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On L1-Convergence of Fourier Series under
the MVBV Condition

Dan Sheng Yu, Ping Zhou, and Song Ping Zhou

Abstract. Let f ∈ L2π be a real-valued even function with its Fourier series a0
2

+
P

∞

n=1 an cos nx,
and let Sn( f , x), n ≥ 1, be the n-th partial sum of the Fourier series. It is well known that if the

nonnegative sequence {an} is decreasing and limn→∞ an = 0, then

lim
n→∞

‖ f − Sn( f )‖L = 0 if and only if lim
n→∞

an log n = 0.

We weaken the monotone condition in this classical result to the so-called mean value bounded varia-

tion (MVBV) condition. The generalization of the above classical result in real-valued function space

is presented as a special case of the main result in this paper, which gives the L1-convergence of a func-

tion f ∈ L2π in complex space. We also give results on L1-approximation of a function f ∈ L2π under

the MVBV condition.

1 Introduction

Let L2π be the space of all complex-valued integrable functions f (x) of period 2π
equipped with the norm ‖ f ‖L =

∫ π

−π | f (x)|dx. Denote the Fourier series of f ∈ L2π

by
∑∞

k=−∞ f̂ (k)eikx,and its partial sum Sn( f , x) by
∑n

k=−n f̂ (k)eikx. When f (x) ∈ L2π

is a real-valued even function, then the Fourier series of f has the form

(1.1)
a0

2
+

∞
∑

k=1

ak cos kx,

correspondingly, its partial sum Sn( f , x) is a0

2
+

∑n
k=1 ak cos kx.

The following two classical convergence results can be found in many monographs

(see [1] and [9], for example).

Result One: If a nonnegative sequence {bn}∞n=1 is decreasing and limn→∞ bn = 0,

then the series
∑∞

n=1 bn sin nx converges uniformly if and only if limn→∞ nbn = 0.
Result Two: Let f ∈ L2π be an even function and (1.1) be its Fourier series. If the

sequence {an}∞n=0 is nonnegative, decreasing, and limn→∞ an = 0, then

lim
n→∞

‖ f − Sn( f )‖L = 0 if and only if lim
n→∞

an log n = 0.
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These results have been generalized by weakening the monotone conditions of the

coefficient sequences. They have also been generalized to the complex valued func-

tion spaces. The most recent generalizations of Result One can be found in [8] where

the monotonic condition is finally weakened to the MVBV condition (Mean Value

Bounded Variation condition, see Corollary 2.8 for the definition), and it is proved

to be the weakest possible condition we can have to replace the monotone condition

in Result One. The process of generalizing Result Two can be found in many papers,

for example, see [2–7]. In this paper, we will weaken the monotone condition in

Result Two (and all its later generalized conditions, see [8] for the relations between

these conditions), to the MVBV condition in the complex-valued function spaces

(see Definition 2.1) in Theorem 2.2, and give the generalization in real valued func-

tion spaces as a special case of Theorem 2.2 in Corollary 2.8. Like the important role

that the MVBV condition plays in generalizing Result One, although we are not able

to prove it here, we propose that Theorem 2.2 is the ultimate generalization of Result

Two, i.e., the MVBV condition is also the weakest possible condition we can have to

replace the monotone condition in Result Two. We also discuss, under the MVBV

condition, the L1-approximation rate of a function f ∈ L2π in the last section.

Throughout this paper, we always use C(x) to indicate a positive constant depend-

ing upon x only, and use C to indicate an absolute positive constant. They may have

different values in different occurrences.

2 L1 Convergence

In this section, we first give the definition of the MVBV condition, or the class

MVBVS, and then prove our main result on L1-convergence of the Fourier series

of a complex-valued function f (x) ∈ L2π whose coefficients form a sequence in the

class MVBVS.

Definition 2.1 Let c := {cn}∞n=0 be a sequence of complex numbers satisfying cn ∈
K(θ1) := {z : | arg z| ≤ θ1} for some θ1 ∈ [0, π/2) and all n = 0, 1, 2, . . . . If there is

a number λ ≥ 2 such that

2m
∑

k=m

|∆ck| :=

2m
∑

k=m

|ck+1 − ck| ≤ C(c)
1

m

[λm]
∑

k=[λ−1m]

|ck|

holds for all m = 1, 2, . . . , then we say that the sequence c is a Mean Value Bounded

Variation Sequence, i.e., c ∈ MVBVS, in the complex sense, or the sequence c satisfies

the MVBV condition.

Our main result is the following theorem.

