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Characterization of Positive Links and the
s-invariant for Links

Tetsuya Abe and Keiji Tagami

Abstract. We characterize positive links in terms of strong quasipositivity, homogeneity, and the
value of Rasmussen and Beliakova-Wehrli’s s-invariant. We also study almost positive links, and in
particular, determine the s-invariants of almost positive links. _is result suggests that all almost
positive links might be strongly quasipositive. On the other hand, it implies that almost positive
links are never homogeneous links.

1 Introduction

A link is called positive if it has a diagramwith only positive crossings, which is deûned
combinatorially. On the other hand, Nakamura [25] and Rudolph [37] proved that
positive links are strongly quasipositive links, which are deûned geometrically. It is
natural to consider the following question.

Question 1.1 What are the diòerences between positive links and strongly quasiposi-
tive links?

Cromwell [9] introduced a class of links called homogeneous links. _ey are a
generalization of positive links from the combinatorial viewpoint. Baader [3] proved
that a knot is positive if and only if it is strongly quasipositive and homogeneous,
answering Question 1.1 in the case of knots (see also [1]). One can obviously apply
Baader’s proof to the case of links and obtain the following theorem.

_eorem 1.2 ([3]) A non-split link is positive if and only if it is strongly quasipositive
and homogeneous.

We generalize the above theorem as follows.

_eorem 1.3 Let L be a non-split link with ♯ L components. _en (i)–(iv) are equiv-
alent.
(i) L is positive;
(ii) L is homogeneous and strongly quasipositive;
(iii) L is homogeneous, quasipositive and g∗(L) = g(L);
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(iv) L is homogeneous and s(L) = 2g∗(L) + ♯ L − 1 = 2g(L) + ♯ L − 1,
where s(L) is Rasmussen and Beliakova-Wehrli’s s-invariant of L, g∗(L) is the four-ball
genus of L, and g(L) is the three-genus of L.

For the deûnition of Rasmussen and Beliakova-Wehrli’s s-invariant, see [6, 34].
_eorem 1.3 is a generalization of [1,_eorem 1.3]. We prove_eorem 1.3 in Section 4.
_e key of the proof is the computation of the s-invariants of homogeneous links (see
Sections 2-4). In this paper, we also study almost positive links. An almost positive
link is a non-positive link that is represented by a diagram with exactly one negative
crossing. In general, it is hard to distinguish almost positive links from positive links.
We consider the following question.

Question 1.4 What are the similarities and diòerences between positive links and
almost positive links?

_ere are some similarities between them (see [8, 9, 31, 32, 41, 44]). One of the
interesting and expected similarities is Stoimenow’s question:.

Question 1.5 ([42, Question 4]) Is any almost positive link strongly quasipositive, or
at least quasipositive?

We give an evidence towards an aõrmative answer to Question 1.5 as follows.

_eorem 1.6 Let L be a non-split link with ♯ L components. If L is almost positive or
strongly quasipositive, then

s(L) = 2g∗(L) + ♯ L − 1 = 2g(L) + ♯ L − 1.

Moreover, we determine the s-invariant of an almost positive link in terms of its
almost positive diagram (see _eorem 5.2). We also conûrm Question 1.5 for ûbered
almost positive knots (_eorem 6.13) and almost positive knots up to 12 crossings in
Section 6.

On the other hand, there are some diòerences between positive links and almost
positive links. In this paper, we give a signiûcant diòerence between them. In fact, we
prove the following corollary.

Corollary 1.7 Any almost positive link is not homogeneous.

Note that positive links are homogeneous, and this corollary follows from _eo-
rems 1.3 and 1.6; see Section 5. Moreover, using Corollary 1.7, we give inûnitely many
knots that are pseudo-alternating and are not homogeneous (which are counterex-
amples of Kauòman’s conjecture (Conjecture 7.2)).

Proposition 1.8 _ere are inûnitely many knots that are pseudo-alternating and are
not homogeneous.

_is manuscript is organized as follows. In Section 2, we recall Kawamura–Lobb’s
inequality and homogeneous links. In Section 3, we recall strongly quasipositive links.
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In Section 4, we give a characterization of positive links. In Section 5, we compute
the s-invariants of almost positive links. As a corollary, we prove that any almost
positive link is not homogeneous (Corollary 1.7). In Section 6, we consider the strong
quasipositivities of almost positive knots with up to 12 crossings. In Section 7, we
give inûnitelymany counterexamples of Kauòman’s conjecture on pseudo-alternating
links and alternative links.

