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Sampling and interpolation for the discrete
Hilbert and Kak–Hilbert transforms
Isaac Z. Pesenson

Abstract. The goal of the paper is to obtain analogs of the sampling theorems and of the Riesz–Boas
interpolation formulas which are relevant to the discrete Hilbert and Kak–Hilbert transforms in l 2 .

1 Introduction

The objective of the paper is to establish some analogs of the classical (Shannon)
sampling theorems and Riesz–Boas interpolation formulas which are associated with
the discrete Hilbert transform and Kak–Hilbert transform in l 2. The basic idea is
to utilize their one-parameter uniformly bounded groups of operators in the space
l 2 to reduce questions about sampling and interpolation to the classical ones. Such
an approach to sampling and interpolation for general one-parameter uniformly
bounded groups of class C0 (i.e., continuous in strong topology) of operators in
Banach spaces was developed in [13, 14]. The main part of the present paper is devoted
to the discrete Hilbert transform. Here, we show in all the details how one can use
one-parameter group of isometries generated by the discrete Hilbert transform in l 2

to obtain several relevant sampling and interpolation results.
If H̃ is the discrete Hilbert transform in the space l 2 with the natural inner

product ⟨⋅, ⋅⟩, (see Section 2 for all the definitions) then the bounded operator H = πH̃
generates a one-parameter group e tH , t ∈ R, of isometries of l 2. The fact that e tH ,
t ∈ R, is a group of isometries and the explicit formula for all e tH were given in [7]. In
our first sampling Theorem 3.2, we give an explicit formula for a function ⟨e tHa, a∗⟩,
t ∈ R, for every a, a∗ ∈ l 2, in terms of equally spaced “samples” ⟨eγkHa, a∗⟩, k ∈ Z,
for any 0 < γ < 1. In two other sampling Theorems 3.5 and 3.7, we express the entire
trajectory e tHa, t ∈ R, a ∈ l 2 , in terms of the integer translations ekHa, k ∈ Z. In
Section 4, we have an analog of a sampling theorem with irregularly spaced “samples.”

In Section 5, we present some analogs of the classical Riesz–Boas interpolation
formulas. Namely, we give explicit formulas for H2m−1a, m ∈ N, a ∈ l 2 , in terms of
the vectors e(k−1/2)Ha, k ∈ Z, and for H2ma, m ∈ N, in terms of ekHa, k ∈ Z.

In Section 6, we briefly describe how similar results can be obtained in the case of
the Kak–Hilbert transform.
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396 I. Z. Pesenson

2 Some harmonic analysis associated with the discrete Hilbert
transform

We will be interested in the operator H = πH̃ where H̃ is the discrete Hilbert
transform operator

H̃ ∶ l 2 ↦ l 2 , H̃a = b, a = {a j} ∈ l 2 , b = {bm} ∈ l 2 ,

which is defined by the formula

bm = 1
π ∑

n≠m , n∈Z

an

m − n
, m ∈ Z.(2.1)

Since H is a bounded operator, the following exponential series converges in l 2 for
every a ∈ l 2 and every t ∈ R:

e tHa =
∞

∑
k=0

Hka
k!

tk .(2.2)

In fact, H is a generator of a one-parameter group of operators e tH , t ∈ R, which
means that [4, 11]
(1)

e t1 H e t2 H = e(t1+t2)H , e0 = I,

(2)

e−tH = (e tH)−1
,

(3) for every a ∈ l 2,

lim
t→0

e tHa − a
t

= Ha.

It is clear that for a general bounded operator A, the exponent can be extended to
the entire complex plane C, and one has the estimate

∥ezA∥ ≤
∞

∑
k=0

∥A∥k ∣z∣k
k!

= e∥A∥∣z∣ , z ∈ C.(2.3)

In the nice paper by De Carli and Samad [7] about the group e tH , the following results
were obtained (among other interesting results):
(1) The explicit formulas for the operators e tH were given.
(2) It was shown that every operator e tH is an isometry in l 2.
The explicit formulas are given in the next statement.

Theorem 2.1 The operator H generates in l 2 a one-parameter group of isometries
e tHa = b, a = (an) ∈ l 2 , b = (bm) ∈ l 2 , which is given by the formulas

bm = sin(πt)
π ∑

n∈Z

an

m − n + t
,
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Discrete Hilbert and Kak–Hilbert transforms 397

if t ∈ R ∖Z, and

bm = (−1)t am+t ,

if t ∈ Z.