Theorem 2.2 Let f (x) ∈ L2π be a complex-valued function. If the Fourier coefficients

f̂ (n) of f satisfy that { f̂ (n)}+∞
n=0 ∈ MVBVS and

(2.1) lim
µ→1+

lim sup
n→∞

[µn]
∑

k=n

|∆ f̂ (k) − ∆ f̂ (−k)| log k = 0,
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where

∆ f̂ (k) = f̂ (k + 1) − f̂ (k), ∆ f̂ (−k) = f̂ (−k − 1) − f̂ (−k), k ≥ 0.

Then limn→∞ ‖ f − Sn( f )‖L = 0 if and only if limn→∞ f̂ (n) log |n| = 0.

In order to prove Theorem 2.2, we present the following four lemmas.

Lemma 2.3 Let {cn} ∈ MVBVS, then for any given 1 < µ < 2, we have

[µn]
∑

k=n

|∆ck| log k = O
(

max
[λ−1n]≤k≤[λn]

|ck| log k
)

, n → ∞,

where the implicit constant depends only on the sequence {cn} and λ.

For sufficiently large n, the lemma can be derived directly from the conditions that

1 < µ < 2 and {cn} ∈ MVBVS .

Lemma 2.4 Let { f̂ (n)} ∈ K(θ0) for some θ0 ∈ [0, π/2), then

n
∑

k=1

1

k

∣

∣ f̂ (n + k)
∣

∣ = O
(

‖ f − Sn( f )‖L

)

for all n = 1, 2, . . . , where the implicit constant depends only on θ0.

Proof Write

φ±n(x) :=

n
∑

k=1

1

k

(

ei(k∓n)x − e−i(k±n)x
)

.

It follows from a well-known inequality (e.g., see [6, Theorem 2.5])

sup
n≥1

∣

∣

∣

n
∑

k=1

sin kx

k

∣

∣

∣
≤ 3

√
π

that |φ±n(x)| ≤ 6
√
π. Hence

1

6
√
π

∣

∣

∣

∣

∫ π

−π

( f (x) − Sn( f , x))φ±n(x)dx

∣

∣

∣

∣

≤ ‖ f − Sn( f )‖L,

and therefore
∣

∣

∣

n
∑

k=1

1

k
f̂ (n + k)

∣

∣

∣
= O(‖ f − Sn( f )‖L).

Now as { f̂ (n)} ∈ K(θ0) for some θ0 ∈ [0, π/2) and for all n ≥ 1, we have

n
∑

k=1

1

k

∣

∣ f̂ (n + k)
∣

∣ ≤ C(θ0)

n
∑

k=1

1

k
Re f̂ (n + k) ≤ C(θ0)

∣

∣

∣

n
∑

k=1

1

k
f̂ (n + k)

∣

∣

∣

= O(‖ f − Sn( f )‖L).
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Lemma 2.5 ([5]) Write

Dk(x) :=
sin((2k + 1)x/2)

2 sin(x/2)
,

D∗
k (x) :=















cos(x/2) − cos((2k + 1)x/2)

2 sin(x/2)
|x| ≤ 1/n,

− cos((2k + 1)x/2)

2 sin(x/2)
1/n ≤ |x| ≤ π,

Ek(x) := Dk(x) + iD∗
k (x).

Then for k = n, n + 1, . . . , 2n, we have

Ek(±x) − Ek−1(±x) = e±ikx,(2.2)

Ek(x) + Ek(−x) = 2Dk(x),(2.3)

‖Ek‖L + ‖Dk‖L = O(log k).(2.4)

Lemma 2.6 Let { f̂ (n)} ∈ MVBVS. If limn→∞ ‖ f − Sn( f )‖L = 0, then

lim
n→∞

f̂ (n) log n = 0.

Proof By the definition of MVBVS, we derive that for k = n, n + 1, . . . , 2n,

| f̂ (2n)| ≤
2n−1
∑

j=k

|∆ f̂ ( j)| + | f̂ (k)| ≤
2k

∑

j=k

|∆ f̂ ( j)| + | f̂ (k)|

= O
( 1

n

[λk]
∑

j=[λ−1k]

| f̂ ( j)|
)

+ | f̂ (k)|.