_roughout this paper, we call Rasmussen and Beliakova-Wehrli’s invariant an s-
invariant. Also, we assume that all links and diagrams are oriented.

2 Kawamura–Lobb’s Inequality and Homogeneous Links

In this section, we recall homogeneous links and their properties.

2.1 Kawamura–Lobb’s Inequality for the s-invariant

In this subsection, we recall Kawamura–Lobb’s inequality for the s-invariant.
Here we recall some deûnitions. For a connected diagram D, let w(D) be the

writhe of D, O(D) the number of Seifert circles for D and O+(D) (resp. O−(D)) the
number of connected components of the diagram obtained from D by smoothing all
negative (resp. positive) crossings of D. Kawamura [17] and Lobb [22] independently
gave estimates for the s-invariant of a link, and these turned out to be the same esti-
mate.

_eorem 2.1 ([17], [22, _eorem 1.10]) Let D be a connected diagram of a link L.
_en we obtain

w(D) − O(D) + 1 + 2(O+(D) − 1) ≤ s(L) ≤ w(D) + O(D) − 1 − 2(O−(D) − 1) .

2.2 Homogeneous Links

For a ûxed diagram D, we consider when the upper bound and the lower bound of
Kawamura–Lobb’s inequality coincide. _e answer is when D is homogeneous. In
particular, the s-invariant of any homogeneous link is determined by its homogeneous
diagram and Kawamura–Lobb’s inequality. _is result was given by the ûrst author
[1]. In this section, we see this result in terms of ∗-product.

We recall the deûnition of ∗-product of diagram (see also [9]). _e Seifert circles
of a diagram is divided into two types: a Seifert circle is of type 1 if it does not contain
any other Seifert circles in one of the complementary regions of the Seifert circle in
R2, otherwise it is of type 2. Let D ⊂ R2 be a knot diagram and C a type 2 Seifert circle
of D. _en C separates R2 into two components U and V such that U ∪ V = R2 and
U∩V = ∂U = ∂V = C. LetD1 andD2 be the diagrams obtained formD∩U andD∩V
by adding suitable arcs from C, respectively. _en C decomposes D into a ∗-product of
D1 and D2, which is denoted by D = D1 ∗D2. We call this decomposition a ∗-product
decomposition of D. A diagram is special if D has no Seifert circles of type 2. It is not
hard to see that a special positive (or negative) diagram is alternating, and a special
alternating diagram is positive or negative. Clearly, any diagram is decomposed into

D1 ∗ D2 ∗ ⋅ ⋅ ⋅ ∗ Dn ,
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where D i is a special diagram.
For a diagram, any simple closed curve in R2 meeting the diagram transversely at

two points cuts the diagram into two parts. A diagram is strongly prime if one of such
parts has no crossing for any simple closed curve meeting the diagram transversely
at two points (see [20]). If D is not strongly prime, D is represented as a connected
sum of non-trivial diagrams D1 and D2 on R2. _en we also write D = D1 ∗ D2.
Any diagram D is decomposed into D1 ∗ D2 ∗ ⋅ ⋅ ⋅ ∗ Dn , where D i is a strongly prime
diagram.
As a result, any diagram is decomposed intoD1∗D2∗⋅ ⋅ ⋅∗Dn , whereD i is a special

and strongly prime diagram. _is ∗-product decomposition of D depends only on D.
On the other hand, for given diagrams D1 and D2, a ∗-product D1 ∗ D2 is not well
deûned. _roughout this section, if we write D = D1 ∗ D2, it is one of the diagrams
that have such a ∗-product decomposition.

Let L(D) andU(D) be the lower bound and the upper boundofKawamura–Lobb’s
inequality, respectively. Namely,

L(D) = w(D) − O(D) + 1 + 2(O+(D) − 1) ,

U(D) = w(D) + O(D) − 1 − 2(O−(D) − 1) .

Lemma 2.2 Let D1 ∗D2 be a connected link diagram that has a ∗-product decompo-
sition of two diagrams D1 and D2. _en, we have

L(D1 ∗ D2) = L(D1) + L(D2) and U(D1 ∗ D2) = U(D1) +U(D2).

Proof _e proof follows from the following facts:

ω(D1 ∗ D2) = ω(D1) + ω(D2),
O(D1 ∗ D2) = O(D1) + O(D2) − 1,

O+(D1 ∗ D2) = O+(D1) + O+(D2) − 1,
O−(D1 ∗ D2) = O−(D1) + O−(D2) − 1.

