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Abstract
Phonological processes tend to involve local dependencies, an observation that has been expressed explicitly
or implicitly in many phonological theories, such as the use of minimal symbols in SPE and the inclusion of
primarily strictly local constraints in Optimality Theory. I propose a learningbased account of local phonological
processes, providing an explicit computational model. The model is grounded in experimental results that suggest
children are initially insensitive to longdistance dependencies and that as their ability to track nonadjacent
dependencies grows, learners still prefer local generalisations to nonlocal ones. Themodel encodes these results by
constructing phonological processes starting around an alternating segment and expanding outward to incorporate
more phonological context only when surface forms cannot be predicted with sufficient accuracy. The model
successfully constructs local phonological generalisations and exhibits the same preference for local patterns that
humans do, suggesting that locality can emerge as a computational consequence of a simple learning procedure.
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1. Introduction

Phonological processes tend overwhelmingly to involve dependencies between adjacent segments
(Gafos 1999; Chandlee et al. 2014). For example, the English plural allomorph depends on the stem
final segment, to which it is adjacent, as in (1).

(1) /dɑɡz/→ [dɑɡz]
/kætz/→ [kæts]
/hɔrsz/→ [hɔrsәz]

Moreover, underlying forms are often posited to be minimally different from surface forms, exhibit
ing abstractness only when surface alternation necessitates it (Kiparsky [1968] 1982; Peperkamp et al.
2006; Ringe & Eska 2013; Richter 2021). This is supported by experimental findings, where children
avoid introducing discrepancies between surface and underlying forms when there is little motivation
for doing so (Jusczyk et al. 2002; Kerkhoff 2007; Coetzee 2009; van de Vijver & BaerHenney 2014).

When, and only when, concrete representations are abandoned in favour of (minimally) abstract
underlying representations, a childmust learn a phonological process to derive the surface form from the
abstract underlying form. Experimental studies are revealing about the mechanism underlying sequence
learning: humans show a strong proclivity for tracking adjacent dependencies, beginning to track non
adjacent dependencies only when the data overwhelmingly demands it (Saffran et al. 1996, 1997;
Aslin et al. 1998; Santelmann & Jusczyk 1998; Gómez 2002; Newport & Aslin 2004; Gómez & Maye
2005). As Gómez & Maye (2005: 199) put it, ‘It is as if learners are attracted by adjacent probabilities
long past the point that such structure is useful’. Indeed, artificiallanguage experiments have repeat
edly demonstrated that learners more easily learn local phonological processes than nonlocal ones
(BaerHenney & van de Vijver 2012) and, when multiple possible phonological generalisations are
consistent with exposure data, learners systematically construct the most local generalisation (Finley
2011; White et al. 2018; McMullin & Hansson 2019).

In this article, I hypothesise a mechanistic account of how learners construct phonological gener
alisations, modelling the learner’s attention as initially fixed locally and expanding farther only when
local dependencies do not suffice. The proposed model incorporates the idea that the learning of a
phonological process is triggered when, and only when, underlying abstraction introduces discrepancies
between underlying and surface representations (Kiparsky [1968] 1982). I view the model’s locally
centred attention and default assumption of identity as computationally parsimonious, and thus call it
theParsimonious Local Phonology (PLP) learner.When presented with small amounts of childdirected
speech, PLP successfully learns local phonological generalisations. PLP’s search strategy – starting as
locally as possible – leads it to accurately exhibit the same preference for local patterns that humans
do. Next, I review experimental results on locality in §1.1, the view of learning that PLP adopts in §1.2
and how these reflect principles of efficient computation in §1.3.

1.1. Locality

Early studies of statistical sequence learning found infants to be sensitive only to dependencies between
adjacent elements in a sequence. Saffran et al. (1996, 1997) and Aslin et al. (1998) found infants
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as young as 8 months to be sensitive to dependencies between adjacent elements, while Santelmann
& Jusczyk (1998) found that even at 15 months, children did not track dependencies between non
adjacent elements. Studies with older participants revealed that the ability to track nonadjacent
dependencies does eventually emerge: adults show a sensitivity to dependencies between nonadjacent
phonological segments (Newport & Aslin 2004), and 18monthold children can track dependencies
between nonadjacent morphemes (Santelmann & Jusczyk 1998). However, even as sensitivity to
nonadjacent dependencies develops, learners still more readily track local dependencies. Gómez
(2002) found that 18montholds could track nonadjacent dependencies, but that they only did so
when adjacent dependencies were unavailable. Gómez & Maye (2005) replicated these results with
17montholds, and attempted to map the developmental trajectory of this ability to track nonadjacent
dependencies, finding that it grew gradually with age. At 12 months, infants did not track nonadjacent
dependencies, but they began to by 15 months, and showed further advancement at 17 months. These
experiments involved a range of elements: words, syllables, morphemes and phonological segments.
Moreover, similar results have been observed in different domains, such as vision (Fiser & Aslin
2002). Together, these results suggest that learners might discover only local patterns at early stages in
development and that even after sensitivity to less local patterns emerges, a preference for local patterns
persists.

Further experiments targeted phonological learning in particular. Subjects in Finley’s (2011)
artificiallanguage experiments learned bounded (local) harmony patterns and did not extend them to
nonlocal contexts when there was no evidence for doing so. However, when exposed to unbounded
(nonlocal) harmony patterns, subjects readily extended them to local contexts. This asymmetry
suggests that learners will not posit less local generalisations until the evidence requires it. McMullin
& Hansson (2019) replicated these results with patterns involving liquids and with dissimilation.
BaerHenney & van de Vijver (2012) used an artificiallanguage experiment to test the role of locality
(as well as substance and amount of exposure) in learning contextually determined allomorphs.
They found that when the allomorph was determined by a segment two positions away, learners more
easily acquired and extended the pattern than when the allomorph was determined by a segment three
positions away. In short, these studies demonstrate that learners posit the most local generalisation
consistent with the data.

1.2. The nature of the learning task

I adopt the view of others (e.g., Hale & Reiss 2008; Ringe & Eska 2013; Richter 2021) that children
initially store words concretely, as accurately to what they perceive as their representational capacities
allow. As their lexicon grows, surface alternations sometimes motivate the positing of abstract
underlying forms, which introduce discrepancies between underlying and surface forms. For example,
as Richter (2018, 2021) has characterised in rigorous detail, alternations such as ‘eat’ [it]∼ ‘eating’ [iɾɪŋ]
lead to the flap [ɾ] and stop [t] being collapsed into allophones of underlying /T/. Similarly, a morphemic
surface alternation such as ‘cats’ [kæts] ∼ ‘dogs’ [dɑɡz] may motivate an abstract underlying plural
suffix /Z/ (or default /z/; Berko 1958). This view is in the spirit of Kiparsky’s ([1968] 1982) Alternation
Condition, and has been termed invariant transparency (Ringe & Eska 2013).

A consequence is that when, and only when, concrete segments are collapsed into abstract underlying
representations, the need for a phonological grammar arises, to derive the surface forms for abstract
underlying forms. I will use the example of stops following nasals to exemplify two significant
corollaries. Voiceless stops following nasals are often considered to be a marked sequence, because
postnasal articulation promotes voicing, and postnasal voicing is typologically pervasive (Locke 1983;
Rosenthall 1989; Pater 1999; Hayes & Stivers 2000; Beguš 2016, 2019). Nevertheless, many languages
– for example, English – tolerate postnasal voiceless stops,1 and a few even exhibit productive,

1I note that passive, phonetic postnasal voicing still occurs in some such languages (Hayes & Stivers 2000); I am referring
here to phonological voicing.
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phonological postnasal devoicing. For example, Coetzee & Pretorius (2010) performed a detailed
experimental study of Tswana speakers, finding that some extended postnasal devoicing, as in (2),
productively to nonce words.

(2) Postnasal devoicing in Tswana (Coetzee & Pretorius 2010: 406)
a. /mbatla/ → [mpatla] ‘want me’

/mbotsa/ → [mpotsa] ‘ask me’
/mbulela/ → [mpulela] ‘open (for) me’

b. /rebatla/ → [rebatla] ‘want us’
/rebotsa/ → [rebotsa] ‘ask us’
/rebulela/ → [rebulela] ‘open (for) us’

Beguš (2019: 699) found postnasal devoicing to be reported as a sound change in 13 languages and
dialects, and argues that although this pattern appears to operate against phonetic motivation, it likely
emerged in each case as the result of a sequence of sound changes that were individually phonetically
motivated.

Including a constraint to mark postnasal voiceless stops in languages that tolerate them makes
the learning task unnecessarily difficult, because the constraint must then be downranked despite the
absence of surface alternations. Instead, under invariant transparency, children learning languages that
tolerate postnasal voiceless stops will simply not learn a phonological process regarding postnasal
stops, because there is nothing to learn. Moreover, when surface alternations that lack or operate in
opposition to phonetic motivation (e.g., postnasal devoicing) occur synchronically due to diachronic
processes or other causes, no serious problem arises: the child simply learns a phonological process
to account for the observed alternation, as has been observed in experiments (Seidl & Buckley 2005;
Beguš 2018).

The view that children initially hypothesise identity between surface and underlying forms enjoys
experimental support. Jusczyk et al. (2002) found that 10monthold infants better recognise faithful
word constructions than unfaithful ones. Van de Vijver & BaerHenney (2014) found that both
5–7yearolds and adults were reluctant to extend German alternations to nonce words, preferring
instead to treat the nonce SRs as identical to their URs. Kerkhoff (2007) reports a consistent preference
for nonalternation in Dutch children aged 3–7 years. In an artificiallanguage experiment, Coetzee
(2009) found that learners more often extend nonalternation than alternation to test words, suggesting
that this is learners’ default.

Of course, children’s initial productions are not faithful to adult productions (Smith 1973; Fikkert
1994; Grijzenhout & Joppen 1998; Grijzenhout & JoppenHellwig 2002; Freitas 2003), but this is likely
due to underdeveloped control of the child’s articulatory system, rather than an early state of the adult
grammar (see Hale & Reiss 2008, §3.1 for a detailed argument). For instance, children systematically
fail to produce complex CC syllable onsets in early speech even in languages that allow complex onsets,
like Dutch, German, Portuguese and English (Fikkert 1994; Grijzenhout & Joppen 1998; Grijzenhout
& JoppenHellwig 2002; Freitas 2003; Gnanadesikan 2004). Clusters tend to be reduced by deleting
a consonant, and development proceeds from a cluster reduction stage to a full CC production stage,
suggesting the discrepancy may be due to limited articulatory control.

PLP is a model of how phonological processes are learned once underlying abstraction leads to
discrepancies in (UR, SR) pairs, which constitute PLP’s input. As some reviewers of this article pointed
out, the task of learning phonological processes to account for discrepancies between underlying and
surface forms is intertwined with the task of figuring out when such abstract underlying representations
are formed, and what they are like. This is evident when comparing the English plural voicing
alternation (e.g., cats [kæts] ∼ dogs [dɑɡz]) to the Dutch plural voicing alternation (e.g., [bɛt] ‘bed’ ∼
[bɛdәn] ‘beds’; Kerkhoff 2007: 1). English speakers show clear productive, rulelike behaviour (Berko
1958), while Dutch speakers’ generalisation is less clearly rulelike (Ernestus &Baayen 2003; Kerkhoff
2007). The Dutch alternation is obfuscated by its interaction with other voicing alternations such as
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assimilation (Buckler & Fikkert 2016, §2). Consequently, it may be that the English alternation is
systematic enough to drive the learner to systematic underlying abstraction, while the Dutch alternation
is not.