Therefore, it follows that from the fact that

log n ≤ C (λ)

[(λ+1)−2n]
∑

j=[λ]+1

1

j
,

we have

| f̂ (2n)| log n ≤ C(λ)| f̂ (2n)|
[(λ+1)−2n]

∑

j=[λ]+1

1

j

≤ C(λ)

[(λ+1)−2n]
∑

j=[λ]+1

1

j

( 1

n

[λ(n+ j)]
∑

k=[λ−1(n+ j)]

| f̂ (k)| + | f̂ (n + j)|
)

=
C(λ)

n

[(λ+1)−2n]
∑

j=[λ]+1

1

j

[λ(n+ j)]
∑

k=[λ−1(n+ j)]

| f̂ (k)| + C(λ)

[(λ+1)−2n]
∑

j=1

1

j
| f̂ (n + j)|

=: I1 + I2.

(2.5)
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By applying Lemma 2.4, we see that

(2.6) I2 ≤ C(λ, θ0)‖ f − Sn( f )‖L.

We calculate I1 as follows (note that we may add more repeated terms in the right

hand side of every inequality below):

I1 ≤ C(λ)

n

[(λ+1)−2n]
∑

j=[λ]+1

1

j

[λn]+[λ j]+1
∑

k=[λ−1n]+[λ−1 j]

| f̂ (k)|

≤ C(λ)

n

[(λ+1)−2n]
∑

j=[λ]+1

[(λ+1)2]
∑

m=1

[λn]+1
∑

k=[λ−1n]

∣

∣

∣
f̂
(

m[λ−1 j] + k
)∣

∣

∣

j

≤ C(λ)

n

[(λ+1)2]
∑

m=1

[(λ+1)−2n]
∑

j=[λ]+1

[λn]−[λ−1n]+1
∑

k=0

∣

∣

∣
f̂
(

[λ−1n] + m[λ−1 j] + k
)∣

∣

∣

j

≤ C(λ)

n

[(λ+1)2]
∑

m=1

[λn]−[λ−1n]+1
∑

k=0

m[(λ(λ+1)2)−1n]
∑

j=1

∣

∣

∣
f̂
(

[λ−1n] + k + j
)∣

∣

∣

j

≤ C(λ)

n

[(λ+1)2]
∑

m=1

[λn]−[λ−1n]+1
∑

k=0

∥

∥

∥
f − S[λ−1n]+k( f )

∥

∥

∥

L
(by Lemma 2.4)

≤ C(λ)

n

[λn]−[λ−1n]+1
∑

k=0

∥

∥

∥
f − S[λ−1n]+k( f )

∥

∥

∥

L
.

(2.7)

Finally, by combining (2.5)–(2.7) with the condition limn→∞ ‖ f − Sn( f )‖L = 0, we

get limn→∞ f̂ (2n) log n = 0. A similar argument shows limn→∞ | f̂ (2n + 1)| log n =

0. This proves Lemma 2.6.

We now come to the proof of Theorem 2.2.

Proof of Theorem 2.2 Sufficiency. Given ε > 0, by (2.1), there is a 1 < µ < 2 such

that

(2.8)

[µn]
∑

k=n

∣

∣

∣
∆ f̂ (k) − ∆ f̂ (−k)

∣

∣

∣
log k ≤ ε

holds for sufficiently large n > 0. Let

τµn,n( f , x) :=
1

[µn] − n

[µn]−1
∑

k=n

Sk( f , x)
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be the Vallée Poussin sum of order n of f . Then we have

(2.9) lim
n→∞

‖ f − τµn,n( f )‖L = 0.

By (2.2), (2.3), and applying Abel transformation, we get

τµn,n( f , x) − Sn( f , x)

=
1

[µn] − n

[µn]
∑

k=n+1

([µn] − k)
(

f̂ (k)eikx + f̂ (−k)e−ikx
)

=
1

[µn] − n

[µn]
∑

k=n

([µn] − k)
(

2∆ f̂ (k)Dk(x) − (∆ f̂ (k) − ∆ f̂ (−k))Ek(−x)
)

+
1

[µn] − n

[µn]−1
∑

k=n

(

f̂ (k + 1)Ek(x) − f̂ (−k − 1)Ek(−x)
)

−
(

f̂ (n)En(x) + f̂ (−n)En(−x)
)

.