A diagram is homogeneous if it has a ∗-product decomposition whose factors are
some special alternating diagrams. A homogeneous link is a link represented by a
homogeneous diagram ([9], and see also [3, 4, 23]). Note that positive or negative
links are homogeneous.

Let ∆(D) be the half of the diòerence between U(D) and L(D), that is,

∆(D) ∶= (U(D) − L(D))/2 = O(D) + 1 − O+(D) − O−(D).

_e following result ensures that ∆(D) = 0 for any homogeneous diagram D.

_eorem 2.3 Let D = D1 ∗ D2 ∗ ⋅ ⋅ ⋅ ∗ Dn be a connected homogeneous diagram of a
link L, where each D i is a special alternating diagram. _en we obtain ∆(D) = 0.

Proof We have ∆(D i) = 0 for i = 1, . . . , n, since any special alternating diagram is
positive or negative. By Lemma 2.2 we obtain

L(D) = ∑ L(D i) = ∑U(D i) = U(D).
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Corollary 2.4 Let D = D1 ∗ D2 ∗ ⋅ ⋅ ⋅ ∗ Dn be a connected homogeneous diagram of
a link L, where each D i is a special alternating diagram. _en we have

s(L) =
n

∑
i=1

s(D i) = L(D) = U(D).

In particular, s(L) = −s(L).

_e following theorem was proved by the ûrst author. From _eorems 2.3 and 2.5,
we see that ∆(D) = 0 if and only if D is homogeneous.

_eorem 2.5 ([1]) Let D be a connected diagram of a link L. If ∆(D) = 0, then D is
homogeneous.

2.3 Kawamura’s Inequality

Kawamura [16] gave another estimate for the s-invariant for any non-positive and
non-negative knot. _e ûrst author [2] gave an alternative proof of the estimation by
using state cycles of the Lee homology. In this section, we determine the diòerence
between Kawamura–Lobb’s inequality and Kawamura’s inequality.

Let D be a diagram of a link. A Seifert circle of D is strongly negative (resp. positive)
if it is not adjacent to any positive (resp. negative) crossing. Let O<(D) (resp. O>(D))
be the number of the strongly negative (resp. positive) circles of D. _en we obtain
the following Kawamura’s inequality.

_eorem 2.6 ([16], see also [2]) Let D be a connected diagram of a non-positive and
non-negative link L. _en we obtain

w(D) − O(D) + 1 + 2O<(D) ≤ s(L) ≤ w(D) + O(D) − 1 − 2O>(D).

Remark 2.7 Kawamura [16] and the ûrst author [2] only proved the above theorem
for the s-invariants of knots. However, both of their methods can be applied to the
s-invariants for links.

Any strongly negative (resp. positive) circle of D is a connected component of the
diagram obtained from D by smoothing all negative (resp. positive) crossings of D.
Hence, if D is neither positive nor negative, we obtain

O<(D) + 1 ≤ O+(D) and O>(D) + 1 ≤ O−(D);
in particular, we notice that Kawamura–Lobb’s inequality is sharper than Kawamura’s
inequality.

Let D be a connected link diagram and let SD be the Seifert graph of D; that is, the
vertices of SD correspond to the Seifert circles of D and two vertices are connected by
an edge with the label + (resp. −) if there is a positive (resp. negative) crossing of D,
which is adjacent to the circles corresponding to the two vertices. Let S+D (resp. S−D)
be the graph obtained from SD by removing all the edges with the label − (resp. +)
and all the vertices corresponding to the strongly negative (resp. positive) circles of
D. If D is positive (resp. negative), the graph S−D (resp. S+D) is empty. _en we have
the following lemma.
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Lemma 2.8 Let D be a connected link diagram. _en we obtain

O<(D) + ∣S+D ∣ = O+(D) and O>(D) + ∣S−D ∣ = O−(D),

where ∣S+D ∣ and ∣S−D ∣ is the number of the components of S+D and S−D , respectively.

Proof From the deûnition, O+(D) is the number of the components of the graph
obtained from SD by removing all the edges with the label −. It is equal to the number
of the strongly negative circles of D and the components of S+D . Hence we obtain the
ûrst equality. By the same discussion, we have the second one.

Corollary 2.9 For any diagramD, the graph S+D (resp. S−D) is connected and not empty
if and only if O<(D) + 1 = O+(D) (resp. O>(D) + 1 = O−(D)).