Thus, a complete theory of phonological learning must include, in addition to the mechanism by
which processes are learned, a precise mechanism characterising how and when abstract underlying
forms are posited. For example, Richter (2018, 2021) has hypothesised a mechanism by which learners
abandon the null hypothesis of concrete underlying forms in favour of abstraction, and applied it to the
case of the English [t] ∼ [ɾ] allophones. The results closely matched lexical studies of child utterances,
including a Ushaped development curve. Thus, PLP is just one part of the story. However, I believe
that this part of the story – learning phonological processes from (UR, SR) pairs – is nevertheless
important, and in line with the vast majority of prior work on learning phonological grammars, which
have likewise tended to presuppose abstract underlying forms for use in, for example, constraint ranking
(Legendre et al. 1990; Boersma 1997; Tesar & Smolensky 1998; Boersma & Hayes 2001; Smolensky
& Legendre 2006; Boersma & Pater 2008).2

1.3. Locality and identity as principles of computational efficiency

Locality and identity have natural interpretations as principles of computational efficiency, or ‘third
factors’ (Chomsky 2005; Yang et al. 2017). The more local the context around an underlying
segment, the fewer segments the cognitive system need be sensitive to in determining its output
(Rogers et al. 2013: 99). Moreover, it is computationally simpler to copy input segments to the output
unaltered than to change them in the process.

I presentmy proposedmodel in §2, discuss priormodels in §3, evaluate themodel in §4, and conclude
with a discussion in §5.

2. Model: PLP

The proposed model is called PLP, for Parsimonius Local Phonology learner. PLP learns from an input
of (UR, SR) pairs, which may grow over time as the learner’s vocabulary expands. It constructs the
generalisations necessary to account for which segments surface unfaithfully in those pairs and in what
phonological contexts that happens. These generalisations are placed in a grammar, for use in producing
output SRs for input URs.

(3) PLP learning algorithm
Input: (UR, SR) pairs
a. Initialise an empty grammar G and empty vocabulary V
b. While there are more pairs (u, s) to learn from do

i. Update V with (u, s)
ii. Use G to predict surface representation ŝ for underlying u (§2.3.4)
iii. For each discrepancy between u and s not accounted for in ŝ do (§2.1)

α. Construct a generalisation g for the discrepancy (§2.2)
β. Encode g in G (§2.3)

iv. Update any generalisations that now overextend due to V growth (§2.4)

2One reviewer pointed out that the concept of underlying forms faces scepticism and that many phonologists have rejected
the concept altogether. I acknowledge that the view of learning described here is not uncontroversial. Hyman (2018) provides a
discussion of the merits of underlying representations.
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PLP assumes identity between URs and SRs by default: it adds generalisations to G only in step
(3biii), when discrepancies arise. A locality preference emerges from the generalisation strategy it
employs in steps (3biiiα) and (3biv): PLP starts with the narrowest context around an unfaithfully
surfacing segment and proceeds further outward from the segment onlywhen an adequate generalisation
cannot be found. Consequently, I consider steps (3biiiα) and (3biv), together with the addition of
generalisations to the grammar only when motivated by discrepancies, to be PLP’s main contributions.
The code is available on GitHub.3

2.1. The input

The input to PLP is a set of (UR, SR) pairs, which may grow over time, simulating the learner’s
vocabulary growth. As discussed in §1.2, discrepancies between a UR and its corresponding SR arise
when a learner abandons concrete underlying representations in favour of underlying abstraction.
A discrepancy can be an input segment that does not surface (deletion), an output segment that has
no input correspondent (epenthesis) or an input segment with a nonidentical output correspondant
(segment change). In this work, I treat the (UR, SR) pairs, with discrepancies present, as PLP’s input.
Future workwill combine this with the important problem ofwhen abstract underlying forms are posited
(e.g., Richter 2018). I also assume that the correspondence between input and output segments is known.
The same assumption is tacit in constraint ranking models, which use the correspondence for computing
faithfulness constraint violations.

The URs and SRs are sequences of segments, which I treat as sets of distinctive features (Jakobson
& Halle 1956; Chomsky & Halle 1968). Thus, structuring sound into a phonological segment inventory
organised by distinctive features is treated as a separate learning process (e.g.,Mayer 2020). I use feature
assignments from Mortensen et al. (2016).

I will use the English plural allomorph as a running example. Suppose that at an early stage in
acquisition, a child has memorised some of the plural forms of nouns in their vocabulary, as in (4).

(4) /dɑɡz/, /kæts/, /hɔrsәz/, . . .

At this stage, an empty grammar, which regurgitates each memorised word, will suffice. More
over, since no discrepancies yet exist, PLP will be content with this empty grammar: the for loop
(step (3biii)) will not be entered. As the child begins to learn morphology, they may discover the
morphological generalisation that plurals tend to be formed by suffixing /z/. All of the child’s plural
URs will then, in effect, be reorganised as in (5).

(5) /dɑɡz/, /kætz/, /hɔrsz/, . . .

At this point, when the child goes to use their grammar (step (3bii)), they will discover that it now
predicts *[kætz] and *[hɔrsz], inconsistent with their expectation based on prior experience with the
words. The newly introduced discrepancies trigger the for loop (step (3biii)) and require PLP to provide
an explanation for them. Suppose the first word to trigger this is /kætz/, erroneously predicted as
*[kætz] instead of the expected [kæts]. PLP then constructs a generalisation to capture the phonological
context in which /z/ surfaces as [s] (step (3biiiα)).

2.2. Constructing generalisations

The core component of PLP is its component for constructing generalisations (step (3biiiα)).

3https://github.com/cbelth/PLP
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2.2.1. The structure of generalisations
The generalisations that PLP constructs are pairs g = (s̄, a) ∈ S×A, where s̄ ∈ S (6) is a sequence and
a ∈ A (7) is an action carried out at a particular position in the sequence. Each element in a sequence
is a set of segments from the learner’s segment inventory, Σ (6).4

(6) S ,
∪∞
k=1{s1s2...sk : si ⊂ Σ}

A set of segments may be extensional, e.g., si = {s, ʃ, z, ʒ}, or a natural class – e.g., si = [+sib]. An
action can be any of those listed in (7): deletion of the ith segment, insertion of new segment(s) to the
right of the ith segment,5 or setting the ith segment’s feature f to + or −.6

(7) A , {DEL(i), INS(snew, i), SET(f,±, i)}
For example, the generalisation in (8a) states that a consonant is deleted when it follows and precedes

other consonants; (8b) says that a schwa is inserted to the right of any sibilant that precedes another
sibilant; and (8c) says that the voicing feature of voiced obstruents in syllablefinal position is set to −
(using ]𝜎 ∈ Σ to indicate the right boundary of a syllable).
(8) a. ([+cons][+cons][+cons], DEL(2))

b. ([+sib][+sib], INS(‘ә’, 1))
c. ([+voi,−son] ]𝜎 , SET(voi, ‘−’, 1))

Any grammatical formalism capable of encoding these generalisations could be used, but in this
article I chose a rulebased grammar. The specified set of possible actions is meant to cover a majority
of phonological processes, but more could be added if necessary (e.g. metathesis).

The part of the sequence picked out by the index i determines the target of the rule, and the part of
the sequence to the left and right of i determine the rule’s left and right contexts. Each type of action
(7) can be encoded in one of the rule schemas in (9), where k = |s̄|.
(9) a. DEL(i) si → ∅ / s1...si−1 __ si+1...sk

b. INS(snew, i) ∅ → snew / s1...si __ si+1...sk
c. SET(f, ‘+’, i) si → [+f] / s1...si−1 __ si+1...sk
d. SET(f, ‘−’, i) si → [−f] / s1...si−1 __ si+1...sk

Thus, the generalisations in (8) are encoded as the rules in (10).
(10) a. [+cons]→ ∅ / [+cons] __ [+cons]

b. ∅ → ә / [+sib] __ [+sib]
c. [+voi, −son]→ [−voi] / __ ]𝜎

Each sequence inS is strictly local (McNaughton& Papert 1971) – describing a contiguous sequence
of segments (see Appendix A for elaboration) – and has the same structure as the ‘sequence of feature
matrices’ constraints fromHayes &Wilson (2008: 391). Moreover, the input–output relations described
by each generalisation are probably7 input strictly local maps (Chandlee 2014). These structures are
not necessarily capable of capturing all phonological generalisations, and intentionally so. Typological
considerations point to strict locality as a central property of generalisations, due to its prevalence
(Chandlee 2014) and repeated occurrence across representations (Heinz et al. 2011). This article is
intentionally targeting precisely those generalisations, and I discuss principled extensions for nonlocal
generalisations in §5.2.

4These elements may also contain syllable and wordboundary information, which I implement following Chomsky & Halle
(1968) and Hayes & Wilson (2008) by introducing a [±segment] feature and corresponding [−segment] element in Σ to mark
boundaries.

5Insertion in initial position is achieved with i = 0.
6More generally, we can treat the first parameter as a vector of features and the second as a vector of ± values to capture

multiple feature changes, but for simplicity I only describe the case of a single feature change.
7It is generally believed that processes describable with the types of rules that PLP constructs are input strictly local maps

(Chandlee 2014), but – to the best of my knowledge – there does not exist a published proof of this fact. See Appendix A for more.
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2.2.2. Searching generalisations
When PLP encounters a discrepancy – an input segment surfacing unfaithfully – it uses the algorithm
in (11) to construct a generalisation g = (s̄, a). I refer to the discrepancy as x→ y, where x is the input
segment and y ≠ x is its surface realisation.

(11) Algorithm for constructing generalisations
Input: A discrepancy, x→ y, and the current training vocabulary V
a. Initialise a window w̄ = [{x}] of width one
b. Infer a from x→ y and initialise a generalisation g = (w̄, a)
c. While g is insufficiently accurate over V do8 (§2.2.3)

i. Expand the width of the window by length one (§2.2.4)
ii. Set g’s sequence s̄ to the most accurate context around x

that fits in w̄ (§2.2.4)

PLP uses a window, w̄, to control the breadth of its search. The window is a sequence of cells that
can be filled in to create g’s sequence (6). The window starts with only one cell, filled with s0 = {x}
(step (11a)). PLP then infers the type of change from x to y as in (12).

(12) a =


DEL if x→ ∅ (y = ∅)
INS if ∅ → y (x = ∅)
SET otherwise

For INS, the value inserted (snew) is y; for SET, the featured changed (f ) and its value (+ or −) are
inferred from the difference between x and y. The index i specifies where x falls in g’s sequence, s̄;
initially, since s̄ = w̄ = [{x}], i = 1 (step (11b)).

As Figure 1a visualises, PLP starts with the most local generalisation, which makes no reference
to the segment’s context: the segment always surfaces unfaithfully. In the running example, PLP first
posits (13), which predicts that /z/ always surfaces as [s] (Figure 1b).

