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VORONOI DOMAINS AND DUAL CELLS 
IN THE GENERALIZED KALEIDOSCOPE 

WITH APPLICATIONS TO ROOT AND WEIGHT LATTICES 

Dedicated to H. S. M. Coxeter 

R. V. MOODY AND J. PATERA 

ABSTRACT. We give a uniform description, in terms of Coxeter diagrams, of the 
Voronoi domains of the root and weight lattices of any semisimple Lie algebra. This 
description provides a classification not only of all the facets of these Voronoi domains 
but simultaneously a classification of their dual or Delaunay cells and their facets. It is 
based on a much more general theory that we develop here providing the same sort of 
information in the setting of chamber geometries defined by arbitrary reflection groups. 
These generalized kaleidoscopes include the classical spherical, Euclidean, and hyper­
bolic kaleidoscopes as special cases. We prove that under certain conditions the Delau­
nay cells are Voronoi cells for the vertices of the Voronoi complex. This leads to the 
description in terms of Wythoff polytopes of the Voronoi cells of the weight lattices. 

1. Introduction. Any discrete set of points Q in a metric space (X, d) decomposes 
X into regions, one around each point of Q, which are the Voronoi regions (or cells or 
domains) of Q. Specifically, for q G Q, 

Vor(q) :={xeX\ d(q,x) < d(p,x% for all/? G Q}. 

The diversity of this concept in mathematics and physics is attested to by the variety 
of names attached it: Dirichlet cells, proximity cells, Wigner-Seitz cells, Brillouin cells, 
and so on. The case when the point set g is a lattice in real «-space is by far the most 
important, not least because then the Voronoi cell around 0 has the property of being a 
fundamental region for the translation group and at the same time being invariant under 
the point group of the lattice. Yet it remains a difficult problem to describe the structure 
of the Voronoi cells of a lattice, and there are relatively few classes of lattices for which 
we have a complete description. A useful introduction to this subject is [Se]. Our own 
interest in the subject arose through the recent use of root and weight lattices in the theory 
of quasicrystals [KPZ, MP2]. 
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In this paper we describe Voronoi cells, and their facets, and at the same time the 
closely related dual cells called Delaunay cells, and also their facets. We do this in a 
uniform way for any root or weight lattice of finite type. There are two ingredients in 
this. The first is to realize that the Voronoi and Delaunay problems for the root lattices 
can be cast in the wider setting of solving the same problems for any set Q that is the 
orbit of a point under a reflection group W. The second is to understand that the natural 
duality between the Voronoi and Delaunay cells manifests itself in a particularly simple 
way in the reflection group context. The solution to the weight lattice problem is obtained 
by reversing the roles of the two types of cells. 

It is remarkable that for such a well known and uniform class of lattices as the root 
and weight lattices that a complete study of their Voronoi and Delaunay cells was accom­
plished only very recently [CS1, CS2]. (In fact we learned of [CS2] only after the main 
body of this paper was complete.) In the second of these, Conway and Sloane give an 
explicit description of each type of cell for each indecomposable root and weight lattice 
of simply-laced type i.e. An,Dn,Ee,Ej,Es. Their approach is through a detailed descrip­
tion of the lattices and involves a certain amount of computation which varies from case 
to case and is actually quite considerable for the weight lattices of the exceptional root 
systems. However their classification clearly reveals the uniformity of the description of 
the cells (although not so clearly their facets) in terms of Coxeter diagrams. 

In this paper we obtain the same classification, but by a very different approach. By 
setting the Voronoi-Delaunay problem for root lattices in terms of a JF-orbit Q, it ac­
quires a combinatorial-geometrical interpretation that is no longer attached particularly 
to Euclidean spaces or Euclidean reflection groups but lends itself naturally to a uniform 
general solution in terms of the Coxeter diagrams. 

The weight lattices are more difficult and our solution comes about through an inter­
esting twist. The weight lattices are in general composed of several ^-orbits and hence 
do not fall directly within the scope of our methods. However, the vertices of the Voronoi 
cells of a given JF-orbit Q (also called the holes ofQ) themselves form a set of points P 
which are centered in the Delaunay cells of Q. We give a necessary and sufficient con­
dition for these Delaunay cells to be the Voronoi cells of P. Remarkably in the case of 
weight lattices (with one exception) it is easy to see that there is exactly one way in which 
to form a W-pxbit (but not a lattice) so that the set P of holes is the weight lattice. This 
leads at once to a description of the Voronoi and Delaunay cells of the weight lattices 
but with the roles of polytopes and polyhedra reversed. The exception, perhaps not sur­
prisingly, is Eg where there is no such W-orbit. However in this case the root and weight 
lattices coincide. 

The determinations of the Voronoi cells of the weight lattices of Ee and E1 were orig­
inally made by Worley [Wl, W2]. Each case required a detailed analysis of the weight 
lattice and was quite technical. Conway and Sloane base their analysis of these weight 
lattices on Worley's work. We are able to determine the structure of the Voronoi and 
Delaunay cell complexes of both root and weight lattices by inspection from Coxeter 
diagrams. 
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Our results apply to the non-simply-laced cases too, and although there is nothing 
new in the way of lattices to be obtained from this, the associated Coxeter groups are 
different and shed light on the symmetries involved. 

The first part of the paper develops results that apply to any reflection group (Coxeter 
group), including not only the Euclidean groups that arise in connection with lattices, 
but also the spherical and hyperbolic groups, and even groups for which we do not know 
an invariant metric. We have to redefine the notions of Voronoi and Delaunay cells in a 
non-metrical way that can be reduced to the usual definition in the case that a metric is 
available. 

An important result is Theorem 4.4. In Section 5 we reinterpret it as a simple algo­
rithm played on the nodes of the Coxeter diagram of W that describes how to partition 
the diagram into two parts. One of these encodes a convex polyhedron, called a reflec­
tion polyhedron, that describes a facet (bounding figure of some lesser dimension) of 
the Voronoi cell. The other encodes a convex polytope, a Wythoff or reflection polytope, 
that describes the dual facet in the Delaunay cell. In keeping with this duality we use 
the term polyhedron for a convex figure described in terms of its faces (facets of maxi­
mum dimension) and polytope for a convex figure described by it vertices. The allowable 
partitions determine the facets and dual facets of various dimensions. 

At this level of generality our results fit into the abstract theory of shadow geometries 
that were introduced by J. Tits [T] and subsequently developed by Scharlau [Sh] and 
G. Maxwell [Ma]. In one way or another most of our Theorem 4.4 can be found between 
these two papers, but not without requiring a considerable detour. The proof that we offer 
here is tailored to our needs and depends only on [B]. 

The generalized kaleidoscope is Coxeter's term for the simplicial complex that arises 
from a simplex of mirrors inclined to one another at various submultiples of ir. The mir­
rors give rise to a discrete reflection group W (a Coxeter group) that classically was re­
stricted to the cases in which the complex could be realized in either spherical, Euclidean, 
or hyperbolic space X [Cl, C2]. There is a well-known construction due to J. Tits which 
furnishes the setting of a similar geometrical realization with no restrictions on the Cox­
eter group serving as the reflection group. In Section 2 we recall this construction, that 
we call here the generalized kaleidoscope. It is the basis of everything to follow. 

We begin, then, with a generalized kaleidoscope K based on the Coxeter group W 
acting on a Tits cone X. A point * G X is chosen arbitrarily and Q is the set of the W-
translates of * : Q = W(*). In Section 3 we relate this new picture, back to the classical 
spherical, Euclidean and hyperbolic pictures, and show how to give the Voronoi cells of 
Q a non-metrical description that we will use in the more general situation. 

In Section 4 we prove Theorem 4.4 mentioned above that gives a complete descrip­
tion of the facets of the Voronoi cells. This leads in Section 5 to the algorithm that allows 
us to determine all this information at sight from the Coxeter diagram. In Section 6 we 
define the Delaunay complex in a combinatorial way and prove the important fact that 
the Delaunay cells meet face-to-face, i.e. the intersection of facets is again a facet. In 
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Section 7 we return to the classical kaleidoscopes and give the Delaunay cells their stan­
dard interpretation as convex hulls of certain subsets of Q. We also prove a key result 
of the paper: necessary and sufficient conditions for the Delaunay complex to be itself 
the Voronoi complex of the holes of the original Voronoi complex. It is this that allows 
us to determine the structure of the Voronoi cells of the weight lattices, as we show in 
Section 8. In Section 8 we also review the solution to the determination of the Voronoi 
and Delaunay complexes of all the indecomposable root lattices and extend the result to 
all root lattices. This classification in the indecomposable case appeared in our previous 
paper [MPI]. These results are summarized in Tables 2 and 3. Finally in Section 9, moti­
vated by the discussion in [CS2] of contact cells (convex hulls of the points of contact of 
the spheres in the sphere packings of space determined by the root and weight lattices), 
we offer a description of these cells in the present context. These results are summarized 
in Table 4. 

2. Tits' construction of the generalized kaleidoscope. In this section we review 
the construction due to J. Tits of the generalized kaleidoscope with an arbitrary Coxeter 
group. The details may be found in [B] or in [TBV]. Fix a nonnegative integer n and let 
N:={l,...,n}. 