Remark 2.10 From _eorems 2.3 and 2.5, for a link diagram D, the lower bound
and the upper bound of Kawamura–Lobb’s inequality are equal if and only if D is
homogeneous. On the other hand, fromCorollary 2.9, the lower bound and the upper
bound of Kawamura’s inequality are equal if and only if D is homogeneous, and S+D
and S−D are connected andnon-empty. Such a diagramhas a∗-product decomposition
whose factors are one positive diagram and one negative diagram. In [19, Remark
I.26], Lewark called such a diagram good diagram.

3 The s-invariants of Strongly Quasipositive Links

In this section, we give a computation of the s-invariant of strongly quasipositive links.
Recall that, for n ∈ Z>0, the n-braid group Bn , is a group that has the following

presentation.

⟨σ1 , σ2 , . . . , σn−1 ∣
σtσs = σsσt (∣t − s∣ > 1)

σtσsσt = σsσtσs (∣t − s∣ = 1) ⟩ .

Rudolph introduced the concept of a strongly quasipositive link (see [35]) as follows.
For 0 < i ≤ j − 1 < n, we deûne positive embedded band σi , j as

σi , j ∶= (σi , . . . , σ j−2)(σ j−1)(σi , . . . , σ j−2)
−1 and σ j−1, j ∶= σ j−1 .

A link is strongly quasipositive if it is represented by the closure of a braid of the form

β =
m

∏
k=1

σik , jk .

Let L be a strongly quasipositive link represented by the closure of β. _en L bounds
a surface F in S3 naturally, called a quasipositive surface (see Figure 1). _e Euler
characteristic χ(F) of the surface is equal to n −m, where n is the number of strands
of β, and m is the number of the positive embedded bands in β.
For a strongly quasipositive knot K, Livingston [21] and Shumakovitch [38] proved

that

τ(K) = s(K)/2 = g∗(K) = g(K) = g(F),
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~

Figure 1: An example of a quasipositive surface. _e closure of σ1σ2,4σ1,4 bounds the right
quasipositive surface.

where τ(K) is the Ozsváth–Szabó’s τ-invariant of K (see [27] and [33]) and F is a
quasipositive surface for K. _ese results are easily generalized to the s-invariant for
links.

_eorem 3.1 ([21]) Let L be a non-split strongly quasipositive link with ♯ L compo-
nents. _en

s(L) = 2g∗(L) + ♯ L − 1 = 2g(L) + ♯ L − 1 = 1 − χ(F),

where F is a quasipositive surface bounded by L.

Remark 3.2 In general, _eorem 3.1 does not hold for split links. In fact, if L is
2-component unlink, s(L) = −1 and 2g∗(L) + ♯ L − 1 = 1.

Remark 3.3 A link is quasipositive if it is the closure of a braid of the form

β =
m

∏
k=1

ωkσikω
−1
k ,

where ωk is a word in Bn . Let K be a quasipositive knot. _en τ(K) = s(K)/2 =

g∗(K). _is is due to Plamenevskaya [29] and Hedden [13] for τ, and Plamenevskaya
[30] and Shumakovitch [38] for s. By the samediscussion, we obtain the following. Let
L be a quasipositive link with ♯ L components. _enwe obtain s(L) = 2g∗(L)+♯ L−1.

4 Characterization of Positive Links

In this section, we prove characterizations of positive links.

Lemma 4.1 Let D be a connected reduced homogeneous diagram of a link L with ♯ L
components. If s(L) = 2g(L) + ♯ L − 1, then D has no negative crossings.

Proof Let D be a connected reduced homogeneous diagram of L. _en the genus of
L is realized by the genus of the surface constructed by applying Seifert’s algorithm to
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D (see [9]). _erefore, we obtain

2g(L) = 2 − ♯ L + c(D) − O(D),

where c(D) denotes the number of crossings of D. By _eorem 2.3, we have

s(L) = w(D) − O(D) + 2O+(D) − 1.

By assumption, s(L) = 2g(L) + ♯ L − 1. _is implies that O+(D) − 1 = c−(D),
where c−(D) denotes the number of negative crossings of D. If there exists a non-
nugatory negative crossing of D, then O+(D) − 1 < c−(D). _is contradicts the fact
that O+(D) − 1 = c−(D). _erefore, D has no negative crossing.