(13) /z/→ [−voi] / __
This, however, is contradicted by other words in the vocabulary: /z/ surfaces faithfully as [z] in

words like [dɑɡz] and with an epenthetic vowel in words like [hɔrsәz], which suggests that this initial
generalisation is wrong (step (11c)) and that the breadth of the search must be expanded (Figure 1a).

2.2.3. When to expand breadth of search
To come to such a verdict, PLP computes the number of predictions the rule makes over the current
vocabulary and how many of those are correct. The number of predictions (13) makes is the number of
times /z/ appears in the learner’s vocabulary, and those that surface as [s] are the correct predictions.
There are a number of options for determining the adequacy of the generalisation. We could require
a perfect prediction record, but this may be too rigid due to the near inevitability of exceptions in
naturalistic data. More generally, we could place a threshold on the number or fraction of errors that the
generalisation can make. The choice of criterion does not substantially change PLP: going from local
generalisations to less local ones proceeds in the same way regardless of the quality criterion, which
simply determines the rate at which the more local generalisations are abandoned. In this work, PLP
uses the Tolerance Principle (Yang 2016) as the threshold, which states that a generalisation making
N predictions about what an underlying segment surfaces as is productive – and hence the while loop
(step (11c)) can be exited – if and only if the number of incorrect predictions it makes (called e for
exceptions) satisfies (14).

(14) e ≤ N
lnN

8The loop also exits if the search runs out of context, in which case no sufficiently accurate generalisation is possible.
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(a) (b) (c)

Figure 1. (a) The width of PLP’s search expands outward (upward arrows) when and only when an
adequate generalisation cannot be formed from a narrower context. (b) and (c) An example of PLP
on seven English plural nouns. (b): PLP’s first generalisation (13) is based on only the alternating
segment and makes too many wrong predictions; this triggers PLP to expand its attention window. (c)
PLP then forms generalisation (15a), which is based on the leftadjacent segment and allows the /z/→
[s] instances to be isolated.

The threshold is cognitively motivated, predicting that children accept a linguistic generalisation
when it is cognitively more efficient to do so (see Yang 2016, ch. 3 for how this threshold is identified).
Since the threshold is based on cognitive considerations and has had success in prior work (e.g., Schuler
et al. 2016; Koulaguina & Shi 2019; Emond & Shi 2021; Richter 2021; Belth et al. 2021), it is a
reasonable choice for this article. In the current example, (13) has N = 7 and e = 4, which fails the
criterion in (14): 4 > 7

ln 7 (≈ 3.6). Thus, the while loop in (11c) is entered.

2.2.4. Expanding breadth of search
Once the initial hypothesis that /z/ always surfaces as [s] is ruled out as too errant, PLP adds one cell
to the window (step (11ci)). PLP fills the window with the sequence that matches the fewest of the
sequences where /z/ does not surface as [s]. In other words, it chooses the context that better separates
words like /kæt/ from words like /dɑɡ/ and /hɔrs/. Thus, for the vocabulary in Figure 1b and 1c, PLP
prefers (15a) over (15b) because a left context of {t, p, f} is more successful than a right context of {#}
at distinguishing the places where /z/ does indeed surface as [s] from those where it does not.9 That is,
PLP chooses the rule with the most accurate context fitting in the current window, where accuracy is
measured as the fraction of the rule’s predictions over the training URs that match the corresponding
training SRs. In our example, then, PLP’s second hypothesis is that /z/ surfaces as [s] whenever it
follows a /t/, /p/, or /f/.

(15) a. /z/→ [−voi] / {t, p, f} __
b. /z/→ [−voi] / __ {#}

Figure 1a visualises PLP’s search: it hypothesises a context where an underlying segment surfaces
as some particular segment other than itself, checking whether the hypothesis is satisfactorily accurate,

9The symbol # denotes a word boundary.
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and expanding the breadth of its search if not. This process halts once a sufficiently accurate hypothesis
has been discovered.

2.3. Encoding generalisations in a grammar

The generalisations that PLP constructs are encoded in a grammar to be used in producing an SR for an
input UR. The grammar, G, consists of a list of rules. Each time PLP constructs a generalisation (step
(3biiiα)), it is placed in the appropriate rule schema (9) and added to the list of rules. If PLP replaces
a generalisation due to underextension or overextension (step (3biv)), as described in §2.4, the old,
offending rule is removed and a new one added. §2.3.1 discusses how rules that carry out the same
action are combined; §2.3.2 discusses how natural classes are induced; §2.3.3 discusses how the list of
rules is ordered and §2.3.4 discusses how G produces outputs from inputs.

2.3.1. Combining generalisations
Generalisations that carry out the same change over different segments are combined in the grammar,
so long as the resulting rule is accurate to a degree that satisfies the criterion in (14). For instance, the
three rules in (16a) would be grouped into the single rule (16b).

(16) a. /d/→ [−voi] / __ ]𝜎
/v/→ [−voi] / __ ]𝜎
/ɡ/→ [−voi] / __ ]𝜎

b. {d, v, ɡ}→ [−voi] / __ ]𝜎

2.3.2. Inducing natural classes
Up to this point, PLP’s generalisations have been over sets of particular segments. Humans appear to
generalise from individual segments to natural classes, as has been recognised by theory (Chomsky &
Halle 1965; Halle 1978; Albright 2009) and evidenced by experiment (Berent & Lennertz 2007; Finley
& Badecker 2009; Berent 2013).

PLP thus attempts to generalise to natural classes for each set of segments in a generalisation’s
sequence s̄, in terms of shared distinctive features (Jakobson & Halle 1956; Chomsky & Halle 1968).
The procedure can be thought of as retaining only the features shared by segments in s̄ needed to keep
the rule satisfactorily accurate. To exemplify this part of the model, I will assume PLP has constructed
the epenthesis rule in (17), which produces mappings such as /hɔrsz/→ [hɔrsәz].

(17) ∅ → ә / {s, ʃ, z} __ {z}

The procedure, outlined in (18), starts with a new sequence n̄ of length |s̄|, with each element an
empty natural class (step (18a)).

(18) Procedure for inducing natural classes
Input: A generalisation g = (s̄, a)
a. Initialise a new generalisation gnc = (n̄, a) with empty natural classes, n̄
b. Initialise feature options for natural classes
c. While gnc is insufficiently accurate over V do

Add to n̄ the feature that best narrows n̄’s extension down to s̄’s
d. Replace g with gnc

For the rule in (17), the sequence s̄ is (19a) and the (empty) initial natural class sequence is (19b).
Each element of n̄ can take any feature shared by the corresponding segments in s̄, so the set of feature
options is (19c), which includes elements like (+sib, 1) because {s, ʃ, z} share ‘+sib’ as a feature and
(+voi, 2) because {z} has ‘+voi’ as a feature, but it does not include (+voi, 1) because {s, ʃ, z} do not
agree in this feature.
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(19) a. s̄ = {s, ʃ, z}{z}
b. n̄ = [ ] [ ]
c. {(+cons, 1), (+sib, 1), (−son, 1), ..., } ∪ {(+sib, 2), (+voi, 2) ...}

In the while loop (step (18c)), features are added one at a time to n̄, choosing at each step the feature
from (19c) that best narrows the extension of n̄ (initially all sequences of length |s̄|) to those in the
extension of s̄ (which is {sz, ʃz, zz}). Thus, adding the feature ‘+sib’ to the first natural class (20a) will
narrow n̄’s extension towards s̄’s better than ‘+cons’. As before, the new generalisation gnc is evaluated
according to the Tolerance Principle threshold in (14). In the current example, n̄ (20a) will still have
sequences like {st, zi, ʃu, ...} in its extension, so ‘+sib’ will then be added to the second natural class
(20b).

(20) a. n̄ = [+sib] [ ]
b. n̄ = [+sib] [+sib]

This new sequence, n̄, still has an extension greater than the original s̄. However, because adjacent
sibilants are indeed disallowed in English, this inductive leap is possible, and thus (17) will be replaced
with (21) in the grammar.

(21) ∅ → ә / [+sib] __ [+sib]

This differs from the natural class induction in Albright & Hayes (2002, 2003), which generalises
as conservatively as possible by retaining all shared features (see §B.4).

It may be possible for natural class induction to influence ruleordering, so PLP identifies natural
classes before determining the order in which the rules should apply. Specifically, natural classes are
induced with rules temporarily ordered by scope (narrowest first), before the final ordering is computed
as in §2.3.3.

2.3.3. Rule ordering
In some cases, phonological processes may interact, in which case the interacting rules may need to be
ordered. The topic of rule interaction and ordering has received immense attention in the literature –
especially in discussions of opacity – and extends well beyond the scope of the current article. However,
I will summarise PLP’s approach to rule ordering, and characterise the path to a more systematic study
of PLP’s handling of complex rule interactions.

The standard rule interactions discussed in the literature are FEEDING, BLEEDING, COUNTERFEEDING
and COUNTERBLEEDING, described in (22) following McCarthy (2007) and Baković (2011).

(22) Given two rules ri and rj, where ri precedes rj,
a. ri feeds rj iff ri creates additional inputs to rj
b. ri bleeds rj iff ri destroys potential inputs to rj
c. rj counterfeeds ri iff rj creates additional inputs to ri
d. rj counterbleeds ri iff rj destroys additional inputs to ri

Counterfeeding and counterbleeding are counterfactual inverses of feeding and bleeding: if rj
counterfeeds (or counterbleeds) ri, it would feed (or bleed) ri if it preceded ri. McCarthy’s (2007, §5.3)
example of feeding, reproduced in (23), comes from Classical Arabic, where vowel epenthesis before
wordinitial consonant clusters (ri) feeds [ʔ] epenthesis before syllableinitial vowels (rj).

(23) Feeding order in Classical Arabic (McCarthy 2007: 103)
Underlying /dʕrib/ ‘beat!’ (MASC.SG)
Vowel epenthesis idʕrib
ʔepenthesis ʔidʕrib
Surface [ʔidʕrib]
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McCarthy (2007, §5.4) also provides an example of counterfeeding. In Bedouin Arabic, short high
vowels are deleted in nonfinal open syllables, and /a/ is raised in the same environment. However, as
(24) shows, because deletion precedes raising, the raising of the short vowel /a/ to [i] does not feed
deletion.

(24) Counterfeeding order in Bedouin Arabic (McCarthy 2007: 107)
Underlying /dafaʕ/ ‘he pushed’
Deletion —
Raising difaʕ
Surface [difaʕ]

Examples of bleeding and counterbleeding come from dialects of English where /t/ and /d/ are
flapped – [ɾ] – between stressed and unstressed vowels, while /aɪ/ and /aʊ/ raise to [ʌɪ] and [ʌʊ]
before voiceless segments. The canonical case is counterbleeding order, where raising occurs before
underlying /t/ even when it surfaces as voiced [ɾ] on the surface, as in (25).

(25) Counterbleeding order in English
Underlying /raɪtɚ/ writer
Raising rʌɪtɚ
Flapping rʌɪɾɚ
Surface [rʌɪɾɚ]

In lessdiscussed dialects of English in Ontario (Joos 1942) and in Fort Wayne, Indiana (Berkson
et al. 2017), the flapping of voiceless /t/ as voiced [ɾ] bleeds raising as in (26).