We begin with a matrix M = (my), ij G N, satisfying 
(1) M is symmetric; 
(2) ma = 1, for all /; 

(3) rriij e {2,3,4,.. .} U {oo}, for all / ^j. 
Such a matrix is called a Coxeter matrix. 

We set E — W1 with the standard basis (e\,...,en) and define a symmetric bilinear 
form 

B = BM : B(et,ej) — — cos( — ) 
\mijJ 

(interpreted as —1 if nty = oo) so 

B(ei9ei) = 1, 

B(ei9ej)<09 if/Vi' . 

The Coxeter matrix M is decomposable if for some ordering of the basis the matrix 
(B(ei9 ejfj assumes the form 

* (T 
0 * , 

Otherwise M is indecomposable. 

For each / G N define the involution 

re. x i—> x — 2B(x, ei)ei 
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on E and let W be the group generated by r\,...,rn. Then W is a Coxeter group with 
presentation: 

generators: ru...9rn9 

relations: (r/ry)
w';/ = 1. 

This is a nontrivial fact and is proved using the geometry induced on the dual space 
E° of E. Let (•, •): E° x E -^ R be the dual pairing and transfer the action of W to E° by 
defining 

(wy9wx) = (y9x)9 

for all w G W,yeE°,xeE 
We need to know this action explicitly. Let (e°,..., e°n) be the basis dual to (e\,..., en): 

(e%ej) = 8ij. 

Also let et eE°9ieN9 be defined by 

(ëi9ej) = 2B(ei9ej)9 j <EN 

so 
n 

ëi = J22B(ei9ej)eJ. 

Then from 

{ne°9ek) = (ej9nek) = {e°j9ek - 2B(ek9ei)ei) = (e° -6ijèi9ek) 

we see that 
O O C " 

nej = ej - dy-ei. 

Now define for / G N 
Ai:={xeE° | (x9ei)>0}9 

Hi:={xeE°\{x9ei) = 0} = Y;^e°9 

At :={xGE°\ {x9et) > 0} = AtUHi. 

For each subset S C N define 

*s=rv*inn4 
and 

FS:=n//,nn4 

Then 

Fs= U F°r 
ScTcN 
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and 
F:=FQ = {X£E0 I (x,ei)>09 for all/G W}. 

F is a simplicial cone with facets Fs that are also simplicial cones. 
It is important to note that F^ is open in the linear space that it spans (namely f]ieSHi) 

and that Fs is the closure of F°s in Rw(= E°). 
Set 

X = XM = {JwF, 
wEW 

f=fM= {wF°s \weW,ScN}. 

THEOREM 2.1 (J. TITS [TBV,B]). (i) X is a convex cone, 

(ii) for all JC, y G X, the line segment [x,y] meets only finitely many elements off, 
(in) the cone F is a fundamental domain for WonX. Specificallyfor S\ S' C N, w, w' G 

W, one has wF%Ç\wF% ^ 0 =̂> 
(a) S = S', 
(b) wF% = w'F%,, 
(c) w~lw' e Ws:=(n\ieS). 

(iv) X=UGe?G. 

COROLLARY 2.2. Ifx G F^ is fixed by some w G W then w G Ws and w fixes every 
point ofFs. • 

We refer to %iM) := (XM, 7M) as the generalized kaleidoscope of the matrix M. We 
will need the Coxeter diagram Y M of M which is the graph with n nodes and an edge 
Qh^-Q) between each pair of nodes / andy for which my > 2. It is customary to omit the 
label 3 when my = 3. 

The bilinear form BM is indecomposable if and only if the diagram TM is connected. 

3. The classical cases. There are three cases of the generalized kaleidoscope that 
are particularly important geometrically. Suppose that M is indecomposable. 

(i) SPHERICAL CASE. If BM is positive definite then W is a finite subgroup of the 
orthogonal group of the Euclidean space (RW,2?A/)- Using BM we identify E° and E. Let 
Xbe the unit sphere {x E E° \ BM(X,X) — 1} and note that PFacts faithfully onX We 
find thatX — E — E° and f n l c o v e r s X a n d determines a simplicial complex (with 
spherical simplices) on X. 

(ii) EUCLIDEAN CASE. If BM is positive semidefinite but not positive definite then 
rad E = Ru for some u G W1 (one dimensionality follows from the assumption that BM 
is indecomposable). SetX := {x G E° \ (x,u) = 1} and set V = {x G E° \ (x9u) = 0}. 
Then V is isomorphic to the dual space of E/radE and hence carries a positive definite 
form derived from BM- We have a natural simply-transitive action 

VxX—>X 

https://doi.org/10.4153/CJM-1995-031-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-031-2


VORONOI DOMAINS AND DUAL CELLS 579 

of V on X defined by addition and in this way X may be viewed as Euclidean space. We 
find that ^FnXcoversJf and determines a simplicial complex onXand W acts as a group 
of affine symmetries of this complex. 

(iii) HYPERBOLIC CASE. We assume that BM is indefinite but for all principal 
(n — 1) x (n — 1) submatrices M1 of M that BM> is positive definite. Then relative to 
some suitable basis of W1 (not (e\,..., en)\), we have 

BM(X,X) — xx + • • • +x^_j —xn. 

Since BM is non degenerate we may identify E and E° using it. Let F be the cone 
{x G E | BM(x,x) < 0}. The X is precisely one of the two nappes, say T+, of this 
cone. Set 

X:= { x e r + \BM(x9x) = -l} 

which is ^-stable. 
Then X is a model of hyperbolic space with the metric ds2 = dx\ + • • • + dx\_x — dx\ 

and we find that !TnXis a simplicial complex (with hyperbolic simplices) on X with W 
acting as a group of symmetries. 

In each of these three cases we have determined a metric space (X,d) of dimension 
(n — 1) and a simplicial complex f D J o n which W acts faithfully as a group of sym­
metries. If we define wFs := wFs Pi X and F := FDXthen F is a fundamental region 
for action of W on X and the conclusions of Theorem 2.1 (iii) and its Corollary are true 
when applied to the facets wF$. 

The pair %{M) := (X, f) is called a classical kaleidoscope and ^C(A/) = (Jf, ^F) is 
called its linear cover. 

Let %{M) = (X, 7) be the linear cover of a classical kaleidoscope and let * G F be 
chosen arbitrarily. Set Q = W(*) and let K(*) denote the Voronoi region of X determined 
by * and the set Q. Let 

W* = Stab»<*). 

According to Corollary 2.2, W* is generated by the reflections rt for which the corre­
sponding reflection hyperplane passes through*. Let K' := {/1 r/(*) = *}so W* — WK<. 

The next result is due to Conway and Sloane [CS1] in the case of root lattices. 

PROPOSITION 3.1. 

"F(*)= (J wF. 
w£WK, 

PROOF. Set F0 = \Jwew , wInt(F). Let x G V0 and let/? be a point in Q that min­
imizes d(x,p). We show that/? = *. Since VQ, Q, and * are stabilized by W*, we may 
assume that x G Int (F). 

Suppose that some hyperplane //*, k E N, separates/? andx. Then using the well-
known fact that 

\rkp-x\ < | /?-x | , 
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we obtain a contradiction to the definition of/?. Thus no hyperplane Hk separates/? andx 
and/7 E F. But/? E W{*) and F is a fundamental region for W. Thus/? — *. This proves 
that V0 C F(*) are hence, since K(*) is closed, \Jwew, wF C F(*). 

Conversely let j G F(*). Suppose that some hyperplane i/*, A: = 1, . . . , n, separates 
y and *. Then \r\$ — *| < [y — *| => \y — r^ * | < [y — *|. Since r^* E Q this can happen 
only if these are equalities and so |r^y—*| = \y—*\ and * E //*. Thus & E AT', so the only 
hyperplanes separating^ and * are those passing through *. The group W* is finite and 
UWG»;

 Wj^ *s a neighbourhood of * on which W* acts with fundamental region F. Thus 
using some w E W* we obtain wy not separated by any hyperplane from F. Then wy E F 
andj> E FF*F. • 

4. Voronoi cells in the generalized kaleidoscope. With X, F, * as above, we have 
determined that F(*) = FF*F, where W* is the stabilizer of* in W. There are two reasons 
why it is convenient to lift this picture back to the original Tits cone Xand its fundamental 
region F. The point * lies in F \ {0} and we may look at F(*) := W*(F). The facet 
structure of F(*) lifts canonically to the facet structure of V{*\ each facet of K(*) being 
replaced by the union of rays through it (for the definitions of faces and facets see below). 
Inclusions and multiplicities of facets containing others, etc. are all preserved by lifting, 
the only difference being that F(*) has a facet {0} that corresponds to no facet of F(*). 

The first advantage of lifting back is that it is technically easier to work in the vector 
space setting. The more important advantage is that W*(F) is defined for any point * E 
F \ {0} in any generalized kaleidoscope K(M) for any Coxeter matrix M and so we can 
study the problem of the structure of W*(F) even in the non-classical setting. 

