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Active control of the flow past a circular cylinder
using online dynamic mode decomposition
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This study explores the implementation of an online control strategy based on dynamic
mode decomposition in the context of flow control. The investigation is conducted mainly
with a fixed Reynolds number of Re = 100, focusing on the flow past a circular cylinder
constrained between two walls to mitigate vortex shedding. The control approach involves
the activation of two synthetic jets on the cylinder through blowing and suction. Velocity
fluctuations in the wake, specifically in the x-direction, are harnessed to ascertain the
mass flow rate of the jets using the linear quadratic regulator and online dynamic mode
decomposition. The study systematically assesses the control performance across various
configurations, including different values of the input penalty factor R, varying numbers
of probes and distinct probe arrangement methods. The synthetic jets prove effective in
stabilising the separation bubble, and their interaction with the unsteady wake leads to
a notable reduction in drag force, its fluctuations and the amplitude of the lift force.
Specifically, the mean and standard deviation of the drag coefficient witness reductions
of 7.44 % and 96.67 %, respectively, and the standard deviation of the lift coefficient
experiences an impressive reduction of 85.18 %. The robustness of the proposed control
method has also been tested on two more complicated cases, involving unsteady incoming
flows with multiple frequency components. Comparatively, the methodology employed in
this paper yields results akin to those obtained through deep reinforcement learning in
terms of control effectiveness. However, a noteworthy advantage lies in the substantial
reduction of computational resource consumption, highlighting the efficiency of the
proposed approach.

Key words: drag reduction, vortex shedding, wakes

1. Introduction

The rapidly increasing demand for energy consumption and the imperative need to reduce
greenhouse gas emissions have spurred significant efforts in the development of drag
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reduction technology, particularly in recent decades. For the flow past around a bluff
object, an additional objective is to diminish the amplitude of force fluctuations, given
its pronounced effect on the fatigue loading, lifespan and operation safety of engineering
structures (Franzini et al. 2009). Research since the late 1970s has explored passive flow
control methods, including techniques such as riblets (Walsh 1983), splitter plates (Kwon
& Choi 1996; Mittal 2003), membrane attachments (Deng, Xu & Ye 2022; Mao, Liu &
Sung 2023) or adding other auxiliary devices, as reviewed by Choi, Jeon & Kim (2008).
These passive methods, while easy to implement, suffer from limitations in controllability
and practicability (D’Alessandro et al. 2019; Chen et al. 2022), leading to increased
exploration of active flow control methods.

Active flow control involves manipulating turbulent coherent structures and disrupting
the formation of turbulent circulation by using actuators to induce small disturbances
(Zhang et al. 2022). The primary goal is to modify the flow state to enhance performance,
whether by reducing drag, increasing lift or achieving other desired outcomes. Active
control can be classified into open-loop and closed-loop strategies based on whether
control parameters are adjusted according to the flow field’s state. Numerous open-loop
control methods have demonstrated superior control capabilities (Delaunay & Kaiktsis
2001; Chen, Li & Hu 2014; Feng, Cui & Liu 2019; Greco et al. 2020). However, the
open-loop approach necessitates extensive exploration of control parameter space by
researchers. Consequently, the conclusions drawn may struggle to be generalised across
different environments. Closed-loop control, on the other hand, presents a solution to
this challenge. Closed-loop control systems are designed to operate with minimal energy
input from actuators, necessitating the use of algorithms and feedback control loops. These
control systems continuously monitor the flow state, adjusting actuator inputs accordingly.
Despite extensive parametric studies to identify effective control methods for specific flow
circumstances (Bai et al. 2014; Barros et al. 2016; Xie et al. 2022), few active flow control
strategies have transitioned from laboratory prototypes to real-world applications (Kibens
et al. 1999; Nagib et al. 2004; Greska et al. 2005; Shaw, Smith & Saddoughi 2006). This
highlights the challenges associated with designing effective active flow control strategies
(Cattafesta & Sheplak 2011), leading to a significant focus on simpler control methods,
such as harmonic or constant control input.

Analytical and semi-analytical techniques, based on an analysis of flow equations,
have performed well in specific uncontrolled base states. Barbagallo, Sipp & Schmid
(2009) used a shift-invert Arnoldi technique to extract global modes from the flow,
evaluating their effectiveness in representing input–output behaviour. Barbagallo et al.
(2012) combined the linear quadratic Gaussian control method and proper orthogonal
decomposition to control flow over a rounded backwards-facing step. Although these
techniques offer good control effects with low computational costs, they are often sensitive
to numerical instability and become invalid if the system deviates significantly from its
uncontrolled base state.

The surge in hardware capabilities and advancements in algorithms has propelled
data-driven control methods into the spotlight, particularly those involving machine
learning. These methods appear resilient to the challenges posed by data instability, and
researchers have made notable strides in this direction. Gautier et al. (2015) used hash
functions to construct discrete embedding spaces and leveraged reinforcement learning
(RL) to formulate a control strategy. Demonstrating efficacy in both a Lorenz (1963)
dynamical system and cylinder flow drag control, this method showcased promising
outcomes. Similarly, Rabault et al. (2019) utilised an artificial neural network trained
through a deep reinforcement learning (DRL) agent for active flow control, achieving an
approximately 8 % reduction in drag force. Machine learning has achieved a remarkable
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number of achievements in flow control recently, e.g. Wang et al. (2023c) used migration
learning to control blunt body wake flows at high Reynolds numbers. Very few probes
were tested in the investigation by Paris, Beneddine & Dandois (2021), with pronounced
control effects achieved. While machine learning exhibits considerable promise in active
flow control, most existing methods often entail prolonged learning periods relative to
fluid dynamic time scales. These challenges pose significant hurdles for active closed-loop
control systems to respond effectively within comparable time scales to the fluid system.

As a technique for factorisation and dimensionality reduction applied to data sequences,
dynamic mode decomposition (DMD) has gained significant prominence over the past
decade. Its utility extends to elucidating complex fluid behaviours across diverse domains,
including separation flow (Wang et al. 2023b), combustion (Yang et al. 2023), shear flows
(Nguyen et al. 2023) and cavitation (Wu et al. 2023), among others. The commendable
efficacy of DMD has spurred extensive research efforts focused on the development of
novel DMD variants. Certain variants have been designed with the objective of enhancing
accuracy, thereby approximating the true infinite Koopman operator through finite DMD
variants (Schmid 2021). For instance, Tu et al. (2014) employed more sophisticated
observables comprising a range of nonlinear functions derived from measurements. The
outcome of these modifications is denoted as extended dynamic mode decomposition
(EDMD) (Williams, Kevrekidis & Rowley 2015).

Other variants aim to render DMD less susceptible to noise in the data. One such
approach involves preprocessing the datasets before decomposition, offering a convenient
and straightforward means of mitigating the influence of noise or rebalancing datasets
characterised by markedly different amplitudes (Schmid 2021). When dealing with
substantial datasets, adjustments must be made to enhance the efficiency of DMD.
For instance, the application of QR decomposition facilitates parallelisation in DMD
computations (Demmel et al. 2012).