(26) Bleeding order in English
Underlying /raɪtɚ/ writer
Flapping raɪɾɚ
Raising —
Surface [raɪɾɚ]

Given two interacting rules ri and rj, it is straightforward to order them by following standard
arguments. Specifically, ordering ri before rj (feeding/bleeding order) will produce errors on data
from a language where rj in fact precedes ri (counterfeeding/counterbleeding) and vice versa. For
example, if we call English dialects where flapping counterbleeds raising (25) ‘Dialect A’ and the
dialects with bleeding (26) ‘Dialect B’ (following Joos 1942), ordering flapping before raising inDialect
A will erroneously cause /raɪtɚ/ to surface as [raɪɾɚ] instead of [rʌɪɾɚ]. Consequently, the correct
counterfeeding order will yield higher accuracy than feeding order for a leaner exposed to Dialect A.
A symmetrical argument holds for ordering in Dialect B.

Thus, for each pair of learned rules, PLP chooses the pairwise ordering with higher accuracy. To
yield a full ordering of the rules, PLP constructs a directed graph where each rule in R forms a node.
PLP considers each pair of rules (ri, rj) ∈ R×R and places a directed edge from ri to rj iff the accuracy
of rj ◦ ri (i.e., applying ri first and rj to its output) is greater than that of the reverse, ri ◦ rj. The directed
graph is then topologically sorted to yield a full ordering.10 Rules that interact are assigned the order
that achieves higher accuracy, and noninteracting rules are ordered arbitrarily.

The bigger challenge is the possibility that the interactions between ri and rj obfuscate the
independent existence of the rules, thereby making it difficult for them to be discovered in the first
place. Counterfeeding and counterbleeding present no issues, because applying each rule indepen
dently, directly over the UR, produces the same SR as applying them sequentially in counterfeed
ing/counterbleeding order. For example, in McCarthy’s (2007) Bedouin Arabic example in (24),
/a/ → [i] is accounted for by the raising rule, and there is no deletion in /dafaʔ/ → [difaʔ] to hinder

10A topological sort of a directed graph is a linear ordering of its nodes such that every ordering requirement encoded in its
edges is preserved (Cormen et al. 2009, 612).
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the discovery of the deletion rule. Similarly, the /a/→ [ʌ] discrepancy in (25) can be accounted for by
raising without reference to flapping, and the /t/ → [ɾ] discrepancy can be accounted for by flapping
without reference to raising. I give an empirical demonstration of PLP learning rules in counterbleeding
order in §4.3.4.

Since bleeding destroys contexts where a rule would have applied, it can cause overextensions. For
example, when PLP is attempting to construct a raising rule for (26), the rule in (27) (treating the
diphthong as a single segment) would overextend to /raɪtɚ/.

(27) aɪ→ ʌɪ / __ [−voi]

However, since PLP allows some exceptions in accordance with the Tolerance Principle, this will
only matter if the bled cases are pervasive enough to push the rule over the threshold in (14). Whether
this happens must be determined on a casebycase basis by the learner’s lexicon. If the threshold of
exceptions is crossed, PLPwill simply expand thewidth of its search.When flapping bleeds raising (26),
raising occurs distributionally before underlying voiceless segments that are not between a stressed and
an unstressed vowel. The latter condition describes the contexts where raising is not bled, and still falls
within a fixedsize window of the raising target, such as the underlined portion of /raɪtɚ/. The general
point here is that if two rules interact extensively, there is still likely to be a fixedlength context –
possibly a slightly larger one – that accounts for the processes. In fact, Chandlee et al. (2018) have
shown that a wide range of phonological generalisations characterised as opaque in the literature can
be formalised as input strictly local maps. In Appendix A, I show that the rules PLP learns correspond
to Input Strictly Local maps. Thus, I am optimistic that PLP can succeed even with instances of opaque
rule interactions. §4.4 provides an empirical demonstration of PLP learning rules in bleeding order.

Feeding may require small adaptions to PLP. In (23), no issue arises for the vowelepenthesis rule,
which does the feeding. The search for a rule to account for epenthetic [ʔ] will proceed analogously
to the bleeding case. There are two underlying environments where epenthetic [ʔ] surfaces: before
underlyingly initial vowels (# __ V) and before underlying initial consonant clusters (i.e., where raising
feeds epenthesis, # __ CC). These are disjoint contexts, so it may be appropriate to adapt PLP to allow
it to return two disjoint rules from its search in (11) to account for a discrepancy. In that case, the rules
in (28) account for ʔepenthesis directly from URs.

(28) ∅ → ʔ / # __ CC (‘fed’ ʔepenthesis cases)
∅ → ʔ / # __ V

Alternatively, PLP could be adapted such that the search for new generalisations (step (3biiiα))
operates over intermediate representations – specifically those derived by existing rules – instead
of underlying representations. In that case, the ʔepenthesis rule could be directly learned over the
intermediate forms derived by the vowelepenthesis rule.

In summary, this article is not an attempt to provide a complete account of rule ordering, which is
beyond its scope. The results in §4.3.4 and §4.4 provide empirical demonstration of PLP learning some
interacting rules, and the above discussion provides an outline of how PLP approaches rule interaction
and what extensions may be necessary.

2.3.4. Production
The rules are applied one after another in the order produced by the procedure in §2.3.3. Each individual
rule is interpreted under simultaneous application (Chomsky & Halle 1968), which means that when
matching the rule’s target and context, only the input is accessible, not the result of previous applications
of the rule. Thus, following the example from Chandlee et al. (2014: 37), the rule in (29) applied
simultaneously to the input string aaaa yields the output abba rather than abaa, because the second
application’s context is not obscured by the first application.

(29) a→ b / a __ a
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Simultaneous application is the interpretation of rules that corresponds to inputstrictly local maps,
as discussed in §A.2. Other types of rule application, such as iterative or directional (e.g., Howard 1972;
Kenstowicz & Kisseberth 1979), could be used in future work.

Thus, for an input u and ordered list of rulesR = r1, r2, ..., r |R | , the grammar’s output ŝ is given by
the composition of rules in (30).

(30) ŝ = G(u) = r |R | ◦ r |R |−1 ◦ ... ◦ r1(u) = r |R | (r |R |−1(...r1(u)))

2.4. Updating incrementally

As PLP proceeds, vocabulary growth may cause the grammar to become stale and underextend or
overextend, at which point PLP updates any problematic generalisations (step (3biv)).

Denoting the discrepancies between the input u and the predicted output ŝ as d(u, ŝ), and those
between u and s as d(u, s), underextensions are defined in (31a) as discrepancies between the input
and expected output that are not accounted for in PLP’s prediction ŝ, and overextensions are defined in
(31b) as discrepancies in the predicted output that should not be there. Here the symbol \ denotes set
difference, and , means ‘equals by definition’.

(31) a. U , d(u, s) \ d(u, ŝ)
b. O , d(u, ŝ) \ d(u, s)

Underextensions are handled by the for loop (step (3biii)). Inside the loop, a new generalisation
is created (step (3biiiα)). This is encoded in the grammar (step (3biiiβ)) by adding it to this list of
rules. If a prior generalisation for the discrepancy exists, it is deleted from the list. An example of this
is (32), where the word /mæpz/ (32b) freshly enters the vocabulary.

(32) a. /dɑɡz/ → [dɑɡz]
/kætz/ → [kæts]
/hɔrsz/ → [hɔrsәz]

b. /mæpz/ → [mæps]

Prior to its arrival, the rule (33a) was sufficient to explain when /z/ surfaces as [s]. This, however,
fails to account for the new word, which ends in /p/ not /t/. PLP handles this by discarding the old rule
and replacing it with a fresh one, such as (33b), derived by the same process described above in §2.2.

(33) a. /z/→ [−voi] / {t} __
b. /z/→ [−voi] / {t, p} __

Overextension – a discrepancy between the input u and PLP’s prediction ŝ that did not exist between
u and the expected output s – is handled by (step (3biv)). An example is (34), where (34b) enters the
learner’s vocabulary after (34a).

(34) a. /kætz/→ [kæts]
b. /dɑɡz/→ [dɑɡz]

In such a case, the rule in (35) will have been sufficient to explain (34a), but will result in an erroneous
*[dɑɡs] for (34b).

(35) /z/→ [−voi] / __
PLP resolves this by discarding the previous rule and replacing it with a new one by the process in

§2.2.
For both underextension and overextension, when the list of rules is updated, the steps in §2.3 –

combining generalisations, inducing natural classes and ordering rules – are repeated. Since PLP can
replace generalisations as needed as the vocabulary grows, it can learn incrementally, in batches, or
once and for all over a fixed vocabulary.

https://doi.org/10.1017/S0952675724000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0952675724000083


Phonology 15

3. Prior models

3.1. Constraintbased models

Constraintranking models rank a provided set of constraints. Tesar & Smolensky’s (1998) Constraint
Demotion algorithm was an early constraintranking model for OT. Others are built on stochastic
variants of OT or Harmonic Grammar (HG; Legendre et al. 1990; Smolensky & Legendre 2006),
including the Gradual Learning Algorithm (Boersma 1997; Boersma & Hayes 2001) for Stochastic
OT and a later model (Boersma & Pater 2008) that provided a different update rule for HG (see Jarosz
2019 for an overview).

Constraintranking models can capture the assumption of classical OT that learning amounts to
ranking a universal constraint set, or they can rank a learned constraint set. Hayes & Wilson’s (2008)
MaximumEntropy model learns and ranks constraints, but it learns phonotactic constraints over surface
forms, not alternations as PLP does.

Locality and identity biases are better reflected in the content of the constraint set than in the
constraint ranking algorithm. Locality is determined in virtue of what segments are accessed in
determining constraint violations.

Constraintranking models usually begin with markedness constraints outranking faithfulness con
straints (Smolensky 1996; Tesar & Smolensky 1998; Jusczyk et al. 2002; Gnanadesikan 2004).
Consequently, any UR will initially undergo any changes necessary to avoid marked structures, even in
the absence of surface alternations that would motivate discrepancies. Ranking faithfulness constraints
above markedness constraints has been advocated by Hale & Reiss (2008), but this approach has not
been widely adopted. This in part due to arguments that such an initial ranking would render some
grammars unlearnable (Smolensky 1996), and in part due to the view that features of early child
productions, in particular ‘emergence of the unmarked’, reflect an early stage of the child’s grammar,
rather than underdeveloped articulatory control.

3.2. Rulebased, neural network, and linear discriminative models

Johnson (1984) proposed an algorithm for learning ordered rules from words arranged in paradigms as
a proof of concept about the learnability of orderedrule systems. This algorithm does not incorporate
a locality bias and has not been extensively studied empirically or theoretically.

Albright & Hayes (2002, 2003) developed a model for learning English past tense morphology
through probabilistic rules. The model can be applied to learn rules for any set of input–output word
pairs, including phonological rules. It is called the Minimum Generalisation Learner, because when it
seeks to combine rules constructed for multiple input–output pairs, it forms the merged rule that most
tightly fits the pairs. A consequence of this generalisation strategy is that the phonological context of
the rule is as wide as possible around the target segment, only localising around the target when less
local (and hence less general) contexts cannot be sustained. This is the direct opposite of PLP and of
experimental results that suggest human learners start with local patterns andmove to nonlocal patterns
only when local generalisations cannot be sustained (Finley 2011; BaerHenney & van de Vijver 2012;
McMullin & Hansson 2019). I further discuss differences between PLP and Minimal Generalisation
Learner (MGL) in Appendix B.