(2.10)

Thus, by (2.4) and Lemma 2.3, we have

‖ f − Sn( f )‖L ≤ ‖ f − τµn,n( f )‖L + ‖τµn,n( f ) − Sn( f )‖L

= ‖ f − τµn,n( f )‖L + O
(

[µn]
∑

k=n

∣

∣∆ f̂ (k)
∣

∣ log k
)

+ O
(

[µn]
∑

k=n

∣

∣

∣
∆ f̂ (k) − ∆ f̂ (−k)

∣

∣

∣
log k

)

+ O
(

max
n≤|k|≤[µn]

| f̂ (k)| log |k|
)

= ‖ f − τµn,n( f )‖L + O
(

max
[λ−1n]≤|k|≤[λn]

| f̂ (k)| log |k|
)

+ O
(

[µn]
∑

k=n

∣

∣∆ f̂ (k) − ∆ f̂ (−k)
∣

∣ log k
)

,

(2.11)

then lim supn→∞ ‖ f − Sn( f )‖L ≤ ε follows from (2.8), (2.9), and the condition that

limn→∞ f̂ (n) log |n| = 0. This implies that limn→∞ ‖ f − Sn( f )‖L = 0.

Necessity. Since { f̂ (n)} ∈ MVBVS, by applying Lemma 2.6, we have

(2.12) lim
n→∞

f̂ (n) log n = 0.
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In order to prove limn→−∞ f̂ (n) log |n| = 0, by applying (2.10) and (2.4), we see that

for any given µ, 1 < µ < 2,

‖ f̂ (−n)En(−x)‖L ≤ ‖τµn,n( f ) − Sn( f )‖L

+
1

[µn] − n

∥

∥

∥

[µn]−1
∑

k=n

f̂ (−k − 1)Ek(−x)
∥

∥

∥

L

+ O
(

[µn]
∑

k=n

(

|∆ f̂ (k) − ∆ f̂ (−k)| log k + |∆ f̂ (k)| log k
))

+ O
(

max
n≤k≤[µn]

| f̂ (k)| log k
)

.(2.13)

It is not difficult to see that

∥

∥

∥

[µn]−1
∑

k=n

f̂ (−k − 1)Ek(−x)
∥

∥

∥

L
= I + O

(

n max
n<k≤[µn]

| f̂ (−k)|
)

,

where

I :=

∫

n−1≤|x|≤π

∣

∣

∣

1

2 sin(x/2)

[µn]−1
∑

k=n

f̂ (−k − 1)e
i(2k+1)x

2

∣

∣

∣
dx.

Since the trigonometric function system is orthonormal, we have

I ≤
(

∫

n−1≤|x|≤π

∣

∣

∣

[µn]−1
∑

k=n

f̂ (−k − 1)e
i(2k+1)x

2

∣

∣

∣

2

dx
) 1/2

×
(

∫ π

n−1

1

sin2(x/2)
dx

) 1/2

= O
(√

n
(

[µn]
∑

k=n+1

| f̂ (−k)|2
) 1/2)

= O
(

n max
n≤k≤[µn]

| f̂ (−k)|
)

,

which yields that

(2.14)
1

[µn] − n

∥

∥

∥

[µn]−1
∑

k=n

f̂ (−k − 1)Ek(−x)
∥

∥

∥

L
= O

(

max
n<k≤[µn]

| f̂ (−k)|
)

.

By combining (2.9) and (2.12)–(2.14) with Lemma 2.3 and using the condition

limn→∞ ‖ f − Sn( f )‖L = 0 and the fact (since f ∈ L2π) that limn→∞ f̂ (−n) = 0, we

have for n → ∞

‖ f̂ (−n)En(−x)‖L ≤
[µn]
∑

k=n

|∆ f̂ (k) − ∆ f̂ (−k)| log k + ‖τµn,n( f ) − Sn( f )‖L

+ O
(

max
[λ−1n]≤k≤[λn]

| f̂ (k)| log k
)

+ O
(

max
n<k≤[µn]

| f̂ (−k)|
)

=

[µn]
∑

k=n

|∆ f̂ (k) − ∆ f̂ (−k)| log k + o(1).

(2.15)
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On the other hand, we have

(2.16) ‖ f̂ (−n)En(−x)‖L ≥ | f̂ (−n)|‖Dn(x)‖L ≥ 1

π
| f̂ (−n)| log n.

Hence, from (2.15), (2.16), and (2.8), we have that

| f̂ (−n)| log n ≤ C

[µn]
∑

k=n

|∆ f̂ (k) − ∆ f̂ (−k)| log k ≤ ε

holds for sufficiently large n, which, together with (2.12), completes the proof of

necessity.

In view of Lemma 2.3, we can see that condition (2.1) in Theorem 2.2 can be

replaced by the following condition

lim
µ→1+

lim sup
n→∞

[µn]
∑

k=n

|∆ f̂ (−k)| log k = 0,

and the proof of the result is easier. Therefore we have a corollary to Theorem 2.2.