Recently, the application of DMD has expanded beyond its original use in quantitative
flow analysis. One significant application involves extending DMD-based low-dimensional
models to flow control. dynamic mode decomposition with control (DMDc) (Rosenfeld &
Kamalapurkar 2016) leverages the advantages of DMD while introducing the innovative
capability to distinguish between underlying dynamics and the effects of actuation,
resulting in accurate input–output models. DMDc has found widespread use across various
fields in recent years.

For instance, Wang et al. (2023a) utilised DMDc to construct an aeroelastic rigid–elastic
reduced-order model, achieving maximum cumulative errors in reduced-order model
solutions consistently below 2 %. In another study, Deem et al. (2020) employed DMDc
and online DMD to extract dynamical characteristics of separated flow subjected to
forcing, utilising linear quadratic regulator (LQR)-controlled harmonic as the actuator
input. This approach demonstrated a significant reduction in mean separation bubble
height across the tested Reynolds numbers. A crucial application of DMD is its real-time
computation. Zhang et al. (2019) developed efficient methods for computing online DMD
and windowed DMD, offering effective means of updating the approximation of a system’s
dynamics as new data become available.

In this study, we employ DMDc and online DMD to address an active drag reduction
problem. In contrast to the control strategy proposed by Deem et al. (2020) for suppressing
separation bubbles, our approach deviates by eschewing harmonic parameters as control
outputs. Instead, we implement control over the mass flow rate of the two synthetic jets
positioned on the sides of a cylinder submerged in a constant flow directly through LQR,
DMDc and online DMD.
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Figure 1. Schematic of the computational set-up. The height of the computational domain is denoted as H =
4.1 and the length is denoted as L = 22.0. The origin of the Cartesian coordinate system is at the centre of the
cylinder.

Notably, our methodology utilises a mere 32 velocity information probes, as opposed
to directly manipulating lift or drag coefficients. This achieves a comparable reduction
effect in the mean drag coefficient as observed by Rabault et al. (2019), with the added
benefit of superior mitigation of drag coefficient fluctuations, and less calculation cost.
Compared with the latest research (Paris et al. 2021; Wang et al. 2024), although the
reduction rate of the average drag coefficient is slightly lower, this method still achieves
a similar suppression effect on the fluctuation of the drag coefficient while maintaining
relative low computational cost. Furthermore, we validate its robustness in handling
complex scenarios, including unsteady incoming flows characterised by multi-frequency
components and sudden changes.

2. Methodology

2.1. Problem description
We utilise the flow past a two-dimensional circular cylinder, as described by Schäfer et al.
(1996), Chen, Pritchard & Tavener (1995), Rabault et al. (2019) and Li & Zhang (2022),
as illustrated in figure 1, in which the cylinder flow is confined with walls on the upper
and lower boundaries. All quantities in the following discussion are non-dimensionalised,
with a Cartesian coordinate system where x denotes the streamwise direction. The cylinder
is positioned at the origin, with a non-dimensional diameter D = 1. The computational
domain is with a height H = 4.1 and a length L = 22.0. The inlet boundary is located at
the left of the domain (x = −2), with a prescribed parabolic profile (Tezduyar et al. 1996)
for the streamwise velocity, expressed as

u( y) = 6(H/2 − y)(H/2 + y)/H2. (2.1)

A no-slip boundary condition is imposed on the upper and bottom boundaries, as well
as the surface of the cylinder, except for the jet areas. The pressure at the outlet is kept
as a constant Pout = 0. The Reynolds number Re = ŪD/ν is based on the mean velocity
magnitude of the incoming flow and the cylinder diameter. A non-dimensional, constant
time step dt = 0.25 × 10−3 is employed.

The drag force Fd and lift force Fl are calculated by integrating pressure and viscous
force along the cylinder’s surface, with their coefficients Cd and Cl normalised by the
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mean velocity of the inlet, density and cylinder diameter:

Cd = 2Fd

ρŪ2D
, (2.2)

Cl = 2Fl

ρŪ2D
. (2.3)

Two jets serve as actuators, with the upper and bottom jets positioned at angles π/2
and −π/2 relative to the streamwise direction. Both jets have a width of ω = π/18. As
depicted in figure 1, the velocities Uj1 and Uj2 of the upper and bottom jets are oriented
normal to the wall and are prescribed using a trigonometric-like velocity profile:

Uj1 = Q1
π

2ωR2 cos
(π

ω
(θ − π/2)

)
,

Uj2 = Q2
π

2ωR2 cos
(π

ω
(θ + π/2)

)
.

⎫⎪⎬
⎪⎭ (2.4)

Here, R = D/2 is the radius of the cylinder, and θ represents the radian angular coordinate
of an arbitrary point (x, y) on the surface of the jets. We use Q1 and Q2 to denote the
mass flow rates of the bottom and upper jets, respectively, and their values are directly
influenced by the control of DMDc, online DMD and LQR, as detailed in § 2.2.

To ensure that the observed drag reduction is solely attributed to flow control rather than
direct injection of momentum from these two jets, we set the total mass flow rate injected
by the jets to zero, i.e. Q1 + Q2 = 0. This configuration guarantees that no additional
injection of momentum is introduced by the jets. Alternatively, if the primary goal is
merely to avoid extra momentum input, an alternative option is to set Q1 = Q2. However,
it is crucial to note that these two approaches are fundamentally distinct when employed
in the study of control methods. The elucidation of the differences between them and the
rationale for choosing Q1 + Q2 = 0 is presented in § 3.1.

The governing equations for incompressible flow are represented by the non-dimensional
Navier–Stokes equations:

∇ · u = 0, (2.5)

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + ∇ · (ν∇u), (2.6)

where ρ is the fluid density and ν represents its kinematic viscosity.

2.2. Active control method
A closed-loop system is established by incorporating DMDc, online DMD and LQR.
Online DMD and DMDc play a role in identifying the discrete linear model, while LQR
utilises this linear model to control the mass flow rate of the two jets.

2.2.1. Dynamic mode decomposition
The DMD algorithm is employed to extract essential low-rank spatiotemporal features
from high-dimensional systems. It operates under the assumption that high-dimensional,
nonlinear dynamical systems manifest rich multiscale phenomena in both space and
time, yet evolve on a low-dimensional attractor characterised by spatiotemporal coherent
structures (Kutz et al. 2016). Initially developed in the fluid dynamics community, the
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efficacy of DMD and its variants has been well-established, particularly in the analysis of
the flow past a cylinder (Noack et al. 2016; Jang et al. 2021; Ping et al. 2021). Let there be
a dynamical system and two sets of data:

X =
⎡
⎣ | | |

x1 x2 · · · xm−1
| | |

⎤
⎦ , (2.7)

X ′ =
⎡
⎣ | | |

x2 x3 · · · xm
| | |

⎤
⎦ . (2.8)

Here, xk represents the measurement (x-directional fluctuation velocity of probes in this
study) of the system at the time tk, implying that X ′ is X shifted forwards by a time step.
Thus, X ′ = F (X ), where F is the discrete-time flow map of the dynamical system for Δt.
DMD calculates the leading eigendecomposition of the best-fit linear operator A relating
the data X ′ ≈ AX :