As it was proved by Schur [18], the operator norm of H̃ ∶ l 2 ↦ l 2 is one and
therefore the operator norm of H is π. It was shown in [8] that although the norm of
the operator H is π, only a strong inequality ∥Ha∥ < π∥a∥ can hold for every nontrivial
a ∈ l 2.

Let us remind that a Bernstein class [1, 12], which is denoted as Bp
σ(R), σ ≥ 0, 1 ≤

p ≤ ∞, is a linear space of all functions f ∶ R ↦ C which belong to Lp(R) and admit
extension to C as entire functions of exponential type σ . A function f belongs to
Bp

σ(R) if and only if the following Bernstein inequality holds:

∥( d
dx

)
k

f ∥
L p(R)

≤ σ k∥ f ∥L p(R) , x ∈ R,

for all natural k. Using the distributional Fourier transform

f̂ (ξ) = 1√
2π ∫

R

f (x)e−i ξx dx , f ∈ Lp(R), 1 ≤ p ≤ ∞,

one can show (Paley–Wiener theorem) that f ∈ Bp
σ(R), 1 ≤ p ≤ ∞, if and only if f ∈

Lp(R), 1 ≤ p ≤ ∞, and the support of f̂ (in the sense of distributions) is in [−σ , σ].
In what follows, the notation ∥ ⋅ ∥ will always mean ∥ ⋅ ∥l 2 . We note that since H is

a bounded operator whose norm is π, one has, for all a ∈ l 2, the following Bernstein-
type inequality:

∥Hka∥ ≤ πk∥a ∥.(2.4)

Pick an a∗ ∈ l 2, and consider a scalar-valued function

Φ(t) = ⟨e tHa, a∗⟩, t ∈ R.

The following lemma and the corollary after it can be considered as analogs of the
Paley–Wiener theorem.

Lemma 2.2 For every a ∈ l 2 and every a∗ ∈ l 2, the function Φ belongs to the Bernstein
class B∞π (R).

Proof We notice that

( d
dt

)
k

Φ∣t=0 = ⟨Hka, a∗⟩.

Since the operator norm of H is π, we obtain that the Taylor series for Φ converges
absolutely on C

∣∑
k=0

( d
dt

)
k

Φ∣t=0
zk

k!
∣ ≤ ∑

k=0
∣⟨Hka, a∗⟩∣ ∣z∣

k

k!
= ∥a∥∥a*∥ eπ∣z∣(2.5)
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398 I. Z. Pesenson

and represents there a function of the exponential type π. In addition, the function Φ
is bounded on the real line

∣Φ(t)∣ = ∣⟨e tHa, a∗⟩∣ ≤ ∥a∥∥a∗∥.

Lemma is proved. ∎

This lemma can also be reformulated as follows.

Corollary 2.1 For a fixed a ∈ l 2, the vector-valued function

e tHa ∶ R ↦ l 2(2.6)

has extension ezHa, z ∈ C, to the complex plane as an entire function of the exponential
type π which is bounded on the real line.

We already observed that the function Φ for any a, a∗ ∈ l 2 belongs to B∞π (R). Let
us introduce a new function defined by the next formula if t ≠ 0

Ψ(t) = Φ(t) − Φ(0)
t

= ⟨ e tHa − a
t

, a∗⟩,(2.7)

and in the case t = 0 by the formula

Ψ(0) = d
dt

Φ(t)∣t=0 = ⟨Ha, a∗⟩.(2.8)

Lemma 2.3 For every a ∈ l 2 , a∗ ∈ l 2, the function Ψ is in the Bernstein class B2
σ(R).

Proof The function Ψ is an entire function of the exponential type π. Indeed, the
fact that Φ(t) is in B∞π (R) means [12] that

⟨e tHa, a∗⟩ = ⟨a, a∗⟩ +
∞

∑
k=1

ck tk ,

with limk→∞
k
√

k!∣ck ∣ ≤ π, and then

Ψ(t) = ⟨e tHa, a∗⟩ − ⟨a, a∗⟩
t

=
∞

∑
k=1

ck tk−1 ,

where one obviously has limk→∞
k
√

k!∣ck+1∣ ≤ π. In addition, Ψ belongs to L2(R) since
according to the Schwartz inequality,

∣Ψ(t)∣ 2 = ∣⟨ e tHa − a
t

, a∗⟩∣ 2 ≤ (2∥a∥∥a∗∥)2

∣t∣2 , t ≥ 1.