Henceforth M is a Coxeter matrix, not necessarily indecomposable, with diagram T, 
generalized kaleidoscope %iM) = (XM, 7M), a n d a fundamental region F. 

We fix a point * E F \ {0} and write 

* = E cje]9 cj > 0, for ally E K. 

Set K' := N \ K. The stabilizer of * in W is 

W'K = (n | i E K'). 

Define 

F(*):= »^/F= (J wF, 

For w E PF define F(w*) = wF(*) = wWK>F. We call the sets F(g),g E Q, the Voronoi 
cells of g inX Clearly X = |LGo ^ ) -
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LEMMA 4.1. Let S CN,i eN\S,w G Ws, and let t.W-^T+be the length function 
on W. Then 

l(nw) > £(w). 

PROOF. The alternative is £(rzw) < £(w). Then if rix • • • rik is a reduced expression 
for w we have by the exchange condition [B] 

riw = rir->?iJ>--rik9 

where the hat indicates a deleted entry, and then we find rt G Ws which is false. • 

LEMMA 4.2. LetD = UG<E£ G be any union of facets of the form G = wFs, w G W, 
S C N. Then D is closed in the Tits cone X. 

PROOF. Let JC G Xbe in the closure of D. Suppose if possible that x £ D. Since any 
open ball $ about x meets D we can choose y G D so that [x,y] C <B. Since [x,y] is 
covered by finitely many facets of the form G° = wF^, w G W, S C N, and these are 
convex, there is a G° so that ]JC,Z[C G° for some point z G]JC,y[. Now ]JC,Z[HD ^ <j> =̂> 
G° HD ^ 0 => G° C Gx for some Gi G £. Since Gi is closed in R", x G Gi C A and 
we obtain a contradiction. • 

PROPOSITION 4.3. (i) K(*) c i / , /or «// / G A:, 

^ / : = F(*) H r, K(*) = F(*) fl //i,/or a// / G ^ , 
(ïw) K(*) a«d f are convex and closed in X. 

PROOF. F(*) = WK>{F). Let w G WK, and let i G K. Then £(r,-w) > £(w) by 
Lemma 4.1 and so by [TBW] or [B, Chapter V, Section 4.4, (P„)], we have wF C Âh 

Then F(*) C Ât and/ C Ât H r^,- = //,. 
The proof that F(*) is convex is a simple variation of the proof [B] that X is convex. 

Let JC, j G F(*). We prove that the line segment [JC, y] is covered by a finite number of 
sets wF°j9 w G J?£/. We may assume that x G F and y = wv, where v € F,w £ WK>. If 
^ G F the result is trivial, so we assume that y £ F. 

Let [x,y] pass through the face Fj := Fyy of F at the point z. Then x G Âj, y G rjAj. 
Since K(*) C ̂ / whenever / G AT, we see thaty G A7. Thus wF C rjÂj and by [B, loc.cit.] 
£(rjw) < i(w). 

Now [z,y] = rj[z, r7wv], ryw G JF^, and we may assume by induction on length that 
[z, rjwv] is covered by finitely many facets of the required type. The same then applies 
to [z,y] and hence also to [x,y] = [JC,Z] U [Z,y]. 

This proves that F(*) is convex, hence also/. By Lemma 4.2, F(*), and then/, is 
closed in X. m 

LetA,B C Rn. We say that ̂  supports B if the linear spans [y4] and [#] of ,4 and B are 
equal. Thus ̂  supports B if and only if B supports A. 

Let C be a convex set in W1. A convex subset / C C is a facet of C if whenever 
JC, j G C and ]jc,j>[n/ 7̂  0 then [x,j] C / It is proper if it is nonempty and is not equal 
toC. 
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Clearly if/ and g are facets of C then/ Pi g is also a facet of C. 
Let H be an affine hyperplane of the affine span of C and suppose that 
(i) i /nCsupports / / , 

(ii) C lies in one of the two closed halfspaces determined by H. 
Then / := H H C is a facet of C. Indeed, if*,;; G C and Qx,y\) H / /H C ^ 0 then by (ii) 
x,y G //and [JC,J] G / / D C. 

The facets of the form just described are called the faces of C. The faces have codi-
mension 1 in C. See [Br] for more details and definitions on faces and facets. Note that 
we use the words faces and facets where he uses the words facets and faces respectively. 

REMARK 1. We do not insist that C be closed and so, under this definition, an open 
simplex has no faces! These peculiarities are necessitated because when W is infinite 
the Tits cone is not in general closed in E°. For K(*), the only points where caution is 
required are those lying in the boundary of X. 

REMARK 2. A second peculiarity of dealing with convex figures with potentially in­
finitely many faces is that not every proper facet need lie in a face. However this situation 
can occur only if * lies on the boundary of X, and in particular cannot happen for a kalei­
doscope for which F lies in the interior of X(or equivalently for which Stable?) = WNy 
is finite for ally = 1,...,«). A simple example is povided by the diagram 

which is most easily visualized as a kaleidoscope in the hyperbolic plane. The funda­
mental domain is a triangle with one vertex at infinity. The Voronoi region K(*) is has 
infinitely many sides, all on one W*-orbit, and three orbits of vertices. Two of the orbits 
make up the natural end points of the edges. The point * is the third orbit. It is a facet of 
F(*) but is not on any edge. See Section 5 for the notation. 

A facet is extraordinary if it is proper and does not lie in a face, otherwise it is ordi­
nary. 

In this paper, the word facet, unmodified, will he taken to mean an ordinary facet, 
and no other type of facet will occur in the discussion. Our classification of facets by 
diagrams applies only to these ordinary facets. 

For example, as we will see in the sequel, the classification of the facets of the above 
kaleidosope procèdes by the diagrams 

edges CJ-^HJ L-P1^) vertices 

and does not include the extraordinary vertex *. 

THEOREM 4.4. Let * = TjeK cjej> cj > 0, be a point of the fundamental region F of 
the kaleidoscope %{M). Let K(*) = WK,F, whereK' = N\K. Then 

(i) Every facet o/F(*) is convex and has a W\>-translate ffor which f (IF = Fs (for 
some S C N) supports f. (We say then thatf is in special position/ 
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(ii) Iff is in special position with f H F = Fs then S satisfies the condition 

(C) Every connected component of S (viewing Sas a set of nodes of the Cox-
eter diagram Y) contains points ofK. 

(Hi) Forf as in (ii), 

f=fs-= (1 V(w*)=WK,nSLFs. 

(iv) With f as in (ii) 

StaV(/s) =WsxWK 

and Ws is the pointwise fixer off s in W. 

(v) Let 

C := {S C N | S satisfies (C)}. 

Then the mapping fs *—> S from the set of facets ofV(*) that are in special position 
into C is a bijection. 

We will prove Theorem 4.4 in the following sequence of results. The main ingredient 
is an induction on the number card(Ar) of Coxeter generators of W. 

PROPOSITION 4.5. The faces of V(*) — WK> F are supported by sets of the form wFit 

w G Wfc>, i G K. Every such set supports some face of V(*\ 

PROOF. Let the hyperplane H support a face/ of F(*). Then/ is the union of sets 
wFj HH,w G WK> ,J CN. Now since/ is convex and spans H it contains an open subset 
of//. Since {wFj \ w G WK>,J G TV} is countable, H must intersect wFt in an open set 
for some / G N. But wFt supports wHj and so H = wHt. If / £ K then rt G WK> and 
F(*) = r/F(*) so wF and rtwF both lie in F(*), contrary to F(*) lying on one side of//. 
Thus i G K. 

Conversely consider wHt, w G Wp, i G K. We know K(*) C v4; (Proposition 4.3(i)) 
whence K(*) = wF(*) lies on one side of w///. Also wFt C F(*), whence wHj D F(*) is 
a face supported by wFt. m 

In order to study the facet structure of F(*) we will study the facet structure of its 
faces. Since these are all of the form wHj H F(*), where w G WJC, and / G K, it is 
sufficient to study the faces/ of the form f = Htn F(*), / G K. 

Let i G N. We define 

conn(0 := {/ G tf \ {i} | B{ehet) ± 0}. 

Let S c N. We define 

S-1 := {/ G W | £(e7, et) = 0, for all / G 5}. 

If iS = {/} we write iL for {i}1. 
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LEMMA 4.6. Let S C N, i G N \ S, w G Ws and suppose that rtw = wrt. Then 

PROOF. By Theorem 2.1, Ws is the pointwise stabilizer of {e° \jEN\S}. Since 

wrte° = rtwe0: = r;e° r i^i — ' ivv^i — ' i^i 

so w fixes ne° = e° - 2Y,meconn(i)u{i}B(ei>em)e0
m. Since w fixes e% w fixes 

- 2 E«Gconn(o B(eh em)e°m G F and hence by Theorem 2.1, 

we (rp £ B(ei9em)e°m C Hp) = (rp\ p G i 1 U {/}) - 0^u { / } . 
wGconn(/) 

Finally w G ^ H ^ i u { / } = 0 ^ ± . 