A = X ′X †, (2.9)

where X † is the pseudoinverse of X .
The DMD modes, also known as dynamic modes, are the eigenvectors of A, with each

DMD mode corresponding to a particular eigenvalue of A. In practice, the matrix A is
challenging to analyse directly, especially when the state dimension is large. Therefore, the
pseudoinverse of X , obtained via singular value decomposition (SVD), is often employed
to calculate the matrix A:

X = UΣV ∗, (2.10)

where ∗ denotes the conjugate transpose. The matrix A from (2.9) can be obtained by
using the SVD of X :

A = X ′VΣ−1U∗. (2.11)

2.2.2. Dynamic mode decomposition with control
Rosenfeld & Kamalapurkar (2016) introduced a method known as DMDc, which extends
DMD to incorporate the impact of control. This involves analysing the relationship
between X′, X, and the input vector ui, where in this paper ui = Q1i represents the mass
flow rate of the two jets. A pair of linear operators establishes the following relationship:

X ′ = AX + BΥ = [A B]
[

X
Υ

]
, (2.12)

where Υ represents the input snapshots

Υ =
⎡
⎣ | | |

u1 u2 · · · um−1
| | |

⎤
⎦ . (2.13)

DMDc focuses on finding best-fit approximations to the linear operators A and B. The
approximate relationship between the data matrices X , X ′, and the input vector Υ in (2.12)
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can be expressed as

X ′ = GΩ, (2.14)

where G = [A B] and Ω = [X Υ ]T, containing both the measurement and input
information. Similar to DMD, SVD is utilised to decompose the information matrix Ω:

Ω = UΣV ∗, (2.15)

therefore allowing the matrix G to be obtained as

G = X ′VΣ−1U . (2.16)

The matrices A and B can be extracted by decomposing the linear operator G into two
separate components.

2.2.3. Online DMD
Online DMD (Zhang et al. 2019) presents an efficient method for updating the
approximation of a system’s dynamics, specifically matrices A and B, as new data becomes
available. The proposed algorithms are readily extendable to online system identification,
even for time-varying systems. Assuming that X has full row rank, online DMD rewrites
(2.9) as

A = X ′X T(XX T)−1 = QP, (2.17)

where Q = X ′X T and P = (XX T)−1. The assumption that X has full row rank ensures
that XX T is invertible. When xk+1 is appended to the snapshot matrix, Qk+1 and Pk+1 at
time k + 1 can be updated:

Qk+1 = [X ′
k xk+1][X k xk]T = Qk + xk+1xT

k , (2.18)

and

P−1
k+1 = [X k xk][X k xk]T = P−1

k + xkxT
k . (2.19)

The Sherman–Morrison formula (Hager 1989) is employed to find Pk+1 from Pk:

Pk+1 = (P−1
k + xkxT

k )−1 = Pk − γk+1PkxkxT
k Pk, (2.20)

where

γk+1 = 1
1 + xT

k Pkxk
. (2.21)

Therefore, the updated DMD matrix Ak+1 can be expressed as

Ak+1 = Ak + γk+1(xk+1 − Akxk)xT
k+1Pk. (2.22)

The update formula in (2.22) has an intuitive interpretation. The quantity (xk+1 − Axk)
can be considered as the prediction error from the non-updated matrix A and, therefore,
the DMD matrix A is updated proportionally to this error (Zhang et al. 2019).
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2.2.4. Closed-loop control approach
The discrete linear model acquired through the DMD method enables the development
of closed-loop control strategies employing classical control techniques. In this study, the
LQR method is utilised to determine the mass flow rates Q1 and Q2.

The essence of LQR control lies in identifying the optimal control of state and control
variables under linear constraints. Considering the tracking error and energy consumption,
the cost function is defined as

J =
∞∑

k=0

(eT
k QLQRek + uT

k RLQRuk), (2.23)

where QLQR and RLQR are weighting matrix coefficients for the system state and control
variables, respectively, and ek represents the difference between the measured system
value and the target value. In the context of this paper, the term ek is specifically defined as
the disparity between the x-component of velocity measured at the probes and its average
value over two vortex shedding periods. The objective is to minimise the fluctuation in
streamwise velocity. The control parameters can be determined by solving the following
optimisation problem:

uk = −KLQRek = [(RLQR + BTPRB)−1BTPRA]ek, (2.24)

where PR is computed from the discrete-time algebraic Riccati equation,

PR = AT PRA − (AT PRB)(BT PRB + RLQR)−1(AT PRB)T + QLQR. (2.25)

To solve (2.25), an iterative method is employed in the present work. The initial value of
PR is set to QLQR. The value of PR is iteratively computed using (2.25) until the change
before and after the iteration is less than 10−5.

2.3. Convergence study on the mesh resolution
In this study, a mesh comprising a total of 32 240 elements is created using O-grid blocking
in the proximity of the cylinder. To ensure that the boundary layer of the cylinder is
resolved, the height of the initial layer at the cylinder’s surface is set to 0.0039, with a
cell expansion ratio of 1.02 in a small square region surrounding the cylinder. To estimate
the boundary layer thickness using the method proposed by Schlichting & Gersten (2016),
δm ∼ O(D/

√
Re) suggests a boundary layer thickness of approximately 0.1, with a mesh

consisting of 12 layers within the boundary layer. In assessing the numerical error and
confirming mesh convergence, a grid convergence index (GCI) parameter is utilised as an
error approximation (Roache 1994, 1997).

The convergence study is based on three meshes, as outlined in table 1. The mesh
refinement ratio is r = 2, indicating that the normalised mesh spacing of the finer mesh
is half that of the next coarser mesh. In table 1, the mesh spacing is normalised by the
finest mesh. Figure 2 shows the results of the mesh convergence study through the mean
drag coefficient C̄d and mean amplitude of lift coefficient Ĉl. The convergence order p is
determined using the formula:

p = ln
(

f3 − f2
f2 − f1

)/
ln(r), (2.26)

where fi represents C̄di or Ĉli for the mesh convergence study of the drag and lift
coefficients, respectively. The theoretical convergence order for a ‘second-order’ solution
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Control of flow past a cylinder

No. Normalised spacing Number of cells Time step size C̄d Ĉl

Fine 1 1 534,536 10−4 3.25127 1.01852
Medium 2 2 132,066 10−4 3.24862 1.00518
Coarse 3 4 32,240 10−4 3.23991 0.956655

Table 1. Parameters for various meshes in the convergence study.
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(c) (d )

Figure 2. Mesh convergence study: (a) and (b) time variations of the drag coefficient Cd and lift coefficient, Cl

respectively; (c) and (d) time-averaged drag coefficient C̄d and amplitude of lift coefficient Ĉl. The red dashed
lines and asterisks are Richardson extrapolations at 0 mesh spacing.

is p = 2. The orders of convergence are pd = 1.7196 and pm = 1.8628 for C̄d and Ĉl,
respectively. Discrepancies may arise from grid stretching, grid quality, nonlinearities
in the solution and other factors. In addition, theoretical values for 0 mesh spacing are
estimated using the Richardson extrapolation method (Roache 1998):

fh=0 ≈ f1 + f1 − f2
rp − 1

. (2.27)

The Richardson extrapolations, depicted with dashed lines and asterisks in figures 2(b)
and 2(c), highlight the differences of 0.3845 % and 6.538 % for C̄d and Ĉl, respectively,
between the coarsest mesh and the 0 mesh spacing.