In other words, Ψ is in the Bernstein class B2
σ(R). Lemma is proved. ∎
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Discrete Hilbert and Kak–Hilbert transforms 399

The following so-called general Parseval formula can be found in [5]: For f , g ∈
B2

σ , σ > 0, one has

∫
R

f (t)g(t)dt = π
σ ∑

k∈Z
f ( kπ

σ
) g ( kπ

σ
).

In our situation, the general Parseval formula gives the following result.

Theorem 2.4 For every a, a∗ , b, b∗ ∈ l 2, the next equality holds

∫
R

⟨ e tHa − a
t

, a∗⟩ ⟨ e tHb − b
t

, b∗⟩ dt =

⟨Ha, a∗⟩ ⟨Hb, b∗⟩ + ∑
k≠0

⟨ ekHa − a
k

, a∗⟩ ⟨ ekHb − b
k

, b∗⟩.

3 Sampling theorems with regularly spaced samples for orbits e tHa

Below, we are going to use the following known fact (see [6]).

Theorem 3.1 If h ∈ B∞σ (R), then for any 0 < γ < 1, the following formula holds:

h(z) = ∑
k∈Z

h (γ kπ
σ

) sinc(γ−1 σ
π

z − k) , z ∈ C,(3.1)

where the series converges uniformly on compact subsets of C.

By using Theorem 3.1 and Lemma 2.2, we obtain our First Sampling Theorem.

Theorem 3.2 For every a, a∗ ∈ l 2, every 0 < γ < 1, and every z ∈ C, one has

⟨ezHa, a∗⟩ = ∑
k∈Z

⟨e(γk)Ha, a∗⟩ sinc (γ−1z − k) ,(3.2)

where the series converges uniformly on compact subsets of R.

Explicitly, the formula (3.2) means that if z in (3.2) is a real z = t which is not an
integer, then (3.2) takes the form

sin πt
π ∑

m∈Z
∑

n∈Z n≠m

anbm

m − n + t
= S1 + S2 ,(3.3)

where

S1 = ∑
k∈Z, γk∈R∖Z

sin πγk
π

(∑
m∈Z

∑
n∈Z n≠m

anbm

m − n + γk
) sinc (γ−1 t − k)

and

S2 = ∑
k∈Z; γk∈Z

(∑
m∈Z

(−1)γk am+γk bm) sinc (γ−1 t − k).
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400 I. Z. Pesenson

Next, if z = t in (3.2) is an integer, then the formula (3.2) is given by

∑
m∈Z

(−1)t am+tbm = S1 + S2 .

We note that if t = γN , N ∈ Z, then (3.2) is evident since its both sides are (obviously)
identical

⟨e tHa, a∗⟩ = ⟨e tHa, a∗⟩.

Remark 3.3 The situation with such a kind of “obvious interpolation” is very com-
mon for sampling formulas. Consider, for example, the following classical (Shannon)
formula:

f (t) = ∑
k∈Z

f (k) sinc (t − k),(3.4)

for f ∈ B2
π(R), where the series converges uniformly on compact subsets ofR and also

in L2(R). This formula is informative only when t is not integer. When t = N ∈ Z, it
clearly becomes a tautology f (N) = f (N) because sinc z is zero for every z ∈ Z ∖ {0}
and sinc 0 = 1.

We are going to use the next known result (see [6]).

Theorem 3.4 If h ∈ B2
σ(R), then the following formula holds for z ∈ C:

h(t) = ∑
k∈Z

h ( kπ
σ

) sinc(σ
π

t − k),(3.5)

where the series converges uniformly on compact subsets ofR. The restriction of the series
to the real line also converges in L2(R).

Theorem 3.5 For every a ∈ l 2,

e tHa = a + t sinc (t)H a + t ∑
k∈Z∖{0}

ekHa − a
k

sinc (t − k) ,(3.6)

where the series converges in the norm of l 2.

Proof Since Ψ is in B2
σ(R), one can use Theorem 3.4 to obtain the following

formula for every a, a∗ ∈ l 2, and every t ∈ R:

⟨ e tHa − a
t

, a∗⟩ = ∑
k∈Z

⟨ ekHa − a
k

, a∗⟩ sinc (t − k),(3.7)

where the series converges uniformly on compact subsets of R. Actually, this formula
means that if t ≠ 0, then

⟨ e tHa − a
t

, a∗⟩ = ⟨Ha, a∗⟩ sinc (t) + ∑
k∈Z∖{0}

⟨ ekHa − a
k

, a∗⟩ sinc (t − k),(3.8)
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and for t = 0, it becomes just

⟨Ha, a∗⟩ = ⟨Ha, a∗⟩.