_eorem 4.2 (_eorem 1.3) Let L be a non-split link with ♯ L components. _en
(i)–(iv) are equivalent.
(i) L is positive.
(ii) L is homogeneous and strongly quasipositive.
(iii) L is homogeneous, quasipositive and g∗(L) = g(L).
(iv) L is homogeneous and s(L) = 2g∗(L) + ♯ L − 1 = 2g(L) + ♯ L − 1.

Proof (i)⇒ (ii) A positive link is strongly quasipositive (see [25] and [37]) and ho-
mogeneous.

(ii)⇒ (iii) If L is strongly quasipositive, then obviously L is quasipositive. More-
over, from _eorem 3.1, we have g∗(L) = g(L).

(iii)⇒ (iv) Since L is a quasipositive link, s(L) = 2g∗(L)+♯ L− 1 (see Remark 3.3).
By assumption, g∗(L) = g(L). _erefore, s(L) = 2g∗(L) + ♯ L − 1 = 2g(L) + ♯ L − 1.

(iv)⇒ (i) By Lemma 4.1, a homogeneous diagram of L with s(L) = 2g(L) + #L − 1
is a positive diagram.

Corollary 4.3 Let L be an alternating link L with ♯ L components. _en L is positive
if and only if s(L) = 2g(L) + ♯ L − 1.

Proof Cromwell [9] showed that alternating link diagrams are homogeneous. From
_eorem 1.3, an alternating link L is positive if and only if L satisûes s(L) = 2g(L) +
♯ L − 1.

_e following was proved by Nakamura [26].

Corollary 4.4 ([26]) Let L be a positive and alternating link. _en any reduced al-
ternating diagram of L is positive.

Proof It is known that a reduced alternating link diagram D of L are homogeneous.
If L is positive, we have s(L) = 2g(L) + ♯ L − 1. By Lemma 4.1, the diagram D has no
negative crossing; that is, D is positive.

5 The s-invariants of Almost Positive Links

In this section, we compute the s-invariants of almost positive links.
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A diagram is almost positive if it has exactly one negative crossing. _en we can
see that an almost positive link is not positive and is represented by an almost positive
diagram.

It is known that, for any link L, we obtain s(L) ≤ 2g∗(L)+♯ L−1. On the other hand,
for an almost positive link diagram D of a non-split link L, we can check H0, j

Kh(L) = 0
if j < −O(D) +w(D) = 2g(D) + ♯ L − 4, where H i , j

Kh(L) is the Khovanov homology
of L [18] and g(D) is the genus of the Seifert surface obtained from D by Seifert’s
algorithm. Hence, we obtain

2g(D) + ♯ L − 3 ≤ s(L) ≤ 2g∗(L) + ♯ L − 1 ≤ 2g(L) + ♯ L − 1 ≤ 2g(D) + ♯ L − 1.

Stoimenow proved that the three-genera of almost positive links are computed from
their almost positive diagrams as follows.

_eorem 5.1 ([42, Corollary 5 and the proof of _eorems 5 and 6]) Let D be an
almost positive diagram of a non-split link L with a negative crossing p.
(i) If there is no (positive) crossing joining the same two Seifert circles of D as the

circles that are connected by the negative crossing p, we have g(L) = g(D) (see
the le� of Figure 2).

(ii) If there is a (positive) crossing joining the same two Seifert circles of D as the circles
that are connected by the negative crossing p, we have g(L) = g(D) − 1 (see the
right of Figure 2).

Figure 2: In the le� picture, there is no crossing joining the same two Seifert circles as the two
circles that are connected by the negative crossing p. In the right picture, there is a crossing
joining the same two Seifert circles as the two circles that are connected by the negative cross-
ing p.

By the same discussion as [43], we can compute the s-invariants of almost positive
links as follows.

_eorem 5.2 Let D be an almost positive diagram of a link L with negative crossing
p.
(i) If there is no crossing joining the same two Seifert circles of D as the two circles that

are connected by the negative crossing p, we obtain

s(L) + 1 − ♯ L =2g∗(L) = 2g(L) = 2g(D).
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(ii) Otherwise, we obtain

s(L) + 1 − ♯ L =2g∗(L) = 2g(L) = 2g(D) − 2.