The GCI serves as a measure of the percentage difference between a computed value and
an asymptotic value, delineating an error band that signifies the deviation of the solution
from the asymptotic value. This metric provides insights into how the solution evolves with
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Mesh eCd GCIC̄d
eCl GCIĈl

1, 2 8.13 × 10−4 0.004327 % 0.0131 0.6208 %
2, 3 0.0027 0.1461 % 0.0483 2.288 %

Table 2. Error estimation and mesh-convergence index for three sets of meshes.

further grid refinement. A diminutive GCI value suggests that the calculation lies within
the asymptotic range, indicating a more reliable outcome:

GCIfine = Fe|e|
rp − 1

. (2.28)

In our current investigation, the employment of the coarsest mesh necessitates a meticulous
quantification of the error associated with the coarser grid. The GCI for the coarser grid is
defined as

GCIcoarser = Fe|e|rp

rp − 1
, (2.29)

where Fs represents a factor of safety and e = ( ffine − fcoarser)/ffine signifies the difference
between the coarse and fine grids. A recommended value for Fs is 1.25, especially in
cases involving comparisons across three or more meshes. Figures 2(a) and 2(b) depict
the temporal variations of GCI between mesh 2 and mesh 3 (GCI23). It is evident that the
maximum difference between mesh 2 and mesh 3 occurs at the peaks of Cd and Cl, with
GCI23 being 0.6751 % and 7.900 % at the respective peaks.

The results for the GCI of C̄d and Ĉl are presented in table 2. The convergence can be
assessed by computing the convergence ratio (Cr) using the formula

Cr = GCI23

rpGCI12
, (2.30)

where GCI23 and GCI12 are the GCI values between meshes 2 and 3 and between meshes
1 and 2, respectively. If the solutions lie within the asymptotic range of convergence, Cr
should equal one. In this context, the calculated Cr values are 1.0008 and 1.0133 for C̄d
and Ĉl, respectively. These values, being approximately one, suggest that the solutions
are well within the asymptotic range of convergence. Considering the convergence of the
meshes and their deviation from the 0 mesh, mesh 3 is selected for the present study.

3. Results

3.1. Open-loop control
First, we compare the performance of zero net mass injection jets with non-zero net mass
injection jets to illustrate the differences in their control difficulty. Figure 3 depicts the
time-averaged drag coefficient C̄d and the drag coefficient standard deviation σCd against
the normalised mass flow rate Q∗, defined as

Q∗ = Q2/Qref =
∫

s U2 dsjet2∫
s Uinlet dsinlet

, (3.1)

where Q2 and Qref represent the mass flow rates of the upper jet and the inlet boundary,
respectively. Note that Qref is always a positive value.
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Figure 3. Time-averaged drag coefficient C̄d , time-averaged lift coefficient C̄l, standard deviation of the drag
coefficient σCd and standard deviation of the lift coefficient σCl in the case of jets with a constant mass flow
rate. (a) and (b) Zero net mass injection jets, where the two jets have the same velocity in the same direction.
(c) and (d) Non-zero net mass injection symmetrical jets, where the two jets have the same velocity in opposite
directions. The dashed lines represent the performance of the baseline.

For the case of zero net mass injection, C̄d initially decreases and then increases as Q∗
rises, reaching a minimum value of 3.0901 at Q∗ = 0.0214, as shown in figure 3(a). Here,
Q∗ > 0 means that the upper jet is in ejection while the lower jet is operated in suction;
therefore, the lift coefficient decreases with the increase of Q∗. However, the standard
deviation of the drag coefficient σCd increases consistently in all instances of zero net
mass injection, as shown in figure 3(b). In comparison, in the case of non-zero net mass
symmetrical jets, i.e. jet1 and jet2 have the same magnitude while with opposite flow
directions, both C̄d and σCd increase when the net mass injection is positive (Q∗ > 0), or
in ejection, as shown in figure 3(c,d). In contrast, when the net mass injection is negative
(Q∗ < 0), or in suction, the reduction of drag force in both its mean value and fluctuation
magnitude is achieved. Furthermore, we note that as Q∗ = −0.02, the maximum reduction
is reached; further increase in the suction magnitude does not exhibit improvement in the
control effect. It is easy to understand that the suction extracts the lower kinetic energy
boundary layer, suppressing vortex shedding and thereby reducing drag. We can also see
that the lift coefficients follow the same trend as the drag coefficients.

Clearly, the scenario of zero net mass injection with a constant mass flow rate is different
from non-zero net mass injection. Generally, the wall ejection produces an increase in
drag force while the suction results in drag reduction. Since both ejection and suction are
included in the zero net mass injection control strategy, compromising between these two
controls with opposite effects results in an optimal jet magnitude around Q∗ = 0.02, as
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Figure 4. (a) Time-averaged drag coefficient C̄d and (b) standard deviation of the drag coefficient σ as R is
varied. The grey dashed lines represent the performances of the baseline.

exhibited in figures 3(a) and 3(b), respectively, for C̄d and σCl. For the same reason, if
we consider a zero net mass injection, the control strategy is not able to keep the jets at
a constant value to stabilise the wake. An intuitive understanding is that the wake always
defects to one side, keeping the drag fluctuation at a high level, if a constant, unidirectional
jet is implemented, which is evident from figure 3(b). Therefore, compared with non-zero
net mass injection symmetrical jets, zero net mass injection jets require a suitable control
method to simultaneously reduce C̄d and σCd. In addition to the advantage of being a more
achievable realisation, zero net mass injection also serves as a more effective test model
for the current control method.

3.2. Closed-loop control with different settings
Using the currently proposed control strategy, its performance is influenced by various
parameters, including the penalty factors R and Q, the number and arrangement of probes,
the interval between updates of system parameters, and the frequency of changes in jet
velocity. We evaluate the control performance by varying the values of the input penalty
factor R, the number of probes and their arrangement method.

Considering that the control output is a scalar, the penalty factor R is also a scalar,
written as R in the following context, and it is varied from 5 to 100 while Q is kept fixed at
I , the identity matrix. The time-averaged drag coefficient C̄d and the standard deviation of
the drag coefficient σ are illustrated in figure 4. The results indicate a significant reduction
in both C̄d and σ for all cases. Notably, there appears to be no substantial difference among
the cases concerning the reduction of C̄d, with the reduction rate fluctuating between
5.92 % and 6.89 %. In terms of σ , a relatively notable reduction is observed between R
and R = 50, exhibiting a reduction rate exceeding 91.0 %. However, for R = 5 or values
greater than 60, the reduction in σ is considerably less than that observed for cases between
R = 10 and R = 50, ranging only between 55.9 % and 78.8 %.