Corollary 2.7 Let f (x) ∈ L2π be a complex valued function. If both { f̂ (n)}+∞
n=0 ∈

MVBVS and { f̂ (−n)}+∞
n=0 ∈ MVBVS, then

lim
n→∞

‖ f − Sn( f )‖L = 0 if and only if lim
n→∞

f̂ (n) log |n| = 0.

If f (x) is a real-valued function, then its Fourier coefficients f̂ (n) and f̂ (−n) are a

pair of conjugate complex numbers. Consequently, { f̂ (n)}+∞
n=0 ∈ MVBVS if and only

if { f̂ (−n)}+∞
n=0 ∈ MVBVS. Thus, we have the following generalization of the classical

result (cf. Result Two in the introduction).

Corollary 2.8 Let f (x) ∈ L2π be a real valued even function and (1.1) its Fourier

series. If A = {an}+∞
n=0 ∈ MVBVS in the real sense, i.e., {an} is a nonnegative sequence,

and there is a number λ ≥ 2 such that

2m
∑

k=m

|∆ak| ≤ C(A)
1

m

[λm]
∑

k=[λ−1m]

ak

for all n = 1, 2, . . . , then

lim
n→∞

‖ f − Sn( f )‖L = 0 if and only if lim
n→∞

an log n = 0.
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3 L1 Approximation

Let En( f )L be the best approximation of a complex valued function f ∈ L2π by

trigonometric polynomials of degree n in L1 norm, that is,

En( f )L := inf
ck

∥

∥

∥

∥

∥

f −
n

∑

k=−n

ckeikx

∥

∥

∥

∥

∥

L

.

We establish the corresponding L1-approximation theorem in a similar way to

Theorem 2.2.

Theorem 3.1 Let f (x) ∈ L2π be a complex valued function and {ψn} a decreasing

sequence tending to zero with

(3.1) ψn ∼ ψ2n,

i.e., there exist positive constants C1 and C2, such that C1ψn ≤ ψ2n ≤ C2ψn. If both

{ f̂ (n)}+∞
n=0 ∈ MVBVS and { f̂ (−n)}+∞

n=0 ∈ MVBVS, then

(3.2) ‖ f − Sn( f )‖L = O(ψn)

if and only if

(3.3) En( f )L = O(ψn) and f̂ (n) log |n| = O(ψ|n|).

Proof Under the conditions of Theorem 3.1, we see from (2.11) in the proof of The-

orem 2.2 that

‖ f − Sn( f )‖L ≤ ‖ f − τµn,n( f )‖L + O
(

max
[λ−1n]≤|k|≤[λn]

| f̂ (k)| log |k|
)

≤ C(µ)En( f ) + O
(

max
[λ−1n]≤|k|≤[λn]

| f̂ (k)| log |k|
)

,

thus (3.2) holds if (3.1) and (3.3) hold. Now if (3.2) holds, then En( f )L = O(ψn) and

‖ f −τµn,n( f )‖L = O(ψn). From (2.5)–(2.7) in the proof of Lemma 2.6 and condition

(3.1), we have

| f̂ (n)| log n ≤ C(λ)

n

[λn]−[λ−1n]+1
∑

j=1

∥

∥ f − S[λ−1n]+ j( f )
∥

∥

L
+ C(λ)‖ f − Sn( f )‖L

= O(ψn).

Since { f̂ (−n)}+∞
n=0 ∈ MVBVS, we also have | f̂ (−n)| log n = O(ψn) by a similar argu-

ment to (3). This completes the proof of Theorem 3.1.
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In particular, if we take

ψn :=
1

(n + 1)r
ω
(

f (r),
1

n + 1

)

L
,

where r is a positive integer, and ω( f , t)L is the modulus of continuity of f in L1

norm, i.e.,

ω( f , t)L := max
0≤h≤t

‖ f (x + h) − f (x)‖L.

By Theorem 3.1 and the Jackson theorem (e.g. see [6] or [9]) in L1-space, we imme-

diately have the following.

Corollary 3.2 Let f (x) ∈ L2π be a complex valued function. If both { f̂ (n)}+∞
n=0 ∈

MVBVS and { f̂ (−n)}+∞
n=0 ∈ MVBVS hold, then

‖ f − Sn( f )‖L = O
( 1

(n + 1)r
ω
(

f (r),
1

n + 1

)

L

)

if and only if

f̂ (n) log |n| = O
( 1

(n + 1)r
ω
(

f (r),
1

n + 1

)

L

)

.

This corollary generalizes the corresponding results in [5] and [2].
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