Proof Let D+ be the positive diagram obtained from D by the crossing change at p
and let L+ be the link represented by D+. By well known properties of the s-invariant,
we obtain

s(L+) − 2 ≤ s(L) ≤ s(L+),(5.1)
∣s(L)∣ ≤ 2g∗(L) + ♯ L − 1 ≤ 2g(L) + ♯ L − 1,(5.2)

s(L+) + 1 − ♯ L = 2g∗(L+) = 2g(L+) = 2g(D+)(= 2g(D)).(5.3)

(i) Suppose that there is no (positive) crossing joining the same two Seifert circles
as the circles that are connected by the negative crossing p. By (5.1), we can see that
s(L) = s(L+) or s(L+)− 2. By Lemma 5.3 and (5.3), we have s(L) /= 2g(D)+ ♯ L− 3 =
s(L+) − 2. Hence, we obtain s(L) = s(L+) = 2g(D) + ♯ L − 1. By (5.2), we have

2g(D) + ♯ L − 1 = s(L) ≤ 2g∗(L) + ♯ L − 1 ≤ 2g(L) + ♯ L − 1 ≤ 2g(D) + ♯ L − 1.

(ii) Suppose that there is a (positive) crossing joining the same two Seifert circles
as the circles which are connected by the negative crossing p: By _eorem 5.1, (5.2),
and (5.3), we obtain

2g(D) + ♯ L − 3 = s(L+) − 2 ≤ s(L) ≤ 2g∗(L) + ♯ L − 1
≤ 2g(L) + ♯ L − 1 = 2g(D) + ♯ L − 3.

Proof of Corollary 1.7 By _eorem 1.3, a homogeneous link L satisfying s(L) =

2g∗(L)+♯ L− 1 = 2g(L)+♯ L− 1 is a positive link. By_eorem 5.2, all almost positive
links satisfy s(L) = 2g∗(L)+ ♯ L− 1 = 2g(L)+ ♯ L− 1. Hence, any almost positive link
is not homogeneous.

Proof of_eorem 1.6 _eorem 1.6 follows from _eorems 3.1 and 5.2.

Lemma 5.3 ([43, Lemma 3.4]) Let D be an almost positive link diagram of a non-
split link L with a negative crossing p. If there is no (positive) crossing of D joining the
same two Seifert circles as the circles which are connected by the negative crossing p, we
have H0,2g(D)+♯ L−4

Kh (L) = 0, where H i , j
Kh(L) is the Khovanov homology of L and ♯ L is

the number of the components of L.

6 Strong Quasipositivities of Almost Positive Knots with up to 12
Crossings

In order to present evidence towards an aõrmative answer to Stoimenow’s question
(Question 1.5), in this section, we check the strong quasipositivities of almost positive
knots with up to 12 crossings. In Subsection 6.1, we ûnd all knots that are or may
be almost positive with up to 12 crossings. In Subsection 6.2, we check the strong
quasipositivities of these knots.
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6.1 The Positivities and Almost Positivities of Knots up to 12 Crossings

In this subsection, we consider the positivities and almost positivities of knots with up
to 12 crossings. Here, we call a knot positive if the knot or themirror image of the knot
has a positive diagram. By using Proposition 6.4, _eorems 1.3, 6.1–6.3, 6.5–6.6, and
Lemma 6.7, we can determine the positivities and almost positivities of knots with up
to 12 crossings except for 12n148, 12n276, 12n329, 12n366, 12n402, 12n528, and 12n660, which
have almost positive diagrams (here we used KnotInfo [7] due to Cha and Livingston,
and the Mathematica Package KnotTheory [5]). See Table 1.

_eorem 6.1 ([32, Corollary 1.7], [41, Corollary 6.1]) Nontrivial almost positive links
have negative signature.

_eorem 6.2 ([9, Corollaries 2.1 and 2.2], [45]) If L is an almost positive link or a
positive link, then all coeõcients of its Conway polynomial are non-negative.

_eorem 6.3 ([42, _eorem 6]) If L is an almost positive link, then
maxdegz ∇L(z) = maxdegz PL(v , z) = 1 − χ(L),

where ∇L is the Conway polynomial and PL(v , z) is the HOMFLYPT polynomial.

Proposition 6.4 ([40, Prop. 6.2]) Let K be an almost positive knot with g(K) ≥ 3.
_en its signature σ(K) is smaller than or equal to −4.

_eorem 6.5 ([9, Corollary 5.1]) If L is a homogeneous link and the coeõcient of the
maximal degree term of its Conway polynomial is ±1, then the number of the crossings
of a homogeneous diagram of L is at most 2 ⋅maxdegz ∇L(z), wheremaxdegz ∇L(z) is
the maximal degree of the Conway polynomial of L. In particular, the minimal crossing
number of L is at most 2 ⋅maxdegz ∇L(z).