The formula (3.8) can be rewritten as

⟨e tHa, a∗⟩ =

⟨a, a∗⟩ + t ⟨Ha, a∗⟩ sinc (t) + t ∑
k∈Z∖{0}

⟨ ekHa − a
k

, a∗⟩ sinc (t − k).(3.9)

Next, we notice that the series

∑
k∈Z∖{0}

ekHa − a
k

sinc (t − k)

converges in l 2 since for every fixed t ∈ R,
############

∑
k∈Z∖{0}

ekHa − a
k

sinc (t − k)
############
≤ 2∥a∥ ∑

k≠0,t

1
∣k∣∣t − k∣ < ∞.

It allows to rewrite (3.9) as

⟨e tHa, a∗⟩ = ⟨a + tHa sinc (t) + t ∑
k∈Z∖{0}

ekHa − a
k

sinc (t − k), a∗⟩.

Since this equality holds for all sequences a∗ ∈ l 2, we obtain (3.6). Theorem is
proved. ∎

Next, we reformulate (3.6) in its “native” terms.

Proposition 3.6 If a = (an) ∈ l 2 and t is not integer, then the left-hand side of (3.6) is
a sequence e tHa = b = (bm) ∈ l 2 with the entries

bm = sin πt
π ∑

n∈Z

an

m − n + t
,(3.10)

and the right-hand side represents a sequence c = (cm) ∈ l 2 with the entries

cm = am + t sinc (t) ∑
n∈Z,n≠m

an

m − n
+

t ∑
k∈Z∖{0}

(−1)k am+k − am

k
sinc (t − k).(3.11)

If t in (3.6) is an integer t = N, then bm = (−1)N am+N and

cm = am + N ∑
n∈Z,n≠m

an

m − n
sinc (N)+

N ∑
k≠0

(−1)k am+k − am

k
sinc (N − k) = (−1)N am+N .
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Thus, in the case when t = N is an integer, we obtain just a tautology

bm = (−1)N am+N = cm .

The next theorem is a generalization of what is known as the Valiron–Tschakaloff
sampling/interpolation formula [5].

Theorem 3.7 For every a ∈ l 2, one has

e tHa = sinc (t)a + t sinc (t)Ha + ∑
k∈Z∖{0}

t
k

sinc (t − k)ekHa,(3.12)

where the series converges in the norm of l 2.

Proof If h ∈ B∞σ (R), σ > 0, then for all z ∈ C, the following Valiron–Tschakaloff
sampling/interpolation formula holds [5]:

h(t) = sinc(σ t
π

) f (0)+

t sinc(σ t
π

) f
′

(0) + ∑
k∈Z∖{0}

σ t
kπ

sinc(σ t
π

− k) h ( kπ
σ

) ,(3.13)

the convergence being absolute and uniform on compact subsets of C. If a, a∗ ∈ l 2 ,
then ⟨e tHa, a∗⟩ ∈ B∞π (R) and according to (3.13) with σ = π, we have

⟨e tHa, a∗⟩ = sinc (t) ⟨a, a∗⟩+

t sinc (t) ⟨Ha, a∗⟩ + ∑
k∈Z∖{0}

t
k

sinc (t − k) ⟨ekHa, a∗⟩ .

Because the series

∑
k∈Z∖{0}

t
k

sinc (t − k)ekHa

converges in l 2, we obtain the formula (3.12). Theorem is proved. ∎

The following proposition formulates (3.12) in the specific language of l 2.

Proposition 3.8 If a = (an) ∈ l 2 and t is not an integer, then the left-hand side of (3.12)
is a sequence e tHa = b = (bm) ∈ l 2 with entries

bm = sin πt
π ∑

n∈Z

an

m − n + t
,(3.14)

and the right-hand side of (3.12) represents a sequence c = (cm) ∈ l 2 with entries

cm = am sinc (t)+

t sinc (t) ∑
n∈Z,n≠m

an

m − n
+ t ∑

k∈Z∖{0}
(−1)k sinc (t − k)

k
am+k .(3.15)
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When t in (3.12) is an integer t = N , then (3.12) is the tautology bm = (−1)N

am+N = cm .

4 An irregular sampling theorem

The following fact was proved in [9].

Theorem 4.1 Let {tk}k∈Z be a sequence of real numbers such that

sup
k∈Z

∣tk − k∣ < 1/4.(4.1)

Define the entire function

G(t) = (t − t0)∏
k∈Z

(1 − z
tk

)(1 − z
t−k

) .(4.2)

Then, for all f ∈ B2
π(R), we have

f (t) = ∑
k∈Z

f (tk)
G(t)

G′(tk)(t − tk)

uniformly on every compact subset of R.

