + u,

where y = γη + ζ, x = Λ

(
η
ν

)
and E(u|x) = 0. For the sake of simplicity,

it is assumed that all variables are mean centered. The regression coefficients
are calculated as follows:

B = E(yx′) E(xx′)−1 = (6)

E((γη + ζ)
(
η ν′)Λ′) E(Λ

(
η
ν

) (
η ν′)Λ′)−1 = (7)

E(γη
(
η ν′)Λ′) E(Λ

(
η
ν

) (
η ν′)Λ′)−1+ (8)

E(ζ
(
η ν′)Λ′) E(Λ

(
η
ν

) (
η ν′)Λ′)−1 = (9)

γ
(
var(η) 0′)Λ′Λ′−1diag(var(η), var(ν))−1Λ−1 + 0 = (10)

γ
(
var(η) 0′) diag(var(η)−1, var(ν)−1)W ′ = (11)

γ
(
1 0′)W ′ = (12)

γw′ (13)

6.2 Model specifications used in the scenario analysis
6.2.1 Scenario 1
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Fig. 7: Approach 1) The sum score model assuming full transmission
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Fig. 8: Approach 2) The sum score model relaxing the full transmission
assumption
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Fig. 9: Approach 3) The pseudo-indicator approach using unit weights
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Fig. 10: Approach 4) The two-step approach
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Fig. 11: Approach 5) The refined H–O specification
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6.2.2 Scenario 2Scenario 2

m1 m2 m3

∑3
i=1 λi1 = 1

MX Y

ν1 ν2

ζ1 ζ2

λ11 λ21 λ31

−1 1 −1 1

11

Fig. 12: Approach 6) The sum score model assuming full transmission and
not taking measurement error into account
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Fig. 13: Approach 7) The sum score model assuming full transmission and
taking random measurement error into account on the observed variable level
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Fig. 14: Approach 8) The refined H–O specification taking into account ran-
dom measurement error on the observed variable level
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6.2.3 Scenario 3
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Fig. 15: Approach 9) The sum score model relaxing the full transmission
assumption
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Fig. 16: Approach 10) The two-step approach
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Fig. 17: Approach 11) The sum score model relaxing the full transmission
assumption and taking into account random measurement error on the sum
score level
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Fig. 18: Approach 12) The two-step approach with a correction for random
measurement error
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