PROPOSITION 4.7. Le/ / G K. Then K(*) D /// is a face of F(*) a « d 

v(*)nv(n*) = v(*)nHi = wKl^Ft. 

PROOF. We already know by Propositions 4.5 and 4.3 that/ := F(*) n /// is a face 
of F(*) and the first equality holds. Since F/ C F(*) Pi Vfo*) = / C /// and F/ contains 
a nonempty open subset of/// and since/ is convex, we see that every point of/ lies in 
the closure of an open subset of/// lying in / . Now F(*) D F(r/*) is the disjoint union 
of at most countably many sets of the form w/^, J C N, J ^ 0 and since wFy lies in a 
subspace of dimension A: < n if card J > 1, we see that in fact every point of/ lies in 
the closure of the union of subsets wFj C K(*) H F(r/*). However, by Lemma 4.2, the 
union of such sets is closed in X and hence we have proved that/ = \Jp wpFjp for some 
wP G wKjp G N. 

Now F(*)nr/K(*) must be a union of sets HF) = rtw'Fk, where w, M/ G ^AT'J, k e N. 
Then by Theorem 2.1,y — k and w~lriw

/ G (r^), whence r, G w(r^)w/_1 C WKfU{ky 
Since / G K, we have / = k and we have proved that 

/= u «̂  
for some subset £/ C ^ / . However/ C /// and 

wFi C /// => r/wF/ = wFt => w~V/w G (r/) => w_V/W = r, => r,-w = wr,. 

Then by Lemma 4.6, w G WK,ni±. Conversely w G WKfni± => wF/ C /// and hence 

/ = ^ ' n [ / ] ^ - • 
We now prepare the way for the induction step. 
Fix / G K. Define */ to be the unique point on the line segment [*, r,*] that lies on ///. 
Since 

n* = * - (*,£/)£,• 

= E cJej - d (2 E £fe> ^ K I 
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we see that *,- has the form 

*/ = E die°r 
jeK, 

where 
Ki :=K\ {/} U conn(/), dj > 0, for ally G K(. 

For future reference we define 

*J:=(tf\ {ilA^-

and note that 
K'i=K'nijL. 

Set 

£7 := E°/Re% 

M1 := ( ^ l y ^ f f j x i ^ f ^ 

(•, •): £° x Ei-+ R, the natural pairing induced from (•, •) on £° x £, 

7T = 7T,-: is° —> E°, the natural map (also denoted by an over-tilde), 

Bl = BMIEÏXEJ' 

Then M defines through Bl and lej \ j G N \ {/}} a generalized kaleidoscope 9(j = 
"KiM1) on the pair {E%E°t). The basis of E°t dual to {ej \ j ^ i} is {e° \ j ^ /}. The 
fundamental region is by definition 

F:={xEE°\(x,ej)>0JeN\{i}}. 

LEMMA 4.8. (i) TT\H determines an isomorphism of Hi and E°t. In particular each 
x G E° has a uniquepreimage under n lying in Hit 

(ii) F = TT(F) = 7r(F/). 

PROOF, (i) is obvious. For (ii) we clearly have ir(F) C F. If x G F and x is its 
unique preimage in Hi then (JC, ej) > 0, for ally G N\ {/} and (x9 et) = 0 so that x G F/. • 

Define JP to be the Weyl group of the new kaleidoscope. Then W is generated by 
n — 1 reflections fy,y EJV\ {/}, and these form a system of Coxeter generators of W1 

with Coxeter matrix M. We have a natural embedding PP <—> W, fj «—• ry, by which we 
identify fP as a subgroup of JF. 

LEMMA 4.9. ir.E? ^ E\ is a W-equivariantmap. 

PROOF. Let/ G JV \ {/} and let xeE°. Then 

ry-jc = x — (x, ey)é/ 

= x - 2(x,ey) Y;B(ehek)e°k ^ x - 2(x,ej)]TB(eJ9ek)e°k 
Hi 

— 0'*- • 
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REMARK. We* = e° so W C JFacts naturally on E°/Re°. This action is identical 
to that obtained from the kaleidoscope %!. 

Let/ be the face F(*) H n F(*) = K(*) H Ht of F(*) (Proposition 4.7) and let F(*,) be 
the Voronoi region for */ in the kaleidoscope 9(j. 

LEMMA 4.10. TT/(/) = F(*,) «wrf/ = TT^1 F(*) n //,. 

PROOF. 
^•(Z) = 7 r ( ^ n / i f ) (Proposition 4.7) 

= WK,^ (TTF) (Lemma 4.9) 

= WpiF) (Lemma 4.8) 

= V(*t) (definition). 

The second part follows from Lemma 4.8. • 
Assuming that Theorem 4.4 holds for all kaleidoscopes %{M'\ where M' is a k x k 

Coxeter matrix and k < n = card TV, we may apply it to */ = E/<EK, dj-ej and V(*i) = 
WK'F to conclude: 

LEMMA 4.11. (i) Every facet of V(*j) is convex and has a WK< -translate ffor which 
f HF supports f (f is in special position). 

(ii) Iff is in special position andfi Pi F' = F^ then S* satisfies 

(O) Every connected component ofS* in T(Af) contains points ofK[. 

(Hi) Withfi as in (ii), 

?=?*••= fi V{w*i)=WK,nm,Fs. 
s1 

(iv) Stab^,(/j) — W^ x ^ , n f 5 ( ] i and W1^ is the pointwise fixer of fig in W. 
(v) Let 

C := {S CZN\ {/} | Sf satisfies (C)}. 

Then fig t—> Sf is a bijection between the set of facets ofiV{*i) in special position 
and C1- m 

Let C(i) := {S G C \ i G S}. For each set S C N for which / G S we define 
S?:=S\{i}. 

LEMMA 4.12. The mapping S\—> S1 determines a bijection C(i) —> C 

PROOF. S G C(i) & i £ S and each connected component of S contains a point of 
K <=> S — S1II {/} and each connected component of S* contains a point of K \ {/} U 
conn(0 = Kt & S1; G C. m 

Let S G C(ï) and let S? := S\ {/}. Define 

fs:= H V(w*). 
wews 
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LEMMA4.13. (i) fs = ^(fs)nHt = *T%)nf, 
(ii) fs is pointwise fixed by Ws-

PROOF. Let 

h:= f| F(w*)n f| V(wTi*). 

Then from 

7r(F(w*)n V(wri*)) = TTW( K(*) H F(r/*)) 

= wr(F(*)n K(r/*)) = wF(*,-) = F(w*,-), 

we see by Lemma 4.1 l(iii) that 
7T(A)C/J . 

To see that ir(h) = y j , let JC G f$ and let x G F(*) D F(r,*) be a preimage. Then for all 
w G FFy, wx G F(w*) n V(wr^) and 7r(wx) = W7r(x) = wx = x, by Lemma 4.11(iv). 
Thus wx = x + a(w)e° for some a(w) G R. Since ^ fixes e°, a: fFy —> (IR,+) is a 
homomorphism, and since JFy is generated by involutions, a = 0. This shows thatx G /* 
and hence x G 7r(/z). 

In fact this argument shows that h is pointwise fixed by W$ and since also h C F(*)Pl 
F(r/*) C if/, it is pointwise fixed by rt. Thus h is pointwise fixed by Ws. In particular 
h C riwG^ w^(*) = / s and we have h=fs. m 

LEMMA 4.14. Let S G C{ï). Thenfs is in special position andfs HF = Fs. 

PROOF. We have Fs C F C F(*) and F5 is pointwise fixed by Ws, whence Fs C 

f W 5 ^(w*) = / * ThusF5 a n F . 
Now/s is the union of elements of !f and in particular, from Theorem 2.1(iii)(b), 

fs H F is a union of sets FT, T C N. Suppose that FT CfsHF. Then FT C /// and so 
/ G 7" and Fi

v = TT(FT) C 7r/s = f$. Now^j is in special position andyj- n F' — F1^. 
Thus Fi

p C i ^ and so V D ^ ' j D 5, and FT C F5. 
Since/s is pointwise fixed by Ws,fs C E/e#\s ^y- Since E/e#\s R>O^° C F 5 we see 

that Fs supports/^ and soyà is in special position. • 

LEMMA 4.15. Set Se C(i). Thenfs = WKfns±Fs. 

PROOF. fs-^f$ = w ^ ^ . But K[ n [S""]1 = K' n i1 n [tf]-1 = *' n s1. 

Now ^ ' n s 1 ^ —-» ^Ar'n^y^y ' a nd since ^ ' n s 1 stabilizes //, (z G *S), ^'ns-J-^s C Ht. 
Together with fs C Ht (Lemma 4.13) and Lemma 4.8 we see that fs = WKfns±Fs. • 

LEMMA 4.16. Let S G C(ï). Then Stàbwfs = Ws x WK/ns± and Ws is the pointwise 
stabilizer offs. 