To investigate the impact of the number and arrangement of probes on control
effectiveness, we employ rectangular and fan-shaped probe arrangements. The probe
locations for the rectangular arrangement method are illustrated in figure 5, with the
number of probes varied from 16 to 32. Notably, probes are selected in the region of
x/D < 2 as acquiring information about more distant flow fields in practical conditions is
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Figure 5. Location of probes using the rectangular arrangement method.

challenging, and the flow closer to the cylinder significantly influences the lift coefficient
(Cl) and drag coefficient (Cd); see figures 5 and 6.

Figure 7 displays the results for the rectangular probe arrangement. It is evident that,
in all cases, both C̄d and σ are effectively suppressed, and this suppression amplifies
with an increasing number of probes. A similar trend is observed for the fan-shaped
arrangement, although the reduction in both C̄d and σ is not as pronounced as in the
rectangular arrangement with an equivalent number of probes. This discrepancy may arise
from the rectangular arrangement capturing more information in the x-direction compared
with the y-direction.

However, figure 8 demonstrates that, with the increasing number of probes (Np) in
the fan-shaped arrangement, C̄d remains nearly constant, whereas σ exhibits oscillations,
decreasing as Np increases. One possible explanation for this non-convergence is that the
number of probes should be increased further or different locations around the cylinder
contribute unevenly to the control effects. Therefore, we employ a rectangular arrangement
for our subsequent investigation to address these issues and achieve more stable control
effects. This alternative arrangement allows for a more uniform distribution of probes
around the cylinder, potentially leading to better data acquisition and more effective
control.

3.3. Control trajectories
To elucidate the evolution of the control strategy during the update processes, trajectories
of the control strategy (depicted as C̄d vs |Q∗| curves) are presented in figure 9 for periods
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Figure 6. Location of probes using the fan-shaped arrangement method.
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Figure 7. (a) Time-averaged drag coefficient C̄d and (b) standard deviation of the drag coefficient σ as
the number of probes Np is varied, arranged in a rectangular shape. The grey dashed lines represent the
performances of the baseline.

21 to 84 with varying numbers of probes. In our control strategy, the cylinder undergoes
random control from the 21st to the 30th period, generated by ((rand()%10)/51.0204 −
0.0882)/10, and data from these random actions is utilised to initialise the closed-loop
control parameters at the 30th period. Across all cases, both |Q∗| and C̄d decrease
gradually over successive periods after a certain duration of DMD control, underscoring
the efficacy of parameter matrix updates in enhancing the efficiency of closed-loop
control.
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number of probes Np is varied, arranged in a fan shape. The grey dashed lines represent the performances of
the baseline.
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Figure 9. Trajectories of the mean drag coefficient during the control process with different numbers of
probes. Panel ( f ) shows trajectories with 32 probes in region III.

The trajectories can be broadly divided into three regions. In region I, C̄d experiences
a sharp reduction, albeit with occasional instances of it surpassing the baseline. Moving
into region II, the rate of decrease in C̄d diminishes, but stability improves. Notably, in this
region, |Q∗| registers a significant decrease, indicating an effective reduction in energy
injection to the system by the two jets. region II is thus instrumental in enhancing control
efficiency. Transitioning to region III, both C̄d and |Q∗| stabilise within a relatively narrow
range. In some cases, the control strategy may follow a trajectory as shown in figure 9( f ),
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Figure 10. Wavelet transforms of Q∗ in three distinct regions using different numbers of probes.

wherein |Q∗| initially increases to reduce C̄d but subsequently returns to its original
position due to a much smaller energy injection compared with energy conservation.

The effect of increasing the number of probes on control becomes evident in figure 9.
First, an increase in probes correlates with a notable reduction in C̄d. Second, the
augmented probe count leads to a decline in energy injection by the jets, signifying
improved control efficiency. Finally, as depicted in figure 9, the rise in probes enables
control trajectories to enter region II in fewer periods, thereby enhancing the stability of
the control process.

To comprehensively understand control strategies within the three identified regions, the
wavelet transforms of Q∗ are presented in figure 10. The time–frequency characteristics
in region I are particularly distinctive among the three regions. Initially, in region I, the
time–frequency characteristics exhibit a noisy signal with no dominant frequency. As the
control strategy undergoes updates, the frequency of Q∗ gradually concentrates at one or
two frequencies near f ∗ = 1.

In contrast, there is minimal disparity between the time–frequency characteristics of
regions II and III, as indicated by the stabilisation of the frequency of Q∗ at one or two
frequencies around the fixed f ∗ = 1. The differentiating factor lies in the emergence of
high-frequency information with a duration of T∗ = 5–10 in region III, specifically in
cases with 26 and 32 probes. This temporal occurrence aligns with the aforementioned
‘increasing’ and ‘returning’ of Q∗, suggesting that the increase in the energy injection by
the jets is associated with the introduction of additional frequencies.
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Figure 11. Control efficiency in region III as a function of the number of probes.

3.4. Control efficiency
In the case of active control, efficiency is a crucial factor, and it heavily relies on the
applied control method. While the aforementioned control trajectory provides some insight
into efficiency, it does not consider the pressure work. To address this, we use the following
equation to calculate the efficiency (Choi et al. 2008):

η2 = (FDb − FDc)u∞

2
∫ t0+T

t0

∫
A
(|0.5ρφ3| + |pwφ|) dA dt/T

, (3.2)

where FDb and FDc represent the drag forces on the cylinder without and with control,
respectively. The variable A denotes the upper jet surface where the control is applied, ρ

is the fluid density, pw is the upper jet surface pressure and φ is the control velocity. The
control method is deemed sufficiently efficient when η2 � 1, even when accounting for
additional losses within the control device mechanism (Choi et al. 2008).

Figure 11 illustrates the control efficiency in region III relative to the number of probes.
All examined cases exhibit efficiencies well above 1, with even the lowest efficiency
reaching 16.7. This suggests that the control method is highly efficient. Furthermore, there
is a notable enhancement in control efficiency with an increase in the number of probes,
aligning with the observed phenomena in the control trajectories described above.

3.5. Computing resource
While the advantages of increasing the number of probes have been elucidated above, it is
noteworthy that the augmented number of probes elevates the dimension of the coefficient
matrix, potentially leading to increased computational resource consumption during the
update processes. All computations in this study are performed on an AMD EPYC 7H12
processor (64-core @2.6 GHz). Specifically, one core is employed, and both the parameter
matrix updates and the computation of the LQR in closed-loop control are implemented
within the codedFixedValue type boundary conditions.

Throughout the control duration, the parameter matrices undergo significant changes
in region I. Notably, the absence of substantial differences between regions II and III,
as discussed previously, implies that the updating of coefficient matrices essentially
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Figure 13. Illustration of the stability and calculation time of the training procedure using deep reinforcement
learning (DRL). The red dashed line represents Tc for 32 probes.

concludes from region II onwards. Consequently, we investigate the time at which the
control trajectory enters region II and the computational time required for this process. As
depicted in figure 12, Tr2 exhibits a marked decrease with an increasing number of probes.
Simultaneously, the dimension of the parameter matrix increases, causing Tc to initially
decrease and then increase with the rising number of probes. The minimum value for Tc
is reached when the number of probes is 23.