Rasin et al. (2018) propose a Minimum Description Length model for learning optional rules and
opacity. The authors intended the model as a proof of concept and only evaluated it on two small
artificial datasets.

Peperkamp et al. (2006) propose a statistical model for learning allophonic rules by finding segments
with nearcomplementary distributions. The method is not applicable to learning rules involving non
complementary distributions. Calamaro & Jarosz (2015) extend the model to handle some cases of
noncomplementary distributions, if the alternation is conditioned by the following segment (i.e., a→
b/__ c where |a| = |b| = |c| = 1). These works attempt to model the very early stage of learning
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alternations (White et al. 2008) prior to most morphological learning, whereas PLP models learning
after abstract URs have begun to be learned.

Beguš (2022) trained a generative, convolutional neural network on audio recordings of Englishlike
nonce words, which followed local phonological processes and a nonlocal process (vowel harmony).
The model was then used to generate speech. This modelgenerated speech followed the local processes
more frequently than the nonlocal process, suggesting that it more easily learned local than nonlocal
processes. This is possibly due to the use of convolution, which is a fundamentally local operation. As a
model for generating artificial speech, it is not directly comparable in the context of learning processes
that map URs to SRs.

In a different direction, Baayen et al. (2018, 2019) propose using Linear Discriminative Learning to
map vector representations of form onto vector representations of meaning and vice versa. Since this
model operates over vector representations of form and meaning, it is not directly comparable.

3.3. Formallanguagetheoretic models

Formallanguage and automatatheoretic approaches analyse phonological generalisations in com
putational terms. Many resulting learning models attempt to induce a finitestate transducer (FST)
representation of the map between SRs and URs. These automatatheoretic models, together with
precise assumptions about the data available for learning, allow for learnability results in the paradigm
of identification in the limit (Gold 1967). Such results state that a learning algorithm will converge on a
correct FST representation of any function from a particular family, provided that the data presented to
it meet certain requirements – called a characteristic sample. In phonology, the target class of functions
is usually one that falls in the subregular hierarchy (Rogers et al. 2013), which contains classes of
functions more restrictive than the regular region of the Chomsky Hierarchy (Chomsky 1959). These
models are often chosen to demonstrate theoretical learnability results, and have seldom been applied
to naturalistic data.

Gildea & Jurafsky (1996) developed a model, based on OSTIA (Oncina et al. 1993), which learns
subsequential FSTs. The class of subsequential functions is a subregular class of functions that may be
expressive enough to capture any type of observed phonological map (Heinz 2018), although some tonal
patterns appear to be strong counterexamples (Jardine 2016). The authors intended their model only as
a proof of concept of the role of learning biases, and it requires unrealistic quantities of data to learn
effectively. Indeed, the authors recognise the importance of faithfulness and locality as learning biases,
which they attempted to embed into OSTIA. Their biases were, however, heuristics. In particular, a bias
for locality was introduced by augmenting states with the features of their neighbouring contexts. This
in effect restricts the learner to local patterns, which is different from the current article’s proposal, in
which locality is a consequence of how the algorithm proceeds over hypotheses.

As Chandlee et al. (2014) observes, a more principled means of incorporating a locality bias into
a finitestate model is to directly target the class of strictly local functions. Chandlee et al. (2014)
propose such a model, called ISLFLA, and prove that it can learn any strictly local function in the
limit, in the sense of Gold (1967). However, the characteristic sample for the algorithm includes the set
of input–output pairs for every languagetheoretically possible string up to length k (a modelrequired
parameter). As Chandlee et al. (2014) discusses, this is problematic, since natural language may in
principle never provide all logically possible strings, due to phonotactic or morophological constraints.
I implemented ISLFLA and attempted to run it on naturalistic data, and it does indeed fail to identify
any FST on such data.11

Jardine et al. (2014) propose a model, SOSFIA, for learning subsequential FSTs when the FST
structure is known in advance; only the output for each arc in the FST needs to be learned. Strictly

11OSTIAwill run on data not satisfying its characteristic sample; it is just not guaranteed to induce a correct FST in such cases.
In contrast, ISLFLA is unable to proceed if the characteristic sample is not met: it exits at line 9 of the pseudocode in Chandlee
et al. (2014: 499).
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local functions are such a case, because the necessary and sufficient automatatheoretic conditions of
strict locality include a complete FST structure (Chandlee 2014). SOSFIA also admits learnability in
the limit results but has not been applied to naturalistic data.

4. Evaluating the model

This section evaluates PLP, addressing the questions listed in (36):
(36) Q1. Does PLP reflect human learners’ preference for local generalisations?

Q2. How well does PLP learn local generalisations?
Q3. What are the learning effects of assuming UR–SR identity by default?

4.1. Model comparisons

I compare PLP to several alternative models.

4.1.1. Rulebased, neural network and finitestate models
MGL is the Minimal Generalisation Learner from Albright & Hayes (2002, 2003). I used the Java
implementation provided by the authors. MGL may produce multiple candidate SRs for a UR if
more than one rule applies to the UR. In such cases, I used the rule with the maximum conditional
probability scaled by scope (confidence in the terminology of Albright & Hayes 2002, §3.2) to derive
the predicted SR.
ED (encoder–decoder) is a neural network model. It is a successful neural network model for many

natural language processing problems involving stringtostring functions, such as machine translation
between languages (Sutskever et al. 2014) and morphological reinflection (Cotterell et al. 2016). It has
also been used to revisit the use of neural networks in the ‘past tense debate’ of English morphology
(Kirov & Cotterell 2018), though its use as a computational model of morphological acquisition has
been called into question (McCurdy et al. 2020; Belth et al. 2021). I follow Kirov & Cotterell (2018)
and Belth et al. (2021) in its setup, using the same RNN implementation, trained for 100 epochs, with a
batch size of 20, optimising the loglikelihood of the training data. Both the encoder and the decoder are
bidirectional long shortterm memory networks (LSTMs) with 2 layers, 100 hidden units, and a vector
size of 300.
OSTIA (Oncina et al. 1993) is a finitestate model for learning subsequential finitestate transducers.

I used the Python implementation from Aksënova (2020).
ID is a trivial baseline that simply copies every input segment to the output. This allows for

interpreting the value of assuming UR–SR identity by default.

4.1.2. Learning as constraint ranking
I also compare PLP to the view of learning as ranking a provided constraint set. Classic OT views
constraints as part of UG; I represent this view with UCON, for universal constraint set. An alternative
view is that the constraint set is learned; I represent this viewwithORACLE, which effectively constitutes
an upper bound on how well a model that learns the constraint set to be ranked could do. ORACLE is
provided with all and only the markedness constraints relevant to the grammar being learned. UCON
is provided with the same constraints as ORACLE, plus two extra markedness constraints that are violable
in the adult languages and thus must be downranked.

It is important to emphasise that these models learn in a different setting from PLP and those in
§4.1.1. The latter receive as input only UR–SR training pairs, whereas UCON and ORACLE receive both
training pairs and a constraint set. Consequently, UCON and ORACLE’s accuracy levels in producing SRs
are not directly comparable to those of other models. My goal in comparing PLP to UCON and ORACLE
is to highlight how PLP’s account of phonological learning differs from theirs.

For UCON and ORACLE, I use the Gradual Learning Algorithm (GLA; Boersma 1997; Boersma &
Hayes 2001) to rank the constraints, because it is robust to exceptions – an important property when
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learning from noisy, naturalistic data. I emphasise, however, that the comparison is not to the particular
constraintranking algorithm; others could have been chosen. Because the experiments involve many
random samples and tens of thousands of tokens, the implementation of GLA in Praat (Boersma 1999)
was not wellsuited. Thus, I used my own Python implementation of GLA, with the same default
parameters as in Praat (evaluation noise: 2.0, plasticity: 1.0). I initialise markedness constraints above
faithfulness constraints.

4.2. Comparison to humans’ preference for locality

In an experimental study, BaerHenney & van de Vijver (2012) found that allomorphic generalisations
in an artificial language were more easily and successfully learned when the surface allomorph was
determined by a segment two positions away than when it was determined by a segment three positions
away. The study involved three artificial languages in which plural nouns were formed by affixing
either the [−back] vowel [y] or its [+back] counterpart [u]. Each language involved a different
phonological condition for determining which affix surfaced. Treating /y/ as the underlying affix, the
three generalisations are those in (37).

(37) a. [−back]→ [+back] / [+vowel,+back][+cons] __
b. [−back]→ [+back] / [+vowel,+tense][+cons] __
c. [−back]→ [+back] / [+cons,+son][+vowel][+cons] __

All singular forms are CVC words; plurals add a vowel. The (37a) language is an example of vowel
harmony, since the affix vowel assimilates in backness to the preceding vowel. The (37b) language
is equally local, but lacks clear phonetic motivation, since the stem vowel feature that determines
the affix’s backness is [tense]. The (37c) language is both less local and phonetically unmotivated, since
the backness of the suffix vowel is determined by the initial consonant of the stem. Because all three
languages have CVC stems and CVCV plurals, each pattern is strictly local, but (37a) and (37b) each
involve a sequence of three contiguous segments, while (37c) involves four.

Since PLP starts locally around the affix when looking for an appropriate generalisation, and only
proceeds outward when the more local contexts become too inaccurate, I expect PLP to learn the (37a)
and (37b) generalisations substantially more easily than the (37c) generalisation, just as BaerHenney &
van de Vijver (2012) found for humans (Q3). For comparison, I use MGL, which generalises in roughly
the opposite way: it constructs the narrowest – and hence less local – generalisation. I also compare to
grammars resulting from ranking three different constraint sets. The markedness constraints for (37)
are listed in (38).

(38) a. *[+vowel,+back][+cons][−back,+vowel]
b. *[+vowel,+tense][+cons][−back,+vowel]
c. *[+cons,+son][+vowel][+cons][−back,+vowel]

The first constraint set encodes the assumption of a universal constraint set containing only
grounded, universal constraints by including only (38a), because it is the only generalisation viewed as
phonetically motivated. Second, I consider a constraint set containing all three markedness constraints
in (38) regardless of which language is being learned. Third, I consider a constraint set containing only
the constraint relevant to the language being learned.

BaerHenney & van de Vijver (2012) found not only that the local generalisations were learned
more easily than the nonlocal one, but also that the phonetically motivated generalisation (37a) was
learned slightly more easily than (37b). The authors argued that this is evidence for substantive bias in
phonological learning. However, the question of substantive bias is largely orthogonal to the current
article, since my focus is on locality. Moreover, the performance gap between (37a) and (37b) was much
smaller than the gap between them and (37c). For these reasons, I focus on the difference in models’
performance on (37a,b) vs. (37c) in this experiment.
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4.2.1. Setup
Each of BaerHenney& van deVijver’s (2012) experiments involved presenting subjects with randomly
selected singulars and plurals from the respective artificial languages. Each word was accompanied by
a picture conveying the word’s meaning; one item was present in the picture for singulars and multiple
items for plurals. The singulars and plurals were presented independently, so the experimental setup did
not separate phonological learning from learning the artificial languages’ morphology and semantics.
Because of this, the study participants likely only successfully acquired the underlying and surface
representations for a subset of the exposure words, and what fraction of the exposure set they learned is
entirely unknown. Since the models assume URs and SRs as training data, I factor out the fraction of the
exposure set for which they have acquired URs and SRs by treating it as a free variable that the models
can optimise over. I use the data released by BaerHenney & van de Vijver (2012) and follow their setup
to construct training (exposure) and test sets.12 I ran each model over 100 randomised exposure sets to
simulate 100 participants.