_eorem 6.6 ([14,_eorem 1.4]) Positive knots up to genus two are quasialternating.

For the deûnition of quasialternating links, see [28].

Lemma 6.7 _e knot 12n638 is a positive knot.

Proof See Figure 3.

Figure 3: _e knot 12n638 has a positive diagram.
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Remark 6.8 In the above process, we ûnd some almost positive knots, 10145, 12n149,
12n332, 12n404, 12n432, and 12n642. _ey have almost positive diagrams, and 10145,
12n404 and 12n642 are not homogeneous by _eorem 6.5. _e knots 12n149, 12n332,
and 12n432 are not positive by _eorem 6.6.

_e knots 12n148, 12n276, 12n329, 12n366, 12n402, 12n528, and 12n660 are either positive
or almost positive, since they have almost positive diagrams. In general, it is hard to
check whether given almost positive link diagram represents a positive link or not.

Question 6.9 Are the knots 12n148, 12n276, 12n329, 12n366, 12n402, 12n528 and 12n660
non-positive? (If so, they are almost positive knots.)

Remark 6.10 In [41, Example 6.1] and [42, Corollary 10], Stoimenow introduced
inûnitely many almost positive knots.

≤ 11 crossings 12 crossings
total 801 2176

non-positive (negative) knots 693 2031 ≤, ≤ 2038
positive (negative) knots 108 138 ≤, ≤ 145

almost positive (negative) knots 1 5 ≤, ≤ 12

Table 1: _e positivities of knots with up to 12 crossings. To determine the almost
positivities of some knots, we use _eorem 6.3 and Proposition 6.4. _e only almost
positive knot with up to 11 crossings is 10145. _e knots, 12n149, 12n332, 12n404, 12n432,
and 12n642 are almost positive. Are 12n148, 12n276, 12n329, 12n366, 12n402, 12n528, and
12n660 almost positive?

6.2 Strong Quasipositivities of Almost Positive Knots with up to 12 Crossings

We check the strong quasipositivities of almost positive knots with up to 12 crossings.
In this section, we call a knot strongly quasipositive if the knot or the mirror image
of the knot is strongly quasipositive. From Table 1, the 6 knots, 10145, 12n149, 12n332,
12n404, 12n432, and 12n642 are almost positive. In addition, the 7 knots, 12n148, 12n276,
12n329, 12n366, 12n402, 12n528, and 12n660 may be almost positive, and other knots with
up to 12 crossings are not almost positive.
From Lemmas 6.12 and 6.14 and Table 1, we obtain the following proposition. _e

proposition is evidence towards an aõrmative answer to Question 1.5.

Proposition 6.11 All almost positive knots with up to 12 crossings are strongly quasi-
positive.

Lemma 6.12 _e 9 knots, 10145, 12n148, 12n276, 12n329, 12n366, 12n402, 12n528, 12n642
and 12n660 are strongly quasipositive.
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Proof It is known that these knots are ûbered (KnotInfo [7]). _ese knots are pos-
itive or almost positive, because they have almost positive diagrams. Note that pos-
itive links are strongly quasipositive (see [25, 37]). By _eorem 6.13, these knots are
strongly quasipositive.

_eorem 6.13 All ûbered almost positive knots are strongly quasipositive.

Proof Let K be a ûbered almost positive knot and let D be an almost positive di-
agram. Obviously, the diagram D has a ∗-product decomposition whose factors are
some positive diagrams D1 , . . . ,Dn−1 and one special almost positive diagram Dn .
Let S and S i be the Seifert surfaces obtained from D and D i , respectively. Note that
S1 , . . . , Sn−1 are quasipositive surfaces (see [25, 37]). We consider the following two
cases.

(i) Suppose that there is no crossing joining the same two Seifert circles of D as the
two circles that are connected by the negative crossing. In this case, by _eorem 5.1,
the surface S has minimal genus. In particular, the surface is the ûber surface. By
Gabai’s results [10, 11], the Seifert surface S i is also the ûber surface. _en, by Goda–
Hirasawa–Yamamoto’s result [12, Corollary 1.8], the ûber surface Sn is a plumbing
of positive Hopf bands. Since the positive Hopf band is a quasipositive surface and
plumbings preserve the quasipositivities of surfaces [36], the surface Sn is quasiposi-
tive. Hence, the surface S is quasipositive, since it is a Murasugi sum of the quasipos-
itive surfaces S1 , . . . , Sn (see [36]). In particular, the knot K is strongly quasipositive.