In recent times, DRL has garnered substantial attention, prompting an exploration of
its comparative efficacy with the method proposed in this study. Wang et al. (2022),
utilising a mesh comprising 16 200 triangular elements, 149 probes and 20 cores for
computation, achieved a stable control state after 83.3 hours, resulting in an 8 % reduction
in CD. Notably, this indicates that the DRL method necessitates an additional 77.97 hours
for a marginal 0.56 % increase in the reduction rate, compared with the methodology
applied in this paper. Moreover, Rabault et al. (2019), using a mesh comprising 9262
triangular elements, 149 probes and 1 core for computation, reached a stable control
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state after 24 hours, resulting also in an 8 % reduction in CD. Consequently, it can be
inferred that even when juxtaposed against DRL methods implemented in Python, the
approach presented in this study showcases advantages in terms of computational resource
consumption.

However, it is imperative to acknowledge that both Rabault et al. (2019) and Wang
et al. (2022) employed a considerably higher number of probes than the present study.
This consideration may introduce a bias in the comparison of computational resources.
To address this, we adopt the methodology proposed by Wang et al. (2022), utilising the
same 32 probes, allocating 4 cores for OpenFOAM, and dedicating 16 cores for the DRL
program. As depicted in figure 13, with an episode duration of Tmax = 20.0 (spanning
approximately 6.5 vortex shedding periods), the proximal policy optimisation (PPO) agent
typically learns the control policy after about 200 episodes, requiring approximately
50 hours, considerably longer than Tc (5.14 hours) for 32 probes. Although CD is reduced
to a greater extent compared with the method used in this study, there is an associated
increase in σ , possibly attributable to an insufficient number of probes to attain stable
control. In comparison with other DRL outcomes, the method employed in this study
demonstrates a notable advantage in terms of computational resource efficiency. One
shortcoming of the present approach compared with RL is the necessity to specify a
target value for the probes. This requirement can be problematic in complex, non-periodic
situations or in cases where the mean and base flow differ significantly. In such scenarios,
this control method may be challenging to design and potentially ineffective.

3.6. Drag and lift coefficients
In the baseline scenario (without active control), as shown in figure 14(a), the drag
coefficient exhibits a frequency of fb = 0.6 Hz (twice the vortex shedding frequency),
where T∗ = t/tp represents normalised time. After reaching a steady state (T∗ > 15), the
time-averaged drag coefficient is C̄d = 3.2417, with a standard deviation of σb = 0.0198.
In contrast, under active control, the time-averaged drag coefficient C̄d = 3.0005 and
standard deviation σ = 6.6 × 10−4 reflect the reductions of mean value and deviation
approximately 7.44 % and 96.67 %, respectively. The primary four stages of control are
evident in figure 14(a). Stage 1 occurs for T∗ < 21 when the flow field is not fully
developed, prompting the flow rate of jets to be set to zero. Stage 2 transpires between
T∗ = 21 and T∗ < 23, during which the flow rate of jets is set to a random number
between −0.021 and 0.021. The data from T∗ = 21 to T∗ = 23 are decomposed by DMDc
at T∗ = 23, providing initial system parameters. Stage 3 unfolds between T∗ = 23 and
T∗ = 40, wherein the system parameters undergo continuous updating through online
DMD. The updated parameters are then employed for closed-loop control. Stage 4 is
marked by T∗ > 40 when the flow field is stably controlled. Remarkably, the drag and lift
coefficients are effectively controlled after just 17 vortex shedding periods post-application
of the control method.

Similarly, the fluctuation of the lift coefficient is reduced by active control, albeit not as
significantly as the drag coefficient. Figure 14(b) illustrates that the standard deviation
of the lift coefficient has been reduced from 0.6842 to 0.1014 through active control,
representing an 85.18 % reduction. In contrast, in open-loop scenarios with non-zero
net mass injection, C̄d = 3.1631 (2.67 % reduction) and σ = 0.0168 (15.15 % reduction)
when Q∗ = 0.0011, proving to be less effective compared with closed-loop control, not to
mention the even less-effective control of zero net mass injection with open loop. Thus, it
can be concluded that the closed-loop control can achieve significant control effects with
only a small flow rate.
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Figure 14. Time variations of (a) drag coefficient Cd and (b) lift coefficient Cl in the case without (baseline
curve) and with (controlled curve) active flow control. The effect of flow control is clearly evident.

Figure 15 portrays the evolution of the normalised mass flow rate Q∗ and its
time–frequency characteristics, where the frequency is normalised by the baseline vortex
shedding frequency. Figure 15(a) shows the evolution of Q∗ between T∗ = 90 and T∗ =
95, during which Q∗ reaches a steady state, fluctuating around 0, with an average absolute
value of 0.00102. Figure 15(c) illustrates the spectral characteristics of Q∗. The amplitude
spectrum of Q∗ peaks at one and two times the vortex shedding frequency, mirroring the
spectrum of Cl. This indicates that the DMDc and DMD online methods used in this
study effectively identify the system parameters. Paris et al. (2021) also identified policies
involving two frequencies close to the natural vortex shedding frequency. However,
the distinction lies in the specific frequencies identified: while the current study found
frequencies at 1 and 2.2 times the vortex shedding frequency, both frequencies identified
by Paris et al. were below the vortex shedding frequency.

3.7. Flow wake characteristics
Figure 16 illustrates the magnitude of velocity with superimposed streamlines for both
the baseline and controlled flow. The classic flow field morphology, characterised by the
recirculation region behind the cylinder, is evident in the time-averaged flow fields for
both cases. This region is confined by two elongated shear layers and terminates with two
counter-rotating structures representative of the time-averaged behaviour and position of
the shed von Kármán vortices.

As investigated by Nair et al. (2021) and Paris et al. (2021), the drag reduction
arises from the delay in vortex shedding, leading to the generation of ‘elongated vortex
structures’. These structures are observable in both transient and time-averaged magnitude
velocities. To quantify the elongation of the two counter-rotating vortices, we employ the
vortex formation length (Lf ) at the onset of vortex shedding, as defined by Chopra &
Mittal (2019). The vortex formation length is the streamwise distance from the centre of
the cylinder to the point along the wake axis where the time-averaged kinetic energy e′
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Figure 15. (a) Time variations of the upper jet normalised mass flow rate Q∗ and lift coefficient Cl (for T∗
from 90 to 95), (b) spectral information of Q∗ and (c) spectral information of Cl.
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Figure 16. Comparison between baseline (a,b) and controlled (c,d) cases in time-averaged magnitude velocity
with superimposed streamlines (a,c) and transient magnitude velocity with superimposed streamlines (b,d).

is maximum; here, e′(x, t) = 1
2 u′(x, t)u′(x, t). For the baseline and controlled flow, the

vortex formation lengths are Lfb = 1.8619 and Lfc = 6.5, respectively. This indicates that
the elongation rate of Lfb has been extended by up to 249.11 %.