PROOF. The second statement is a consequence of Lemma 4.13 and Lemma 4.14. 
Let w G Stàbwfs. Then F(*) D fs => F(w*) D fs D Fs. Now K(w*) is a union 

of sets ww'F^j, where W G ^ ' and T G N (see the definition of K(*)) and hence for 
some w' G WK> and some T C N, ww'F^ = /^ . Then 7 = S and W G Ws. Replacing 
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w by some other element w\ of the coset Wsw C Stab^/s, we may assume that w\ G 

WK> C W. Then w / j = wiirfs — ^i^xfs = ^ifs — f$ and so by Lemma 4.11(iv), 
W] G W$ x WK,n\$y.. Finally w G Wswx C Ws x fl^'ns-1. • 

We now prove Theorem 4.4. 

PROOF (THEOREM 4.4). Let g be any proper facet of F(*). Then g lies in some face 
of F(*) (see Remark 2), which, by Proposition 4.5, is supported by a set of the form wF,, 
w G JFA7 » i £ ^- Since w~l F(*) = F(*), we may replace g by w_1g and supppose that 
g is a facet of a face/ = F(*) Pi Hi supported by Ft for some / G ^ . Using 717 we have a 
bijective linear map 

and this necessarily determines a bijection between their facets. Thus some ^/-translate 
7Ti(vg) of iTi(g) is/*, where^j HF = F^ and S1 G C (see Lemma 4.11). Then vg Cvf—f 
(since K\ C r1) and we may thus assume that at the outset g C / , / is supported by Fi9 

nf — F(*/), and 7rg —f$> In particular, g is convex. 
N o w / C /// and by Lemma 4.13, g = TTVJ n /// = /5 , where S = Sf U {/} and 

5 G £?(/)• Using Lemma 4.14 we obtain Theorem 4.4(i). 
Now suppose that g above is already in special position and gPlF = Fj. Our argument 

shows that for some w G WK>, and / G S,wg =f$ C / = F(*)Pi///, where wgPlF = F5. 
Then from/5 = WKlns±Fs (Lemma 4.15), g is the union of sets w~luFs, where u G 
Wjcns1' I* follows that FT = w~xuFs for some u and so T = S and w~lu G 0^. Thus 
g = w -1/s = w_1w/s = fs by Lemma 4.16. This proves that every facet in general 
position is of the form/?, where S G C. This proves Theorem 4.4(h). Parts (iii) and (iv) 
have been proved in Lemmas 4.15 and 4.16. 

Finally for (v), if S G C then S G C{î) for some / G K and by Lemma 4.13 and 
Lemma 4.11,/^ is a facet of F(*/) and/$ is a facet of F(*) Pi Ht in special position 
with/? C\F — Fs. This proves that the mapping of (v) is surjective. Since/s is entirely 
determined by S (and K) (see Lemma 4.15) the mapping is injective. 

This completes the proof of the Theorem. • 

5. Classification of faces, facets, and dual cells by Coxeter diagrams. In this 
section we explain how the meaning of Theorem 4.4 can be seen through decorations of 
the Coxeter diagram and how this leads to a simple algorithm for determining the facet 
structure of Voronoi cells F(*). At the same time we will see that Theorem 4.4 contains all 
the relevant information about the facet dual to each facet and that the decorated Coxeter 
diagram simultaneously displays the Wythoffpolytopes of these dual cells. 

We assume then that M = (M//)(/7)<ENX;V is a Coxeter matrix and ^C(M) the corre­
sponding kaleidoscope based on vector spaces E° and E with dual bases {e°t \ i £ N} 
and {et \ i £ N} respectively. We let 

*:=$>*;> Cj>o9 
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be a fixed point, * ^ 0, in the fundamental region FofE°. To illustrate the procedure 
that we will describe, we will use the kaleidoscope whose Coxeter diagram is 

This is a spherical kaleidoscope and so may be viewed either as a linear kaleidoscope 
in four dimensional space or as a tesselation by spherical simplicies of the three dimen­
sional surface of a sphere in 4-space. Our description below is taken in terms of the linear 
model. Thus we take the fundamental region as a simplicial cone bounded by rays. In 
the spherical model the fundamental region becomes a simplex bounded by vertices. It 
is merely a matter of convenience which description we use. In the case of root lattices 
(Section 8) we will use the classical models. 

The first step is to indicate the nodes appearing in the support of*, i.e. those belonging 
to K, by marking each with a dot. In our example we will choose K as indicated here. 

As we will see (and it is already clear from Theorem 4.4) the actual coefficients Cj of 
* play no role in the description of F(*) and of its facets. It is only the set K which is 
relevant. (In Section 8, where metrical considerations appear, the precise position of * 
will be important). 

Rl. Replace each node by a square box and put an x in each box that is not indexed 
byK. 

In our example we have 

The box in position / stands for the ray R>o£/° and the entire collection of boxes stands for 
the convex hull C of the corresponding rays. The x in a box / indicates that we should 
allow the corresponding reflection rt to operate on C and the entire collection of x 's 
indicates the reflection group that is allowed to act on C 

Thus, in the diagram above, C is the convex hull of {R>oe° | * = 1, . . . , 4}, which is in 
fact the fundamental chamber F, and the reflection group indicated is (r7 \j £ K) = WK>. 
The diagram stands for 

WK,F= (J wF 
w€WK, 

and this is precisely the definition of the Voronoi cell F(*) (see Section 4). 
To determine the faces of F(*) we use two rules: 
R2. Replace exactly one box, not marked by an x, by a circle. 
R3. Re-mark all the remaining boxes with x's according to the restrictions that no 

marked box may be joined by an edge to a circle node and no dotted node may 
be marked by an x. 

We obtain in our example two faces: 
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Face Diagram # 

V(*) B-H—[x}^{x] 1 

2-face ©-H-S^S 1 

2-face H-^>-D^x] 5 

1 -face G>-0-D^H] 5 

1-face H-0-CK-D 5 

0-face 0 - 0 - 0 ^ 0 5 

0-face 0 - © - O ^ O 1 

TABLE 1. THE EXAMPLE OF SECTION 5. CLASSIFICATION OF FACES OF TESSELATIONOF THE 3-DIMENSIONAL 

SURFACE OF A SPHERE IN 4-SPACE. DOTS INDICATE THE SUPPORT OF THE CHOSEN FIXED POINT * OF THE 

FUNDAMENTAL REGION. THE SURFACE IS FORMED BY 1440 COPIES OF V(*). THE NUMBER OF FACES OF F(*) OF 

EACH TYPE IS SHOWN IN THE LAST COLUMN. 

The interpretation of these is the same as above. The boxed nodes describe the rays 
generating a convex figure Fs and the x 's indicate a reflection group acting on it. 

Now this tallies precisely with Theorem 4.4. Every face of F(*) has a unique 
^/-translate in standard position. Iff is such a face then/ — WKtui±Fi, where / G K 
(see also Proposition 4.7). Our rules above force us to replace by a circle a box from K 
and to mark with x 's those boxes in K' n r1. 

To obtain lower dimensional facets we continue in the same way, using rules R2 and 
R3. Since the boxes marked with x 's are always the set of nodes orthogonal to the circled 
nodes, R2 guarantees that the circled nodes always form a set S whose components lead 
back to K. Rule R3 then provides the reflection group WK,US±. 

The entire procedure then gives rise to Table 1. It is not hard to determine more de­
tailed information about F(*). The group W of the kaleidoscope is of order 14400 [C] 
and the set Q = W{*) has 14400/\WK>\ = 14400/10 = 1440 points. There are then 
1440 copies of F(*) that tile the space. F(*) has the dihedral group D$ of order 10 as its 
symmetry group. In terms of the more easily visualized classical model it has 10/10 = 1 
pentagonal face and 10/2 = 5 faces that are isocèles triangles. 

At each stage of the determination of the facets/of the Voronoi cell we have a subdia-
gram of boxed nodes and a complementary diagram of circled nodes that has the familiar 
form of a Wythoff diagram [C]. This complementary diagram is exactly the Wythoff di­
agram that describes the convex hull of the set Ws(*\ which in turn is the facet f° of the 
Delaunay complex dual to the facet / . This is how the duality of the Voronoi and Delau-
nay cells is manifested in the partition of the Coxeter diagram. The Delaunay complex 
is described in more detail in Section 6 and Section 7. 

6. The Voronoi and Delaunay complexes. Let 

X=<K(M) = (XM,TM) 
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be a generalized kaleidoscope. Let * G F \ {0}, Q — W{*), and let 

q/:={wfs\we W,SeC} 

be the corresponding set of all the reflection polyhedra and partially order it by inclusion. 
V with the partial ordering is the Voronoi complex of (^C, *). 

In V we find the extreme cases wfy = {0} and wfc = wWK*F$ = wF(*). 

LEMMA 6.1. (i) LetweW,Se C. Then wFs C F(*) if and only ifwfs = w%for 
some w' G W& and w G W^ Ws- In either case wfs is a facet ofV(*). 

(ii) Letq G Q,S G C. Then V(q) Dfs if and only ifq G Ws{*). In either case fs is in 
afacetofV(q). 

PROOF, (i) Suppose that wFs C F(*). Then Fs c fs C w~xV{*) = w _ 1 ^ / F 
and hence F s = w~lw'Fs for some w' G ^ and w~lw' G ^ . Thus w/s = w'fs and 
w G WKi Ws. We know that w% is a facet of K(*) = FF /̂F. The converse is obvious. 