(ii) In other cases, by the same discussion as _eorem 5.2(ii), we have

τ(K) = g∗(K) = g(K) = g(D) − 1,

where τ(K) is Ozsváth–Szabó’s τ-invariant of K. Hedden [13, _eorem 1.2] proved
that for a ûbered knot K′, the knot is strongly quasipositive if and only if τ(K′) =
g∗(K′) = g(K′). Hence, K is strongly quasipositive.

Figure 4: 12n149 , 12n332 , 12n404 and 12n432 .

Lemma 6.14 _e knots 12n149, 12n332, 12n404, and 12n432 (see Figure 4) are strongly
quasipositive.

Proof Firstly, we check the strong quasipositivity of 12n149. As the pictures in Fig-
ure 5 show, the canonical Seifert surface of a positive knot diagram is obtained from a
Seifert surface of 12n149 by two deplumbings. Note that the canonical Seifert surface of
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Figure 5: _e top le� picture is the canonical Seifert surface of an almost positive diagram of
12n149 . _ese pictures show that the Seifert surface is quasipositive.

a positive knot diagram is quasipositive (see [25,37]). Since plumbings and deplumb-
ings preserve the quasipositivities of surfaces (see [36]), this Seifert surface of 12n149
is quasipositive. Hence, 12n149 is strongly quasipositive. By the same discussion, we
can prove that 12n332, 12n404, and 12n432 are strongly quasipositive (see Figures 6, 7,
and 8).

Figure 6: A proof of the strong quasipositivity of 12n332 .

7 Infinitely Many Counterexamples of Kauffman’s Conjecture on
Pseudo-alternating Links and Alternative Links

In this section, we give inûnitely many counterexamples of Kauòman’s conjecture on
pseudo-alternating links and alternative links.
At ûrst, we recall the deûnition of pseudo-alternating links [24]. A primitive �at

surface is the canonical Seifert surface obtained from a special alternating diagram by
Seifert’s algorithm. A generalized �at surface is an orientable surface obtained from
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Figure 7: A proof of the strong quasipositivity of 12n404 .

Figure 8: A proof of the strong quasipositivity of 12n432 .

some primitive �at surfaces by Murasugi sum along their Seifert disks (for example,
see the bottom ûgure in Figure 10). _en a link is pseudo-alternating if it bounds a
generalized �at surface.

Next, we recall the deûnition of alternative links [15]. For a link diagram D, the
spaces of D are the connected components of the complement of the Seifert circles of
D in S2. We draw an edge joining two Seifert circles at the place where a crossing of
D connects the circles. Moreover, we assign the sign “+" (resp. “−") to an edge if the
crossing corresponding to the edge is positive (resp. negative). _en a diagram D is
alternative if for each space X of D, all the edges in X have the same sign.
From the deûnitions, we have the following corollary.

Corollary 7.1 All alternative links are homogeneous. All homogeneous links are
pseudo-alternating.

Kauòman conjectured that all pseudo-alternating links are alternative.
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=
=

Figure 9: _e knot Kn introduced by Stoimenow [41, Example 6.1], where n ≥ 0 is the number
of the full twists. Stoimenow proved that Kn is almost positive.

Conjecture 7.2 ([15]) All pseudo-alternating links are alternative.

However, this conjecture is false. In fact, Silvero [39] introduced two counterex-
amples: 10145 and L9n18.

Here, we prove that the inûnitely many almost positive knots introduced by Stoi-
menow (which contains 10145) are counterexamples for this conjecture.

Proposition 7.3 Let Kn be the knot depicted in Figure 9. _en Kn is non-alternative
and is pseudo-alternating.

Proof Stoimenow [41, Example 6.1] proved that Kn is almost positive. By Corol-
lary 1.7, the knot Kn is not homogeneous, in particular, not alternative. On the other
hand, by Figure 10, the knot Kn bounds a generalized �at surface.

Figure 10: _e top le� picture is a Seifert surface of Kn . By isotopy, the surface changes into the
bottom surface, which is a generalized �at surface.

Proof of Proposition 1.8 _is follows from Proposition 7.3.

Finally, we give two questions.

Question 7.4 Are all almost positive links pseudo-alternating?
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Question 7.5 Are all homogeneous links alternative?
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