The MGL model from Albright & Hayes (2002, 2003) combines rules that target the same segment
and carry out the same change to that target. For instance, if it has acquired the two wordspecific
rules in (39a) and (39b), it will attempt to combine them through Minimal Generalisation – that is, as
conservatively as possible. The minimal generalisation for (39a) and (39b) is (39c), which retains as
much as possible of the original two rules. However, in the implementation of MGL from Albright &
Hayes (2002, 2003), when two rules are combined, the longest substrings shared by the rules are retained
– in this case /p/ – but segment combination (e.g., {ʊ,o}) proceeds only one position further; everything
else is replaced by a free variable X (see Albright & Hayes 2002: 60 for a complete description of this
process). Thus, their implementation returns (39d), which is less conservative than the actual minimal
generalisation (39c).

(39) a. y→ u / bʊp __ #
b. y→ u / dop __ #
c. y→ u / {b, d}{ʊ, o}p __ #
d. y→ u / X{ʊ, o}p __ #

This issue does not arise in the original articles by Albright & Hayes (2002, 2003), because
the object of study was the English past tense, in which the surface allomorph is determined by
an immediately adjacent segment. Thus, any regularities beyond the adjacent segment, which their
implementation would miss, would be spurious anyway. However, for the purposes of this experiment,
the implementation is problematic. Consequently, I used my own implementation of MGL, which
correctly generates the minimally general combination of rules.13 I use the rule with the minimally
general context in which /y/ surfaces as [u] to produce a surface form for each test instance.

4.2.2. Results
Figure 2 shows the results. The xaxis of each plot is the free variable discussed above, measuring
the fraction of the exposure set that the learner successfully constructed a UR–SR pair for. The yaxis
reports the averagemodel performance (over the 100 simulations) for each language. The points marked
with a colourcoded × provide the average performance over the 20 human participants from Baer
Henney & van de Vijver (2012). Since each model gets to optimise over the free variable, I select, for
each respective model, the xvalue where it best matches the human performance, averaged over all
three languages. This point can be seen by where the × marks are placed. A colourcoded vertical line
from each human performance marker to the corresponding model performance shows the difference
between the two.

12BaerHenney & van de Vijver (2012) used both high and lowfrequency settings, where the highfrequency setting included
a higher fraction of plural forms in the exposure set. Since I already treat the amount of exposure data available for learning
phonology as a free variable, I followed the highfrequency setting for the experiment.

13All other experiments involving MGL used Albright & Hayes’s (2002, 2003) implementation.
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(a) PLP. (b) MGL.

(c) Ranking Phonetically Motivated

Constraints.

(d) Ranking All Constraints.

(e) Ranking Language-Relevant Constraints.

Figure 2. Plots show model accuracies on test words when trained on each of the artificial languages
from BaerHenney & van de Vijver (2012), as a function of the fraction of the exposure set they are
trained on. The×marks show human generalisation accuracy, at the xaxis point where each model best
matches human generalisation behaviour. PLP and MGL’s results are in (a) and (b), while grammars
learned by ranking a provided constraint set are in (c)–(e). In (c), the ranked constraints are all
phonetically motivated; in (d), all constraints needed for the three languages are included and in (e),
each model for each language ranks only the constraints relevant to that language.

PLP (Figure 2a) is the best match to the human results, learning the more local generalisations (37a)
and (37b) substantially more easily than the less local (37c). This is because PLP requires sufficient
evidence against local generalisations (per the Tolerance Principle) before it will abandon them for
less local ones (§2.2.2). This is reminiscent of Gómez & Maye’s 2005: 199 characterisation of human
learners as attending to local contexts even ‘past the point that such structure is useful’ before eventually
moving on to less local information. In contrast, MGL (Figure 2b) learns all three generalisations
equally well because it constructs the most conservative – and hence widestcontext – generalisation
that is sustainable. If a grammar is constructed by ranking a universal constraint set that includes only
phonetically motivated constraints (Figure 2c), only the generalisation in (37a) can be learned because
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that is the only phonetically motivated generalisation. On the other hand, if all relevant constraints are
included together (Figure 2d) or on their own (Figure 2e), all three generalisations are learned roughly
equally well. This is because learning reduces to constraint ranking – the constraints being provided –
and thus fails to distinguish between more and less local constraints. In PLP’s learning of the pattern in
(37c), the number of exceptions to the more local generalisation will eventually become too numerous
under the Tolerance Principle, and PLP will construct a less local rule, which will correctly characterise
the alternation. Thus, PLP predicts that given sufficient time and data, learners will eventually be able
to learn the alternation in (37c).

4.2.3. Takeaways
PLP reflects human learners’ preference for local generalisations (Q3).

4.3. Learning German devoicing

I now evaluate PLP on syllablefinal obstruent devoicing in German (Wiese 1996).

4.3.1. Setup
This experiment simulates child acquisition by using vocabulary and frequency estimations from child
directed speech in the Leo corpus (Behrens 2006). I retrieved the corpus from the CHILDES database
(MacWhinney 2000) and intersected the extracted vocabulary with CELEX (Baayen et al. 1996) to get
phonological and orthographic transcriptions for eachword. I also computed the frequency of eachword
in the Leo corpus. The resulting dataset consists of 9,539 words. To construct URs and SRs, I followed
Gildea & Jurafsky (1996), using the CELEX phonological representations as SRs and discrepancies
between CELEX phonology and orthography to construct URs, since German orthography does not
reflect devoicing. Specifically, I make the syllablefinal obstruents voiced for the URs of all words
where the corresponding orthography indicates a voiced obstruent. In this set of data, only 8.2% of
words involve devoicing, which means a substantial number of SRs are unchanged by this process
from the corresponding URs. However, this is an appropriate and realistic scenario, since the data were
constructed from childdirected speech, and is thus a reasonable approximation of the data that children
have access to when learning this generalisation.

The experimental procedure samples one word at a time from the data, weighted by frequency. The
word is presented to each model and added to its vocabulary. Sampling is with replacement, so the
learners are expected to encounter the same word multiple times, at frequencies approximating what a
child would encounter. When the vocabulary reaches a size of 100, 200, 300 and 400, each model is
probed to produce an SR for each UR in the dataset that is not in the vocabulary (i.e., heldout test data).
The fraction of these predictions that it gets correct is reported as the model’s accuracy. The models
MGL, ED and OSTIA are designed as batch learners, so they are trained from scratch on the vocabulary
before each evaluation period.14 PLP, UCON and ORACLE learn incrementally.

This simulation is carried out 10 times to simulate multiple learning trajectories. The results are
averages and standard deviations over these 10 runs.

ORACLE is provided with the constraints in (40).
(40) MAX, DEP, IDENT(VOICE), IDENT(SON), IDENT(NAS), *[+voi,−son] ]𝜎
The markedness constraint *[+voi, −son] ]𝜎 , which marks syllablefinal voiced obstruents, is the

relevant markedness constraint for this process. UCON is supplied with two additional constraints: *NC̥,
which marks voiceless consonants following nasals, and *COMPLEX. Both are frequently considered
to be universal, violable constraints (Locke 1983; Rosenthall 1989; Prince & Smolensky 1993; Pater
1999). I included these to capture the assumption of a universal constraint set, which requires learning
that *COMPLEX and *NC̥ are violable in German; for instance, /ɡlaubәnd/ → [ɡlau.bәnt] (‘believing’)
violates *COMPLEX and *NC̥.

14I provide MGL the frequency with which each vocabulary word has appeared, which it can make use of.
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Table 1. Model accuracies (with standard deviations) on heldout test
data at different training vocabulary sizes. PLP readily learns an accurate
generalisation for German syllablefinal obstruent devoicing

Model Vocabulary size

100 200 300 400

PLP 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00 1.000 ± 0.00
MGL 0.918 ± 0.00 0.918 ± 0.00 0.918 ± 0.00 0.919 ± 0.00
ED 0.008 ± 0.00 0.178 ± 0.03 0.389 ± 0.04 0.543 ± 0.04
OSTIA 0.023 ± 0.02 0.022 ± 0.01 0.031 ± 0.01 0.040 ± 0.00

UCON 0.960 ± 0.03 0.988 ± 0.00 0.992 ± 0.00 0.995 ± 0.00
ORACLE 0.982 ± 0.01 0.997 ± 0.00 0.998 ± 0.00 0.999 ± 0.00

ID 0.918 ± 0.00 0.918 ± 0.00 0.918 ± 0.00 0.918 ± 0.00

4.3.2. Results
The results are shown in Table 1. PLP learns an accurate grammar, which consists of the single
generalisaton shown in (41).

(41) [+voi,− son]→ [−voi] / __ ]𝜎
While PLP achieves perfect accuracy by the time the vocabulary has grown to size 100, it

does produce errors in the process of getting there. A primary example is underextensions. In my
experiments, underlyingly voiced stops tended to enter the vocabulary earlier than voiced fricatives.
Consequently, PLP sometimes fails to extend devoicing to fricatives until evidence of them devoicing
enters the vocabulary. These underextensions are over heldout test words – that is, words not in
the learner’s vocabulary. Thus, this is a prediction about an early state of the learner’s phonological
grammar, and not a prediction that children go through a stage of voicing final voiced fricatves. Indeed,
I found that as soon as an instance of fricative devoicing enters the vocabulary, PLP extends the
generalisation to account for it.

Ranking a provided constraint set (ORACLE and UCON) can yield the same generalisation as PLP:
the sequence [+voi,− son]]𝜎 is not allowed in German, and violations of this restriction are repaired by
devoicing. But the differences in how PLP learns this generalisation are informative. Both UCON and
ORACLE are provided with the knowledge that the sequence [+voi, −son] ]𝜎 is marked. In contrast, PLP
discovers the marked sequence in the process of learning.

In German, the onset [bl] is allowed (e.g., /blɑu/ → [blɑu]). PLP always produces the correct
SR for /blɑu/ as a consequence of its identity default (Table 2). Whether a constraintranking model
incorporates a preference for identity between inputs and outputs depends on what constraints it ranks.
Because ORACLE ranks only the constraints active in the language being learned, it – like PLP– does not
produce unmotivated errors. If a universal constraint set is ranked (UCON), then markedness constraints
that are violable in the language being learned will lead to unmotivated errors. For instance, prior to
downranking *COMPLEX, UCON sometimes produces [bәlɑu] for /blɑu/, with the sequence /bl/ broken
up by an epenthetic schwa, even though complex onsets are allowed in German. However, deletion
tends to be more common than epenthesis as a repair in child utterances, and it appears to be due to
articulatory limitations rather than to the child’s hypothesised adult grammar.