(ii) Write q = w"1*. Then V(q) Dfs & wfs C F(*) ^ w G ^ 0s ^ q = w"1* G 

0 ^ * ' * = ^ ( * ) . • 

LEMMA 6.2. Letw<EW,Te C. Then wfr n F(*) w a/ace/ o/T(*). 

PROOF. We will use induction on £(w). If l(w) = 1 it is obvious. Suppose that 
l(w) > 1 and choose / so that £(nw) < £(w). Set g := wfT D F(*). If i G À7 then 
r/F(*) = F(*) and we have rtg = nwfr H F(*). This is a facet of F(*). 

Suppose that / G K. Then F and wF lie on opposite sides of/// [B, Chapter V, Sec­
tion 4.4,(F„)] and hence wFT n F(*) C ///. It follows that g c ///. Thus 

g = ng = nwfr n v(n*) n //, 

= r/M/r D F(*) H /// C nwfr n F(*) =: g'. 

By the induction assumption g' is a facet of F(*). Finally 

g nf = g'nv(*)nHt =g'n//,- = g'nng' = g 

is a facet of F(*) since the intersection of any two facets of a convex set is again a facet 
(see the definition of facets in Section 4). • 

LEMMA 6.3. (i) {jg^g = Xf 

(ii) ifg,h G *V'thengHh G V. 

PROOF, (i) is obvious from Theorem 2.1. For (ii) we can suppose that h is a facet of 
K(*). Now 

g=ufs = u f| F(w*) 

for some S £ C,u £ W. 
It will suffice to show that hC\ wwF(*) is a facet of F(*) for each w G Ws, for we know 

that the intersection of facets of K(*) is a facet of F(*). But h Pi wwF(*) = uw((uw)~x h n 
K(*)) is a facet of wwF(*) lying in F(*). By Lemma 6.2 it is a facet of F(*). • 
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COROLLARY 6.4. LetRdQ be any subset, R ^ 0. Then there exists S G C,w G W 
so that 

0) r\reRnr) = wriuewsV(u*)> 
(ii) R C wWs(*\ 

PROOF, (i) f)r(ER V(r) is a facet and we know that every facet has the form of the 
right hand side of (i). 

(ii) 
r G R => V(r) D wfs => V(w~lr) Dfs =» w~lr G Ws(*) 

by Lemma 6.1(H). • 
We are now ready to define a second complex called the Delaunay complex. In the 

setting here it is a combinatorial object made of subsets of the set Q = W(*) or equiv-
alently from cosets of W j WK>. In the classical cases we will provide a more geometric 
interpretation for it. 

For each S G C we define 

Ss •= wsi*) 

with the extreme cases^ = W(*) = Q,f£ = {*}. The Delaunay complex is the set of 
subsets 

0:={wfê\Se C,w<E W} 

together with the partial ordering by inclusion. The set wfg is called the facet of *D dual 
to wfs. Of special importance are the cells w/£, where S = N \ {/'} for some j . In this 
case wfs is the ray wR>0e° and the dual facet is D(wR>oeJ) = wW^yi*). By abuse of 
language we call the sets wR>0eJ, N \ {/} G C, the vertices of V. 

We could have also defined the Delaunay complex using rays J^(IR>o*). However 
there is nothing to be gained from this. 

PROPOSITION 6.5. For S,T G C, W, H/ G W, 

wfs c w'fr <*wfs^> w'fr-

PROOF. WWS(*) C WWT(*) =* wflve^ ^0*) => w'f)vewT ^0*) =* rçft ^ w'fr. 
Conversely 

w/s D w'/r => w p | F(v*) D w f] V(m) 
v£Ws uewT 

=» w /_1 wF(v*) D fl F(w*)> for all v G 1^, 
uEWT 

=4> w /_ wv G WTWK', for all vG ^ b y Lemma 6.1, 
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PROPOSITION 6.6. (i) Any properly ascending chain of facets of(D has at most n + \ 

elements. 

(ii) The intersection of any collection of facets of(D is again a facet. 

PROOF, (i) A properly ascending chain of dual facets implies a properly descending 
chain of facets in V and since dimensions drop, the result follows. 

(ii) From (i) it will suffice to show that the intersection of any two facets of © is a 
facet of £>. We will show thatyj H wfi is an facet of £>. 

By Lemma 6.1, r efs <=> r G W^*) & V(r) Dfs and similarly r 6 ^ ^ V(r) D 
wfr. 

Thus 

R -firiwfi = {reQ\ V(r)DfsnwfT}. 

But fs H wfr is some facet vfP of F(*) and 

{reQ\V(r)DyfP} = yft. 

7. The classical kaleidoscopes. In order to make use of Delaunay complex, we 
return to the case of a classical kaleidoscope $C(M) (M indecomposable) with its fun­
damental region F and Voronoi complex V determined from V by intersection with X 
Each ray w(R>oeJ) contains exactly one point on X and these points are the vertices of 
V. They are also called the holes of V or Q and are the points of X that locally are most 
distant from the points of Q. The set of holes is denoted by Q. 

We will assume that our base point * lies in F, whence the entire Delaunay complex 
2) consists of subsets of X 

For any set A ofX, (A)cony will denote its convex hull. Convexity for hyperbolic and 
spherical spaces is defined, as for Euclidean spaces, by declaring that for each two points 
x and y of the set the geodesic [x,y] also lies in the set. 

For S G C we define 

Wf! = WÛ = <*^>conv = ( w ^ ( * ) ) c o n v . 

For each S C N9 S ^ N, Ws is a finite group and hence wf% is a closed bounded convex 
set in X 

The set of convex sets wf£9 w G W9S G C, partially ordered by inclusion, is called the 
geometric Delaunay complex for (jÇfM), *). Its maximal elements, dual to the vertices, 
are called the Delaunay cells and are denoted by D(a)9 a G Q. 

PROPOSITION 7.1. Ws(*) is the set of extreme points offg. 

PROOF. Certainly the extreme points of/s lie in the set Ws(*). But W$(*) is a group 
of symmetries of fg and is transitive on Ws(*). Thus all the points of Ws(*) are 
extreme. • 
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PROPOSITION 7.2. Let X be as above. For each facet fs of F(*), W$(*) is precisely 
the set of points ofQ that are closest tofs (each point x G fs is equidistant from the points 
ofWsi*) and more distant from every other point ofQ). 

PROOF. Since/? is a facet of the Voronoi region F(*), each point x of/? is as close 
to * as to any other point of Q. Now the distance from x to q G Q is minimized if and 
only if x G V(q), and hence fs is as close to q as to * if and only if fs C V(q). But 
fs C V(q) & q G Ws(*) by Lemma 6.1(ii). • 

The classical definition [CS] of Delaunay facet/0 dual to a facet/ of the Voronoi 
complex V is precisely 

f° — {q £ Q | q as close as possible to/)conv 

= (a € Q I / i s a f a C e t ° f ^(<?))conv. 

This explains our definition of the Delaunay complex of the generalized kaleidoscope. 
For S G C,fs* defined above, coincides with the classical definition. 

It also explains why the part of diagram made up of the circle-nodes determines, as 
a WythofTpolytope, the facet dual to the facet described by the complementary part of 
the diagram. A Wythoff polytope is by definition the convex hull of an orbit of points 
defined by a point * that is in some facet of the fundamental region. The facet in which 
* lies is indicated by dotting the nodes corresponding to the extreme points of this facet. 
The entire set of nodes of the Wythoff diagram describes the Coxeter group that is to be 
used to construct the orbit. In our case the orbits are the sets Ws(*). For more on Wythoff 
polytopes consult [C] and [CS1]. 

We now ask under what conditions the geometric Delaunay complex is itself the 
Voronoi complex of the set Q of holes of Q. This has a remarkably simple answer that 
leads us in Section 8 to the determination of the Voronoi complex of any weight lattice. 

LEMMA 7.3. A necessary and sufficient condition for the cells D(a), a G Q, to be 
Voronoi cells for Q is 

(Vor 1) for all pairs a, (3 G Q, and for all x G D(a) D D((3), d(x, a) = d(x, /3). 

PROOF. Suppose that the condition (Vor 1) holds. D(a) is a closed convex body. Its 
faces are sets [a, /3]°, where (3 G Q and [a, (3] is an edge of the Voronoi complex V. For 
each 7 G Q let Hal denote the perpendicular bisector of [a,7] and let AaCi denote the 
corresponding closed halfspace that contains a. Then by (Vor 1) the face corresponding 
to [a, (3] is D(a) n Ha^ and 

D(a) = fi A«fi 
[a,/3] an edge in 1/ 

(see [Br], Corollary 9.4). 
On the other hand the Voronoi cell VQ(CC) for a in the set Q is f^en^a,! by defini­

tion. Thus Vçi{oc) C D(a). Now both {Fa(a) | a G Q} and {D(a) | a G Q} consist 
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of compact polyhedral sets that cover X with overlaps of measure 0 (they tile X). If 
Vçi(<x) 7̂  D(a) then D(a) \ Vn(a) contains nonempty open set and it is impossible for 
{ VQ(a) | a G Q} to tile X. Thus D(a) = Vn(a) is a Voronoi cell. 