It is worth noting that Lfb does not seem to correspond to the length of the separation
bubble, as shown in figure 16(c). This discrepancy is attributed to a substantial alteration
in the flow field morphology induced by active control. As observed in figures 16(c) and
16(d), the wake flow of the baseline exhibits alternately shedding vortex structures, a
feature not evident in the controlled wake flow. In the controlled flow, this is replaced
by two consistently existing separation bubbles. These separation bubbles interact with
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Figure 17. Comparison between baseline (a,b) and controlled (c,d) cases in transient vortex visualisation by
Q-criterion. Panel (c) corresponds to the time of maximum lift coefficient Cl and panel (d) corresponds to the
time of minimum lift coefficient Cl.

each other and alternately shed small vortex structures in the region around x = 4–6,
exhibiting similarities with low Reynolds number cases. Perhaps, it is this stable presence
of separation bubbles that leads to the significant suppression of fluctuations in lift and
drag coefficients.

Figure 17 employs the Q-criterion to delineate the vortex locations in the wake of the
cylinder. The Q-criterion illustrates the spatial distribution of vortices for both baseline
and controlled flows, showcasing the von Kármán vortex street. Notably, elongated vortex
structures are discernible in figure 17. Concurrently, the Q values near the cylinder
approach insignificance, signifying that the elongated vortex structures relocate the vortex
centre away from the cylinder.

Figure 18 presents a comparison of pressure distributions between baseline and
controlled flow. In contrast to the time-averaged pressure, the active control noticeably
diminishes the low-pressure region near x/D = 1.8 in the wake of the cylinder. This
reduction in low-pressure areas contributes to the decrease in drag coefficients. The two
jets induce a redistribution of pressure in the flow field, resulting in a more favourable
pressure distribution.

The shedding of vortices in an alternating up-and-down pattern creates alternating upper
and lower low-pressure regions, as depicted in figure 18(b). These alternating pressure
zones are a significant factor in the fluctuation of lift coefficients. Active control effectively
suppresses the formation of these alternating pressure regions, leading to a reduction in the
fluctuation of lift coefficients.

While there remains a difference in length between the upper and lower low-pressure
areas, as illustrated in figure 18(d), this discrepancy is substantially mitigated compared
with the baseline configuration. This reduction in the difference between upper and lower
low-pressure areas contributes to the overall decrease in lift coefficient fluctuations.
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Figure 19. Growth rate vs normalised frequency f ∗ (normalised by vortex shedding frequency) of different
DMD modes, sorted by energy: (a) baseline flow and (b) controlled flow.

To conduct a detailed analysis of the impact of active control on the flow field, we utilise
DMD to decompose both the baseline and controlled flows (within the region of x/D < 9).
The results are presented in figures 19–22.

Figure 19 illustrates the growth rate vs normalised frequency f ∗ (normalised by vortex
shedding frequency) for various DMD modes, sorted by energy. Mode 1, possessing
the highest energy, represents the average mode of the flow field with a frequency
of 0. Subsequent modes exhibit a conjugate mode with an equal growth rate and an
opposite frequency. Modes 2 and 3 have normalised frequencies f ∗ = 1, indicating their
representation of von Kármán vortex shedding. Similarly, modes 2, 4, 6, 8 and 10
correspond to the second, third, fourth and fifth harmonics, respectively.
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Figure 20. Relative energy distribution at different frequencies of the first 13 orders for baseline flow and 18
orders for controlled flow of DMD modes.

A notable distinction from the baseline is observed, as the original vortex shedding
mode transforms into two modes with the same frequency but different growth rates.
This alteration is likely attributed to the combined effects of the jets and the cylinder. We
consider that this set of negative growth rates is caused by a decrease in the mass flow rate
of jets, which can be observed in figure 9. Furthermore, the vortex shedding frequency in
the controlled flow doubles compared to the original frequency. In addition, a new average
mode and two modes with a normalised frequency f ∗ = 4.5 emerge in the controlled flow.

Figure 20 illustrates the relative energy distribution at various frequencies,
encompassing the first 13 orders for baseline flow and 18 orders for controlled flow of
DMD modes. The energy values are normalised by the total turbulent kinetic energy,
excluding modes above 4000 order and modes with a frequency of 0.

In the baseline flow, turbulent kinetic energy predominantly concentrates at the
frequency associated with von Kármán vortex shedding and its octave. Upon comparison
with the baseline flow, the controlled flow exhibits a distinct distribution, with turbulent
kinetic energy primarily concentrated in modes corresponding to f ∗ = 2, 4, 4.5, 6, etc.

Figures 21 and 22 depict the DMD modes, calculated for both the x and y directions,
corresponding to the controlled flow and baseline, respectively. As mentioned above,
modes 2 to 12 of the baseline characterise von Kármán vortex shedding and its harmonics.
In addition, it can be seen from figure 22 that a relatively strong coherent structure persists
even in the wake close to the cylinder, contributing to the periodic drag and lift forces
experienced by the cylinder.

In contrast to the baseline, the coherent structure in the controlled flow exhibits greater
complexity. As seen in figure 21(a,c,e, f ), modes 2, 7, 15 and 23 encapsulate the vortex
structures and their harmonics originating from the separation bubbles. For those modes,
there is no pronounced coherent structure in the vicinity of the wake within the region
of x/D < 4. Mode 4, shown in figure 21, featuring a frequency of f ∗ = 0, corresponds to
an average mode. The morphology of mode 4 reveals that the coherent structure initiates
at 90◦ and 270◦ of the cylinder, converging at x/D = 4 and progresses towards the rear
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Figure 21. DMD modes of controlled flow (calculated in both x and y directions) with T∗ ∈ [90, 105].
Conjugate and average modes are not shown.

of the flow field. Thus, it is plausible to assert that mode 4 represents the average mode
resulting from the expulsion and suction effects of the upper and lower jets. Similarly,
mode 11 exemplifies the coherent structure formed by the jets. Notably, this coherent
structure is observed at the periphery of the separating bubble, engaging with it and
thereby suppressing the detachment of the separating bubble. This coherent structure likely
dissipates around x/D = 6, coinciding with the vortex formation length at the onset of
vortex shedding (Lf ).

3.8. Robustness with a perturbed upstream flow
In this section, we further verify the robustness of our strategy in a perturbed upstream
flow. First, as shown in figure 23, we superpose a travelling wave perturbation to the
velocity of the inlet:

up( y, T∗) = 3(H/2 − y)(H/2 + y)(8 + sin(8π(H/2 + T∗/0.3 − y)/H))

4H2 , (3.3)

which represents a travelling wave with an amplitude of u( y)/8, a wavelength of H/4 and
a period of H/4, added to the original parabolic velocity entrance distribution described by
(2.1). Integrating (3.3) over y:

∫ H/2
−H/2 up( y, t) = H − 3H sin((8πt)/H)/128π2, since 3H is

much smaller than 128π2, it can be assumed that Re is constantly equal to 100. In addition,
to study the control behaviour for off-design conditions, Re is raised to 150 at T∗ = 90,
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i.e.

utp( y, T∗) =
{

up( y, T∗) T∗ < 90,

1.5up( y, T∗) T∗ ≥ 90.
(3.4)

The perturbed upstream flow introduces multi-frequency information and larger
fluctuations (with a standard deviation of σCd = 0.0577) in the drag coefficient Cd of the
cylinder, compared with the constant upstream flow, without affecting the average drag
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Figure 24. Robustness tests with a perturbed upstream flow. (a) Time variations of drag coefficient Cd for
two different simulations. The red colour denotes the baseflow with Re = 100 is simulated, which reaches
a converged state at around T∗ = 35, after that, the control is implemented. The incoming flow velocity
experiences a sudden rise at T∗ = 90, resulting in Re = 150, with the continuous application of control strategy.
The blue colour represents the baseflow with Re = 150 is simulated, which reaches a converged state at around
T∗ = 90, after that, the control is implemented. (b) PSD of drag coefficient Cd in the case of Re = 100.
(c) PSD of drag coefficient Cd in the case of Re = 150.

significantly (C̄d = 3.2446). As illustrated in figure 24(b), the drag coefficient Cd under
baseline conditions at Re = 100 exhibits two primary frequencies: f ∗ = 2.00 and 3.255.
These frequencies correspond to twice the vortex shedding frequency f ∗ = 1.00 and the
frequency of the perturbed upstream flow f ∗ = 4/0.3/H, respectively.