Both UCON and ORACLE sometimes produce /kɪnd/ as *[kɪndә] or *[kɪn] rather than [kɪnt], because
they must figure out the relative ranking of faithfulness constraints in order to capture which repair
German uses to avoid violations of *[+voi, −son] ]𝜎 . In contrast, PLP infers the repair – devoicing –
directly from the discrepancy it observes in the data.
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Table 2. Analysis of the types of errors each of the models that learn an
accurate grammar makes in the process. Because it adds generalisations to
the grammar only when necessitated by surface alternations, PLP produces
no unmotivated errors

Error type Example PLP UCON ORACLE

Unmotivated /blɑu/→ *[bәlɑu] no yes no
Wrong repair /kɪnd/→ *[kɪndә] no yes yes
Under or overextension /kɪnd/→ *[kɪnd] yes yes yes

None of the other models perform competitively: PLP outperforms them all by a statistically
significant amount (p < 0.01), as measured by a paired ttest against the null hypothesis that each
model’s performance over the 10 simulations has the same average accuracy as PLP’s. MGL, which
generalises as conservatively as possible, struggles to generalise beyond the training data. This is seen in
its slow rate of improvement. ED is a powerful model in natural language processing when substantial
amounts of data are available, but it struggles to learn on the small vocabularies at the scale children
learn from. OSTIA struggles even more, consistent with the negative results of Gildea & Jurafsky
(1996), who presented it with much larger vocabularies.

4.3.3. Takeaways
PLP is readily able to learn German syllablefinal devoicing (Q2) and never introduces unmotivated
generalisations (Q3).

4.3.4. Opacity
The associate editor observed that devoicing in Polish interacts opaquely with oraising, in which
/ɔ/ surfaces as [u] before wordfinal oral consonants that are underlyingly voiced (Kenstowicz 1994;
Sanders 2003). As a proof of concept, I ran PLP on the data in Sanders (2003: 48–51). PLP learned the
counterbleeding rule system in (42), with raising (r1) correctly ordered before devoicing (r2).15

(42) G = r2 ◦ r1, where

r1 = ɔ→ u / __ [+voi] #
r2 = [+voi, −son] → [−voi] / __ #

Rule r2 accounts for devoicing both in isolation (43a) and in words exhibiting raising (43c). Rule r1
accounts for raising both in isolation (43b) and when its underlying context is opaquely obscured by
devoicing (43c).

(43) a. /klub/→ [klup] ‘club’ NOM.SG
b. /bɔl/ → [bul] ‘ache’ NOM.SG
c. /bɔb/ → [bup] ‘bean’ NOM.SG

The correct ordering was achieved because the reverse ordering, in which devoicing bleeds raising,
results in errors like *[bɔp] for /bɔb/. This demonstrates that PLP is capable of handling at least this
case of opacity. I leave a systematic study of opacity for future work (see §2.3.3).

15The examples from Sanders (2003) were too sparse to distinguish between [+voi]# and [+cons,+voi,−nas]# as the context
for raising; a more realistic lexicon should drive PLP to the more nuanced context.
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4.4. Learning a multiprocess grammar

This experiment evaluates PLP at learning multiple generalisations simultaneously. The processes
modelled are the English alternating plural and 3SG.PRES affix /z/ (44a), the alternating past tense affix
/d/ (44b), and vowel nasalisation (44c).
(44) a. /dɑɡz/ → [dɑɡz]

/wɔkz/ → [wɔks]
/hɔrsz/ → [hɔrsәz]

b. /smɛld/ → [smɛld]
/wɔkd/ → [wɔkt]
/foʊldd/ → [foʊldәd]

c. /ðɛm/ → [ðɛm̃]
/sʌmθɪŋ/ → [sʌ̃mθɪŋ̃]
/dæns/ → [dæ̃ns]

4.4.1. Setup
This experiment, like the first, simulates child language acquisition. The childdirected speech is
aggregated across English corpora in CHILDES (MacWhinney 2000), including the frequency of each
word. Only words with ‘%mor’ tags were retained, because the morphological information was needed
to construct URs. Transcriptions from the CMU Pronouncing Dictionary (Weide 2014) served as SRs,
with nasalisation added to vowels preceding nasal consonants. URs had all vowels recorded without
nasalisation. The URs of the affixes on all past tense verbs, plural nouns and 3SG.PRES verbs were set to
/d/, /z/ and /z/, respectively. The resulting dataset contains 20,421 UR–SR pairs.

The experimental procedure is the same as for German, sampling words weighted by frequency
and reporting accuracies at predicting SRs from URs over heldout test words when each learner’s
vocabulary reaches certain sizes: 1K, 2K, 3K and 4K words.

I omit results from MGL, ED and OSTIA because they continued to be noncompetitive. ORACLE
once again ranks only the relevant constraints, listed in (45), and UCON receives these plus *COMPLEX
and *NC̥.
(45) CON = {

MAX, DEP, IDENT(VOICE), IDENT(SON), IDENT(NAS),
AGREE(VOICE), *SS, *[+vowel,−nas] [+cons,+nas],
*[−cont,−dist,−son] [−cont,−dist,−son]

}
All faithfulness constraints other than DEP were split into two – one for stems and one for affixes –

so that, for instance, *[wɔɡz] could be ruled out for input /wɔkz/ in (44a).

4.4.2. Results
The models’ accuracies on heldout test words, shown in Table 3, reveal that PLP learns an accurate
grammar by the time its vocabulary grows to about 2,000 words. PLP’s output is shown as an ordered
list of rules in (46).
(46) G = r5 ◦ r4 ◦ r3 ◦ r2 ◦ r1, where

r1 = [+syl] → [+nas] / __ [+nas]
r2 = ∅ → ә / [+sib] __ [+sib]
r3 = [+sib, +voi] → [−voi] / [−voi] __
r4 = ∅ → ә / [+cor, −cont, −nas] __ [+cor, −cont, −nas]
r5 = [+cor, −cont, −nas, +voi] → [−voi] / [−voi] __
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Table 3. Model accuracies (with standard deviations) on heldout test
data at different training vocabulary sizes. PLP readily learns an accurate
grammar for the English processes in (44)

Model Vocabulary size

1,000 2,000 3,000 4,000

PLP 0.984 ± 0.01 0.992 ± 0.00 0.995 ± 0.00 0.997 ± 0.00

UCON 0.969 ± 0.00 0.982 ± 0.00 0.987 ± 0.00 0.990 ± 0.00
ORACLE 0.980 ± 0.00 0.989 ± 0.00 0.991 ± 0.00 0.992 ± 0.00

ID 0.510 ± 0.00 0.510 ± 0.00 0.510 ± 0.00 0.510 ± 0.00

Figure 3. PLP’s accuracy on the plural and past tense nonce words from Berko (1958) as training
progressed. The black dashed line denotes plurals that should take [z] or [s] and the grey dashed
lines those that should take [әz]. The dotted lines represent the analogues for past tense. The fact
that [z]/[s] accuracy converges before [әz] and [d]/[t] before [әd] matches Berko’s finding that
children learn [z]/[s] and [d]/[t] before [әz] and [әd].

The rules were ordered as described in §2.3.3, with r2 before r3 and r4 before r5 (bleeding order)
being the inferred ordering dependencies. Thus, as described in §2.3.3, PLP learned that epenthesis
bleeds devoicing. Rules r2–r5 do not encode a wordfinal context because they satisfy the Tolerance
Principle threshold without it, so there is no need for PLP to expand the search window. The extension
of [+cor, −cont, −nas] is {t, d}, and the extension of [+cor, −cont, −nas, +voi] is {d}.

The fact that no model achieves 100% accuracy is due to a handful of words that do not follow
the generalisations in (44). For instance, compounds like [bɛdtaɪm̃] allow the sequence [dt], but the
models predict there should be an epenthetic vowel to split the sequence. Such exceptions are easily
accounted for if I assume the learner recognises the word as a compound. Since exceptions are inevitable
in naturalistic data, I chose to not remove them.

Berko’s (1958) seminal study found that children aged 4–7 years could accurately inflect nonce
words that take the [z], [s], [d] or [t] suffixes, but that they performed much worse at inflecting
nonce words taking the [әz] or [әd] suffixes. Adults could inflect nonce words with [әz] or [әd],
suggesting that voicing assimilation process may be learned earlier than the epenthesis process. I show
PLP’s accuracy on Berko’s different categories of nonce words in Figure 3 as the vocabulary grows
(xaxis). PLP’s accuracy on nonce words taking [z] or [s] (dashed black line) converges earlier than
its accuracy on nonce words taking [әz] (dashed grey line); similarly the accuracy for nonce words
taking [d] or [t] (dotted black line) converges earlier than for nonce words taking [әd] (dotted grey
line). Thus, the order of acquisition matches Berko’s finding.
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4.4.3. Takeaways
The results in this more challenging setting, wheremultiple processes are simultaneously active, support
the takeaways from the prior experiment. PLP successfully learns all the generalisations (Q2) and does
not introduce unmotivated generalisations (Q3).

4.5. Learning Tswana’s postnasal devoicing

Although a majority of phonological patterns may be phonetically grounded, some processes never
theless appear to lack or even oppose phonetic motivation (Anderson 1981; Buckley 2000; Johnsen
2012; Beguš 2019). Moreover, these must still be learnable, because children continue to successfully
acquire them (Johnsen 2012: 506). An example of such a pattern is the postnasal devoicing in Tswana
shown above in (2), which Coetzee & Pretorius (2010) confirmed to be productive despite operating
against the phonetic motivation for postnasal voicing (Hayes & Stivers 2000; Beguš 2019). Beguš
(2019: 699) found postnasal devoicing reported as a sound change in 13 languages and dialects, from
eight language families.

Models of phonological learning should account for the fact that productive patterns are successfully
learned by humans even if they are not phonetically grounded. A consequence of PLP’s identity default
is that generalisations are added to the grammar whenever they are motivated by surface alternations.
Since surface alternations in Tswana motivate a generalisation for postnasal devoicing, PLP should be
able to acquire the Tswana pattern. This experiment attempts to confirm this (Q3).

4.5.1. Setup
For this experiment, I used the 10 UR–SR pairs from Coetzee & Pretorius (2010: 406) as training data.
Five pairs involve devoicing resulting from the 1SG.OBJ clitic /m/ attaching to a stem that starts with a
voiced obstruent. The other five pairs involve the 1PL.OBJ clitic /re/ attaching to the same stems, which
serve as negative examples since the clitic does not introduce a nasal. These data are not necessarily
representative of the data a child would have during acquisition, and the learnability experiment thus
serves only as a proof of concept.

The test data consist of the same 20 /b/initial nonce words presented to the participants in Coetzee
& Pretorius (2010: 407) – 10 stems each combined with /m/ and /re/.

4.5.2. Results
The results in Table 4 demonstrate that PLP can learn Tswana’s postnasal devoicing without requiring
the existence of a phonetically unmotivated universal constraint.16 Constraintranking models can also
learn the generalisation but depend on an account of how the constraint *NC̬, which penalises what is

Table 4. PLP learns precisely the set of processes active in its experience. This provides
a straightforward account of how productive phonological processes can be learned
even if they operate against apparent phonetic motivation, like devoicing in Tswana
following nasals (Coetzee & Pretorius 2010). With PLP, the unmotivated constraint *NC̬
need not be assumed to be universal

Model Generalisation Test accuracy

PLP b→ [−voi] / m__ 1.0
Ranking without *NC̬ {*NC̥, IDENT(VOICE)} 0.5
Ranking with *NC̬ *NC̬≫{*NC̥, IDENT(VOICE)} 1.0

16PLP learns *[mb] rather than *NC̬ because the training data only included [mb] instances; if more representative training
data were available, PLP would induce natural classes, as in the previous experiments.
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not usually considered to be a universally marked sequence (Locke 1983; Rosenthall 1989; Pater 1999;
Beguš 2016, 2019), is added to the constraint set.