Conversely if, for all a G Q,D(a) is a Voronoi cell then (Vor 1) is obvious. • 
Let a, (3 G Q and suppose that D(a) H D(J3) ^ 0. Then D(a) H D(j3) =f° for some 

facet/ of V. As far as condition (Vor 1) is concerned, it will be equivalent to consider 
those cases in which / =f$ is in standard form. Then/!? = ((Ws(*))COnv and (Vor 1) can 
be rewritten as 

(Vor 2) for all facets/^ in standard form, for all a, /? G Q with D(a)nD(J3) = j£ , 
and for all w G Ws, d(w*, a) = d(w*, /?). 

Now for a G Q and/!? C D(a) we have a is a vertex off s = WKlns±Fs, whence a is 
expressible as a — uaQ, where u G WKlns±,a0 G Q PiF$. 

We have 
d(w*,a) = d(w*,waD) = d(*,w~lua0) 

= d(*, ww"1^) {since w G ^ s , w G FT5i} 

= d(w_1 *, aQ) {since aQ G F^} 

= d(*, aQ) {since w G 0^ '} . 

Similar considerations with /? lead to the new sufficient condition for the cells D(a) 
to be Voronoi cells: 

(Vor 3) for all S G C, for all ct0, /30 G Q H F5, */(*, a0) = </(*, /J0). 

Taking S = 0, we obtain the sufficiency of 

PROPOSITION 7.4. 4̂ necessary and sufficient condition for the set ofDelaunay cells 
D(\), X G CI, to be the Voronoi cells for Q. is 

(Vor) foralla,f3eCinF, d(*,a) = d(*9/?). 

PROOF. It remains to see that the condition is necessary. If a, f3 G Q H F then 
* G D(a) D D(J3) and so for D(a) and D(J3) to be Voronoi domains we need */(*, a) = 
d(*9/3). 

The discussions of Voronoi and Delaunay cells in the vector space set-up do not re­
quire any particular consideration for decomposable Coxeter matrices, and indeed no 
such assumption was made in Section 4, Section 5, Section 6. However for the classi­
cal kaleidoscopes our discussion so far has been restricted to indecomposable Coxeter 
matrices. 

To consider the decomposable case we begin with some generalities. If (Xj,di), 
i = 1, . . . , k, are metric spaces and Qi is a discrete set of points in X\ for each /, then 
ïnX:=X\ x • • • x Xk with the metric 

d((xu. • • 9xk), (yi,. . . ,ykj) := d(xuyx)
2 + • • • + d(xk,ykf 
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and the discrete set 

Q := Q\ x • • • x Qk 

we have for all q = (q\,..., qk) G Q 

Vor(q) = Vor(^i) x • • • x Vor(^) 

with facets/ —f\ x • • • xfk and dual facets/3 =f£x--xf£. 
Thus the entire business of Voronoi and Delaunay cells extends in a straighforward 

way to the product of spaces. 
Now if M is a Coxeter matrix with indecomposable components M\,...,Mk then the 

kaleidoscope ^C(M) can be indentified naturally with the product 9(j(M\) x • • • x %C(Mk) 
with Tits coneX := X\ x • • • x Xk. As we have just indicated, the results of Section 4, 
Section 5, Section 6 apply to M and are simply the results that one would obtain by 
glueing together the corresponding results for the individual components. 

Now suppose that each indecomposable component is of classical type. Then we may 
form the classical kaleidoscopes %iMt). We define the kaleidoscope %{M) to be the 
product of the spaces X, with simplicial complex 5 \— f\ x • • • x Jk. Now we already 
know that ^ and ft differ only in that there is no facet of ^ corresponding to {0} in 
^7. Thus the facets of Vor(*) and the corresponding dual facets can be read directly from 
the Coxeter diagrams as before with the single change that no component diagram can 
consist entirely of circle-nodes (for then the corresponding Voronoi facet is {0}). 

A simple example will illustrate the point. We consider the classical kaleidoscope %^ 
whose Coxeter graph is 

B^B 

This is a straight line tesselated by reflected images of a line segment. The Voronoi and 
Delaunay facets for the product ^ x %^ are given by the following set of diagrams: 

B ^ B B^4X] G>̂ n B ^ B B ^ B ©^a 0^a (d^u 

Note that 

Q^O B^B B^B 0 ^ o 0^O 0^B &^U Q^O 

do not appear in this. 

8. The Voronoi and Delaunay complexes for root and weight lattices. We now 
apply the results of the previous sections to the problem of determining the Voronoi and 
Delaunay cells and their facets for the root and weight lattices of the simple and semisim-
ple Lie groups. We treat only the indecomposable root lattices and their weight lattices 
(the simple group case). The semisimple case can be handled by using the discussion 
above. 
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The Voronoi and Delaunay cells for indecomposable root lattices have been described 
in detail in [MP], so we will simply recall here how their structure is related to the kalei­
doscope picture. 

Let Q be an indecomposable root lattice and let T denote the Coxeter-Dynkin diagram 
of the underlying root system A. Let f denote the extension of r to an affine or Euclidean 
Coxeter-Dynkin diagram by using the lowest short root. This diagram forms the basic 
diagram for the decoration process. Let f ° denote the diagram obtained from f by re­
versing the arrows and let m,-, / = 0 , . . . ,n, be the marks of f °. For / = 1 , . . . ,n these 
are the coefficients of the highest root of A, the root system dual to A. We have mo := 1. 
These numbers w, are used to describe the fundamental region. 

Corresponding to f there is an affine chamber complex A in a Euclidean space Rn (the 
real span of A) whose Weyl group W is a semidirect product of the finite Weyl group Wfi„ 
of A (isotropy group of 0) and the group Q acting on Rn by translations. If {u\,..., ujn } is 
the corresponding set of fundamental weights then the chamber complex has fundamental 
region F with vertices 0 and {uJi/mt \ i = 1, . . . , n}. Then A is a model of the Euclidean 
kaleidoscope $C(M), where M is the Coxeter matrix with my — 2,3,4,6, oo according 
as the Cartan matrix entries Ay satisfy AyAjt = 0,1,2,3,4. 

The root lattice Q is W(0) and hence, by choosing * = 0, we may determine the 
Voronoi and Delaunay cell complexes directly from the kaleidoscope. We illustrate this 
with the examples of the root lattice of type Bn. 

The Coxeter-Dynkin diagram is 

r : 0 ^ ) OK) 

the extended diagram (by the lowest short root) is 

f : 0 4 0 - 0 OK) 

and the marked dual diagram is 

f°: O K M ) 0 4 0 
1 2 2 2 1 

The fundamental simplex for the chamber geometry associated with Y is the convex 
hull of {0} and {uj\/\9U2/2,...9Ljn-\/2,Ljn/l}. In our notation this set of vertices is 
indicated by 

CKCr-^] C M 
The kaleidoscope with * = 0 chosen is described as 

&4<M) OK) 

In the context of root lattices we prefer to use the Coxeter-Dynkin diagrams (i.e. diagrams 
with arrows that indicate the relative lengths of the basic root vectors) as we have been 
doing here, rather than the straight Coxeter diagrams. As far as classification of facets 
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goes there is no difference between them. Thus the diagram above has the same meaning 
as 

The Voronoi cell is given according to Section 5 as 

with facets and dual facets given by the diagrams 

©40 0 ^ > ^ S=H3 
and Delaunay cells 

G>KM) O—O 
The determination of the Voronoi cells of weight lattices has to be made in a somewhat 

different way. The weight lattice P contains the root lattice Q with index c - [P : Q] 
equal to the order of the centre of the corresponding simply connected simple Lie group. 
The different classes of weights modulo Q are called congruence classes. We know from 
above that the fundamental simplex F for the affine kaleidoscope, used to determine the 
Voronoi complex of Q, has vertices Wi/m^ i — 1 , . . . , n and {0}. It is well known, and 
in any case easy to check case by case, that there are exactly c values of / for which 
mi — 1 (including mo = 1). The vertex {0} and the vertices are uji/mi for which ra, = 1 
occur at the tips of the extended Coxeter-Dynkin diagram and {0, uji/mt | /w/ = 1} is a 
complete set of representatives for the congruence classes. Since the congruence classes 
are fF-invariant and W contains the translations by Q we obtain P as the disjoint union 
of Q = W(0) and the sets W(ui), nit = 1. The first thing then, is that since there is in 
general more than one congruence class, P is not a single JF-orbit, and hence P cannot 
be written as W* for some * G F. Thus we cannot use the kaleidoscope in the usual way 
to obtain the Voronoi cells of P. 

However according to Proposition 7.4, under appropriate conditions we may also 
find Voronoi cells for the holes Q of W*. Thus in our affine kaleidoscope we want 
{0,a;/ I /w/ = 1} to be a full set of representatives for the holes of some set Q — W*, or 
equivalently, we want the tips of the diagram to classify the vertices of the Voronoi cells 
o f Q , 

Using Proposition 7.4 we can see easily that in all cases except one there is exactly 
one solution to this problem. The exception is i^, where there is no description of the 
Voronoi cells of P by Delaunay cells. However, since in this case P = Q we already have 
a description of the Voronoi cells of Q. 