Through the control method proposed in this study, the mean cylinder drag coefficient
C̄d in perturbed upstream flow at Re = 100 is reduced by 6.919 %, accompanied by a
corresponding reduction in standard deviation σCd by 6.412 %. Compared with the control
effects in § 3.6, the average drag coefficient Cd reduction rate in the perturbed upstream
flow shows no significant difference, but the reduction rate in standard deviation is notably
smaller compared with that in the steady incoming flow.

Comparing the baseline and controlled power spectral density (PSD) in the case of
Re = 100, as depicted in figure 24(b), it is evident that the suppression of fluctuations
corresponding to the vortex shedding at twice the frequency is pronounced, whereas the
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Figure 25. Comparisons of the instantaneous velocity fields for the case with three upstream columns, each
embedded with a jet, between (a) the baseline case and (b) the controlled case.

suppression effect on fluctuations corresponding to the perturbed upstream flow frequency
is limited. One possible reason for this limitation is that the drag fluctuations in the
perturbed upstream flow stem from several sources: twice the vortex shedding frequency
f ∗ = 2.00, flow field fluctuations on the front side of the cylinder induced by the perturbed
upstream flow ( f ∗ = 4/0.3/H) and flow field fluctuations on the back side of the cylinder
also induced by the perturbed upstream flow ( f ∗ = 4/0.3/H). However, the control
method emphasised in this paper is primarily focused on stabilising the wake flow, which
may not effectively suppress the flow field fluctuation on the front (upstream) side of the
cylinder ( f ∗ = 4/0.3/H) caused by the perturbed upstream flow.

In the perturbed upstream flow, after Re is tuned to 150 (T∗ > 90), the control method
in this paper achieves a reduction of 12.73 % in the average drag coefficient C̄d and a
reduction of 38.01 % in the standard deviation of the drag coefficient σCd . These effects are
comparable to those observed when directly controlling Re = 150 perturbed upstream flow
(blue lines in figure 24). However, the notable difference is that compared with Re = 150,
the case with Re = 100–150 reaches the stabilised control state more quickly after Re
becomes 150. This observation suggests that the method employed in this study exhibits
better robustness under sudden changes in the flow conditions.

There is no significant difference between the flow field with perturbed upstream flow
and that with steady incoming flow, so it is not shown here. This similarity highlights the
robustness of the present method for wake control in perturbed upstream flow. The vortex
formation lengths in the controlled cases are extended for both Re = 100 and Re = 150.
Specifically, the elongation rate of Lfb has been extended by up to 108.61 % and 129.65 %
for Re = 100 and Re = 150, respectively.

To further illustrate the effectiveness of this method for control in complex
environments, we use a set-up as shown in figure 25. In this configuration, three square
columns with a spacing of 0.3 and size 0.1 × 0.2 are positioned in front of the main
cylinder at x = −2, and three additional square columns with jet entrances of 0.1 widths
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are also included. The velocity of the three jets is

uinj(T∗) = 0.3 ∗ (sin(2πt) ∗ sin(πt) + sin(10πt) ∗ sin(20πt) + sin2(4πt)),
t = T∗/0.3,

}
(3.5)

where the three square columns and the jet provide more complexity to the cylinder’s
incoming flow. As shown clearly in figure 25, the wake flow is stabilised to a steady state
after the control strategy is implemented.

4. Conclusion

This investigation has delved into the application of an online control strategy employing
DMD for flow control, with a fixed Reynolds number of Re = 100, past a cylinder confined
between two walls. The primary objective was to mitigate vortex shedding through the
controlled blowing and suction of two synthetic jets on the cylinder. The x-direction
velocity fluctuations in the wake have been harnessed to determine the mass flow rate
of jets, utilising the LQR and online DMD. The study has explored the interplay between
control performance and settings, the relationship between force coefficients and jets’ mass
flow rate, as well as the influence of jets on the wake flow field morphology.

First, control performance has been evaluated across varying input penalty factors R, the
number of probes and probe arrangement methods. The penalty factor R ranges from 5 to
100, with penalty factor Q fixed at I. Notably, both C̄d and σ exhibit significant reductions
for all R, with a more pronounced decrease in C̄d and σ observed when R falls within the
range of 10 to 50. The choice of the rectangular arrangement method and an increased
number of probes further enhances the effectiveness of control, with the reduction in C̄d
and σ becoming more prominent. Despite the increased dimension of the parameter matrix
due to the rise in the number of probes, the decrease in Tr2 causes Tc to exhibit a trend of
initially decreasing and subsequently increasing. Moreover, a comparison with DRL has
highlighted the computational efficiency advantage of the proposed method.

On the other hand, an analysis of the drag coefficient, lift coefficient, flow behaviours
and wake characteristics has been conducted for both baseline and controlled flow
scenarios (with R = 50, using the rectangular arrangement method, and 32 probes). The
controlled flow achieves substantial reductions of 7.44 % in C̄d, 96.67 % in σ and 85.18 %
in the standard deviation of the lift coefficient. In comparison with open-loop control, the
closed-loop approach attains more significant effects with a smaller mass flow rate of jets.
The consistency observed between the mass flow rate of jets and lift coefficient spectra
characteristics underscores the high precision of the proposed method in identifying
system dynamics. Notably, the controlled flow manifests two stable separation bubbles
in the region of x ∈ [0, 4], contributing to the significant suppression of lift and drag
coefficient fluctuations.

Furthermore, an investigation into the effect of active control on flow modes has revealed
distinct alterations from the baseline. The original vortex shedding mode transforms
into two modes with identical frequencies and different growth rates, attributed to the
combined influence of jets and the cylinder. The vortex shedding frequency in the
controlled flow doubles compared with the original frequency. In addition, a new average
mode and two modes with a normalised frequency F∗ = 4.5 emerge in the controlled flow,
representing coherent structures formed by the jets.

The robustness of the proposed control method has also been tested on two
more complicated cases, involving unsteady incoming flows with multiple frequency
components. In such situations, we have also demonstrated that it is adaptive to the
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variations in flow conditions while keeping the model parameters unchanged. Future
extensions of this work could explore control under more intricate conditions.
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