4.5.3. Takeaways
Because PLP assumes UR–SR identity by default, it constructs precisely the generalisations necessary
to account for the discrepancies active in its experience, providing a straightforward account of how
productive generalisations can be learned even if they are opposed to apparent phonetic motivation, as
humans evidently do (Q3; see Seidl & Buckley 2005, Johnsen 2012: 506; Beguš 2018, ch. 6).

5. Discussion

5.1. The nature of locality

One reviewer asked what sort of tendency I view locality to be. I view the cognitive tendency for
humans to prefer constructing local generalisations to be a geometric computational consequence. That
is, if words are viewed, at least to a first approximation, as linear objects, this linear geometry introduces
the notion of locality as small linear distance. In my view, the reason that a human is more likely to
construct a generalisation that conditions xi on xi−1 than on xi−2 in a sequence . . . , xi−2, xi−1, xi (see §1.1)
is that a search outward from xi encounters xi−1 before it encounters xi−2.

PLP is an attempt to state this in explicit computational terms. An immediate consequence of this
hypothesis is that if xi−1 is sufficient to account for whatever the uncertainty in xi is (e.g., what its surface
form is), then xi−2 will never be considered, even if there is some statistical dependency between the two.
I believe this prediction is consistent with the experimental results from sequence learning, discussed
in §1.1, in which participants tracked adjacent dependencies even when nonadjacent dependencies
were more statistically informative (Gómez &Maye 2005) and constructed local generalisations rather
than less local ones when the exposure data underdetermined the two (as in the povertyofstimulus
paradigms of Finley 2011 and McMullin & Hansson 2019). I note that words may not be exactly linear
– segment articulations have gestural overlap, syllables are often viewed as hierarchical structures,
and representations like autosegmental tiers may be present. However, I think treating words as linear
sequences is a good first approximation. Work on tierlocality also recognises that stringlocality is a
special case of tierlocality in which all segments are on the same tier (see, e.g., Hayes &Wilson 2008;
Heinz et al. 2011; McMullin 2016).

An alternative view could be that locality is distributional: a learner may track the dependency
between xi and both xi−1 and xi−2, and may find that xi−1 is more statistically robust as a generalisation,
preferring it for that reason. However, this view is inconsistent with the findings that when statistical
robustness is controlled (Finley 2011; McMullin & Hansson 2019), and even when it favours the less
local dependency (Gómez & Maye 2005), humans systematically generalise locally. The distributional
approach could be combined with a stipulated bias (prior) favouring local dependencies, but this would
simply describe the phenomenon, not explain it.

5.2. Future directions

Research on phonological representations recognises that strict locality arises not only over string
representations but also over representations like tiers and metrical grids (Goldsmith 1976; Hayes &
Wilson 2008; Heinz et al. 2011; McMullin 2016). PLP could be extended to construct generalisations
over these representations. However, an account of how a learner may construct increasingly abstract
representations should first be given. Recent work has investigated this, proposing an abductive
algorithm in which learners iteratively propose new representations in response to alternations not
being sufficiently predictable from adjacent dependencies in a linear representation (Belth in press).
This mirrors PLP’s iterative expansion of an attention window. Future work will investigate combining
these learning models: it remains an open question how the mechanisms of expanding attention and
projecting new representations interact.
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In another direction, variation is an important aspect of phonology (Coetzee & Pater 2011). PLP
currently learns categorical processes, and future work will investigate extending PLP to handle
variation by allowing rules to be probabilistic.

A. PLP and strict locality

In this appendix, I discuss how PLP’s generalisations can be characterised in the formallanguage
theoretic terms of strict locality. §A.1 shows that the sequences PLP learns are strictly local definitions,
and thus have the interpretation of banning substrings (Heinz 2018: 28). In §A.2, I then discuss how
PLP’s generalisations describe inputstrictly local maps.

A.1. Strict locality of sequences

Strictly local stringsets (McNaughton & Papert 1971) are stringsets whose members ‘are distinguished
from nonmembers purely on the basis of their kfactors’ (Rogers et al. 2013: 98). A kfactor of a string
is a lengthk substring, and the set of kfactors over an alphabet Σ is Fk(Σ∗) = {w ∈ Σ∗ : |w| ≤ k}
(Rogers et al. 2013: 96). A strictly klocal definition G is a subset of the kfactors over Σ, that is,
G ⊆ Fk(Σ∗).17 A definition is a strictly local definition if it is strictly klocal for some k. To be shown
here is that the sequences PLP learns, as defined in (6), repeated in (47), are strictly local definitions.
(47) S ,

∪∞
k=1{s1s2...sk : si ⊂ Σ}

Since s̄ ∈ S is a sequence of sets of segments si ⊂ Σ, we can define the extension, Es̄, of s̄ as the set
of sequences of segments that match s̄, as in (48), where k = |s̄|.
(48) Es̄ , {a1a2...ak : ai ∈ si ∀i ∈ 1...k}
For example, a sequence of two adjacent sibilants (49a) has the extension (49b).

(49) a. s̄ = [+sib][+sib]
b. Es̄ = {ss, sz, zs, ʃz, ʒs, ...}

Theorem 1. The instances Es̄ of any s̄ ∈ S form a strictly local definition over the alphabet Σ.

Proof. For any a1a2...ak ∈ Es̄, each ai is an element of si (i.e., ai ∈ si) by (48) and thus an element
of Σ (i.e., ai ∈ si ⊂ Σ) by (47). Thus, every a1a2...ak ∈ Es̄ is a lengthk string from Σ∗. It follows that
Es̄ ⊆ Fk(Σ∗) and that, for k = |s̄|, Es̄ is a strictly local definition.

A.2. Strict locality of generalisations

Chandlee et al. (2014: 40) provides formallanguagetheoretic and automatatheoretic definitions of
input strictly local stringtostring functions, which, for input and output alphabets Σ and Γ, have the
following interpretation:

Definition 1 (kISL function  Informal). A function (map) f : Σ∗ → Γ∗ is input strictly local
(ISL) iff ∃k ∈ N such that each output symbol o ∈ Γ is determined by a lengthk window around its
corresponding input symbol.18

Each of PLP’s generalisations is interpretable as a rule of the form (50) with a target context (cad)
of finite length |cad|,19 and under simultaneous application (cf. §2.3.4).
(50) a→ b / c __ d

17Rogers et al. (2013) add wordinitial and wordfinal markers (o and n) to Σ. I assume the learner’s segment inventory already
contains symbols for syllable and word boundaries.

18Length k includes the corresponding input symbol.
19Under the realistic assumption that input strings are of finite length.
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Chandlee et al. (2014: 41) provides an algorithm for constructing, from any such rule (i.e., with
finite target context and under simultaneous application), a finitestate transducer with the necessary
and sufficient automatatheoretic properties of an ISL map. Consequently, if Chandlee’s algorithm is a
valid constructive proof, it follows that each generalisation that PLP constructs describes an ISL map.
When these are combined into a grammar, it is unknown whether the resulting grammar is also ISL,
because it is unknown whether ISL maps are closed under composition (Chandlee 2014: 149).

B. Differences between PLP and MGL

PLP differs in several ways from the MGL model of Albright & Hayes (2002, 2003). Note that PLP
is designed to learn phonology, while MGL was designed for producing English pasttense inflections
from verb stems, though it can be extended to other settings.

B.1. Generalisation strategy

PLP and MGL use different generalisation strategies: PLP generalises as locally as possible, and MGL
generalises as conservatively as possible. As discussed in §1.1 and tested in §4.2, I believe that PLP’s
generalisation strategy is better supported by studies of human learning.

B.2. Number of rules

Another difference between PLP and MGL is the number of rules they generate. For German syllable
final devoicing at a vocabulary size of 400 (§4.3), PLP learns the single rule in (51).

(51) [+voi,−son]→ [−voi] / __ ]𝜎
In contrast, MGL learns 102 rules for where devoicing should take place and 4,138 for where

it should not. An example of the former is (52a) and the latter (52b) (both are presented with the
extensions of the natural classes for clarity). Rules like (52b) are learned because not every word
involves devoicing, and thus MGL needs such rules in order to produce those words (§B.3).

(52) a. ɡ→ k / {a,e,i,o,u,y,ø,æ,ɔ,ɘ,ɛ,ɪ,ʊ} __ ]𝜎 #
...

b. ∅ → ∅ / {f,k,p,t,x}]𝜎 #
...

B.3. Production

MGL may produce multiple candidate outputs for an input, because every rule that applies to the input
generates a candidate output. The quality of a candidate output is ‘the confidence of the best rule
that derives it’ (Albright & Hayes 2002, §3.2). I used the candidate with the highest confidence as
MGL’s prediction. This differs from PLP’s production (§2.3.4), which applies all rules (here just one)
in order. This difference is not significant when learning a single phonological process, but it is not
straightforward to use MGL to learn multiple processes simultaneously. For instance, in §4.4, for input
/ɪnsɛktz/, MGL’s rule(s) for vowel nasalisation may produce the candidate *[ɪñsɛktz], and its rule(s)
for pluralisation may produce the candidate *[ɪnsɛkts]. However, MGL does not provide a mechanism
to apply both rules to produce the correct output [ɪñsɛkts].

B.4. Natural classes

MGL’s naturalclass induction differs from PLP’s in twoways. First, MGL does not form natural classes
for every part of a rule. For example, the two rules in (53a) will combine to form a third (53b) – and
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similarly for (53c) and (53d) – but rules (53b) and (53d) will not combine to form (53e), because only
contexts (not targets) are merged.

(53) a. ә→ ә̃ / __ n
ә→ ә̃ / __ m

b. ә→ ә̃ / __ {n, m}
c. ʌ→ ʌ̃ / __ n

ʌ→ ʌ̃ / __ m
d. ʌ→ ʌ̃ / __ {n, m}
e. {ә, ʌ}→ [+nas] / __ {n, m} (formed by PLP but not by MGL)

Moreover, when rules are combined, the new rule and the original rules are all retained. In contrast,
PLP will construct (53e), and only it will be present in the grammar (§2.3.1).

Second, when MGL creates natural classes for a set of segments, it retains all features shared by
those segments, whereas PLP only retains those needed to keep the rule satisfactorily accurate. Thus,
for (54a) MGL will construct (54b), while PLP will construct (54c).

(54) a. ә→ ә̃ / __ {n, m}
b. ә → ә̃ / __ [+ant, +cons, +lab, +nas, +son, +voi, −back, −cg, −cont, −cor, −delrel,

−hi, −lat, −lo, −long, −round, −sg, −syl, −velaric]
c. ә→ ә̃ / __ [+nas]

Consequently, PLP will correctly extend әnasalisation to contexts with a following ŋ, but MGLwill
need to wait for such an instance in the training data before constructing the full generalisation.
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