As an illustration consider the weight lattices 2?* of types Bn. The kaleidoscope is 
determined by the Coxeter-Dynkin diagram and values {/w/}: 

040^3 D-o^a 
1 2 2 2 2 1 

(with (n + 1) nodes). The diagrams (where the dots are centrally located) 
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n odd: D 4 0 - 0 D—Q—EHII D - C H O 

determine sets Q, for which the holes are represented by the two tip boxes. Choosing * G 
F equidistant from the two holes lying in F, which is clearly possible by the symmetry 
of the diagram, we find from Proposition 7.4 the Wythoff constructions 

and so on for entire series of weight lattices B*. These diagrams appear in [CS1] for the 
D-type weight lattices. But the weight lattices B*n and/)* are isomorphic. If we go through 
the same procedure for the weight lattice Z)*, we obtain the same Wythoflf polytopes but 
now in terms of D type diagrams. This is also how they appear in [CS2]. The Delaunay 
cells (up to symmetries) are 

«even: \><Hr&\ 0—•—©—CHE B=HH] 

n n 
2 2 

«odd: txH=E 0—O—Ch-Gh—EHx] B=Hx] 
> ^ , ' > v ' 

n-\ n+l 

and the facets are obtained by the usual convention of removing boxes. 
The weight lattices for the remaining cases An,Bn,Cn,Dn,E^ElyF^, and G2 are 

equally easy to work out. We have listed this information in Table 2. 

9. Contact polytopes. Let Q be a discrete set of points in the metric space (X, d). 
For each q G Q we may form the inscribed sphere S(q) of V(q)—the largest sphere 
centered on q that lies entirely inside V(q). The spheres S(q) as q runs through Q then 
produce a sphere packing of the space X. Sphere packings for Euclidean spaces have 
a long and important history and the subject is still replete with unanswered questions 
[CS1], 

Each sphere S(q) touches several neighbouring spheres of the sphere packing, the 
points of contact lying on various faces of V(q). The convex hull of the contact points 
of S(q) form the contactpolytope about q. In the case of lattices or in the case that Q is 
a single orbit under a group of isometries of X, all the contact polytopes are of course 
isometric. 

In the subsequent discussion we will assume that we are in the setting of a gener­
alized kaleidoscope %^ — (X, f) with a FF-invariant metric or in one of the classical 
kaleidoscopes. 

The contact point c determined by the two spheres S(q) and S(p) is the midpoint of 
the line segment [q,p] and hence lies in a face/ of V(q) whose dual facet is precisely the 
edge [q9p]. Thus we need to determine the midpoints of the edges of the Delaunay cells. 
If there is more than one orbit of edges we also need to determine which of the midpoints 
are actually closest to q, for only these can be contact points. 
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Type Root lattice diagram 
with numbering of nodes 

K(0) diagram 
with marks 

Weyl group 
order 

n>2 1 2 n 
'£i-:::-i 

1 1 1 

(n+1)! 

n>2 ©40 0 ) 0 
0 1 n-\ n 

Q ^ E [x^x] 
1 2 2 1 

2"n! 

^ « 5 

w > 3 

0® 

0--6-• • • -040 
1 2 n-\ n 

[x]—[x] 1^40 
1 2 2 2 

2"«! 

D„, 
n>4 

0© O B - 1 

O-O 64O 
1 2 n-2 n 

i n § 1 

S—® 0—0 
1 2 2 1 

2"-'«! 

E6 

6<O-©0 

1 2 3 4 5 

2|xl-ni 
[EHE—S—S-S 
1 2 3 2 1 

27345 

E1 0 - < > < > - O - O - O - O D—[HHHHxH3—IHHH] 2103457 
0 1 2 3 4 5 6 1 2 3 4 3 2 1 

8O [x]3 

Es 0 - < > - O - O - O - O < > - O DHEHEHEHEh-SniHEl 21435527 
0 1 2 3 4 5 6 7 1 2 3 4 5 6 4 2 

1 2 3 4 0 2 4 3 2 1 

F4 O - C ^ O - O - G [xHxt)#-{xK] 2732 

G 2 0 ^ 0 - © i x ^ a - n 223 
1 2 0 3 2 1 

TABLE 2. LATTICE DIAGRAMS WITH NUMBERING OF NODES, DECORATED DIAGRAMS OF THE VORONOI CELL 

V(0) WITH MARKS, AND ORDERS OF THE WEYL GROUP. 

PROPOSITION 9.1. The contact poly tope around the point q of the generalized kalei­
doscope %^ is the convex hull of those midpoints of the edges of the Delaunay cells that 
are closest to q. 

Now we consider the indecomposable root lattice Q = W(0) in the classical Euclidean 
kaleidoscope. There is only one orbit of edges for the Delaunay cells and the midpoint 
of the edges is represented by the midpoint of the edge defined by 0 and the highest short 
root £y, ie. by £5/2. See also [MPI] for more explanation of this. The contact polytope 

https://doi.org/10.4153/CJM-1995-031-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-031-2


VORONOI DOMAINS AND DUAL CELLS 601 

An 

Bn 

n even 

Bn 
«odd 

Cn 

Dn 
n even 

«odd 

F4 

G2 

Kaleidoscope 

•>—© © — © 
l l l l l 

040 © c^o 
1 2 2 2 1 

O£0 
1 2 2 2 2 1 

1 2 2 
—of© 

2 2 

1 2 2 1 

2 2 2 1 
o—ô ®—© 6—0 
1 2 2 

0-0—©—o—o 
1 2 3 2 1 

1 2 3 4 3 2 1 

2 4 3 2 1 

©40—o 
3 2 1 

TABLE 3A. DIAGRAMS OF THE KALEIDOSCOPES WITH MARKS FOR THE WEIGHT LATTICES Ant Bn, C„, D„, E6, 

E-], i*4, G2. 

around 0 is the convex hull of the orbit of this point under Stab w (0) and hence is a Wythoff 
polytope. The extension node of the affine diagram gives the necessary information about 
which facet of the fundamental region the point ^s/2 lies. This leads at once to the results 
in the first part of Table 4. 
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Voronoi cell Delaunay cell 

An 0 - 0 G^-0 3 - H - H H-H 

cn o-o 0-040 

Dn 
n even 

A, 
« odd 

O-O 

O - O - - H 

# 6 

En 

[xHHl—H—SHE] 

F4 e^c^o-o 

G2 0^O 

TABLE 3B. DIAGRAMS OF THE VORONOI AND DELAUNAY CELLS FOR THE WEIGHT LATTICES An,Bn, Cn, Dn, E6, 

E-j, F/\, Gi-

The determination of the contact polytopes for the weight lattices is slightly more 
complicated because there are several orbits of midpoints to deal with and they are not 
in general equally close to the origin. We have to determine these distances in order to 
select the correct orbit(s). The illustration of the argument in the cases of Ej and A* 
will serve to show what is involved. The tables of 'quadratic form matrices' in [BMP] 
are useful for looking up the appropriate square lengths. The results for all the weight 
lattices are shown in the second part of Table 4. 

The Voronoi cell of the weight lattice Ej together with its corresponding dual (a vertex 
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of the Delaunay cell) is given by the diagram 

0 1 2 3 4 5 6 

Here the dual is a single point that is the centre of the Voronoi cell and is the vertex 0 of 
the fundamental region F. The edges of the Delaunay cells are of two types derived from 
the diagrams 

and 

The midpoints of these edges are u\ and u^/l. Their square lengths [BMP] are respec­
tively {(JJ\,UJ\) — 2 and {uj^jl^uj^jT) = 3/8 respectively. Thus the contact points are 
given by the orbit under W(Ej) of LOS/2: 

In the case of the weight lattice A* there are two orbits of edges, 

and its mirror image that are equivalent under the full symmetry group of the lattice. 
These lead to two orbits of contact points determined by u\/2 and u„/2. Each orbit 
gives rise to a Wythoff polytope: 

and its mirror image. 
The contact polytope is the convex hull of these two simplices that are in fact oppo­

sitely opposed (— 1 interchanges the two orbits). In the notation of Conway and Sloane 
this is indicated as 

where the stars indicate that the polytope is the convex hull of the union of the Wythoff 
orbits determined by the individually starred nodes. 

They call it a diplo-simplex. Diplo-polytopes also occur in the case of E^. 
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An 0 - 0 O - 0 

Bn 0 - 0 C^O Bl 0 - O O^O 

C„ O - 0 0 4 0 Q 0 - 0 0 £ 0 

£>„ 0 ^ 0 - 0 Ô-O Dn 0 - 0 ^ 0 O-O 

O-O-^Ô-O-O E6 

Ei 

Es 

G2 

0 - 0 ^ 0 - 0 

El 

F*A O-C^O-0 

0 ^ 0 

TABLE 4. CONTACT POLYTOPES FOR THE ROOT LATTICES AND THEIR DUALS. 
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