As it was already noticed, for any a, a∗ ∈ l 2, the function Ψ(t) defined for all
t ≠ 0 as

⟨ e tHa − a
t

, a∗⟩

and for t = 0 as Ψ(0) = ⟨Ha, a∗⟩ belongs to B2
π(R). Applying Theorem 4.1, we obtain

the following theorem.

Theorem 4.2 If a, a∗ ∈ l 2 and a sequence {tk} satisfies (4.1), then

Ψ(t) = ∑
k∈Z

Ψ(tk)
G(t)

G′(tk)(t − tk)
,

uniformly on every compact subset of R.

5 Riesz–Boas interpolation formulas for the discrete
Hilbert transform

Consider a trigonometric polynomial P(t) of one variable t. The famous Riesz
interpolation formula [12, 15, 16] can be written in the form

( d
dt

) P(t) = 1
4π

2n
∑
k=1

(−1)k+1 1
sin2 tk

2
Utk P(t), t ∈ T, tk = 2k − 1

2n
π,(5.1)
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404 I. Z. Pesenson

where Utk P(t) = P(tk + t). This formula was extended by Boas [2, 3], (see also [1, 12,
17]) to functions in B∞σ (R) in the following form:

( d
dt

) f (t) = n
π2 ∑

k∈Z

(−1)k−1

(k − 1/2)2 U π
n (k−1/2) f (t), t ∈ R,(5.2)

where U π
n (k−1/2) f (t) = f ( π

n (k − 1/2) + t). In turn, the formula (5.2) was extended
in [6] to higher powers (d/dt)m . In this section, we present some natural analogs
of such formulas (which we call Riesz–Boas interpolation formulas) associated with
the discrete Hilbert transform. Our objective is to obtain similar formulas where the
operator d/dt is replaced by the discrete Hilbert transform H and the group of regular
translations Ut is replaced by the group e tH .

Let us introduce bounded operators

R
(2s−1)
H a = ∑

k∈Z
(−1)k+1As ,k e(k−1/2)Ha, a ∈ l 2 , s ∈ N,(5.3)

and

R
(2s)
H a = ∑

k∈Z
(−1)k+1Bs ,k ekHa, a ∈ l 2 , s ∈ N,(5.4)

where As ,k and Bs ,k are defined as

As ,k = (−1)k+1sinc(2s−1) ( 1
2
− k)

= (2s − 1)!
π(k − 1

2 )2s

s−1
∑
j=0

(−1) j

(2 j)!
(π (k − 1

2
))

2 j
, s ∈ N,(5.5)

for k ∈ Z,

Bs ,k = (−1)k+1sinc(2s)(−k) = (2s)!
πk2s+1

s−1
∑
j=0

(−1) j(πk)2 j+1

(2 j + 1)!
, s ∈ N,(5.6)

for k ∈ Z ∖ {0}, and

Bs ,0 = (−1)s+1 π2s

2s + 1
, s ∈ N.(5.7)

Both series converge in l 2 due to the following formulas (see [6]):

∑
k∈Z

∣As ,k ∣ = π2s−1 , ∑
k∈Z

∣Bs ,k ∣ = π2s , s ∈ N.(5.8)

Since ∥e tH f ∥ = ∥ f ∥, it implies that

∥R(2s−1)
H a∥ ≤ π2s−1∥a∥, ∥R(2s)

H a∥ ≤ π2s∥a∥, a ∈ l 2 , s ∈ N.(5.9)

Theorem 5.1 For a ∈ l 2, the following Riesz–Boas-type interpolation formulas hold
true for r ∈ N:

Hra = R
(r)
H a, a ∈ l 2 .(5.10)
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Discrete Hilbert and Kak–Hilbert transforms 405

More explicitly, if r = 2s − 1, s ∈ N, then

H2s−1a = ∑
k∈Z

(−1)k+1As ,k e(k−1/2)Ha,(5.11)

and when r = 2s, s ∈ N, then

H2sa = ∑
k∈Z

(−1)k+1Bs ,k ekHa.(5.12)

Proof As we know, for any a, a∗ ∈ l 2, the function Φ(t) = ⟨e tHa, a∗⟩ belongs to
B∞π (R). Thus, by [6], we have

Φ(2m−1)(t) = ∑
k∈Z

(−1)k+1Am ,k Φ (t + (k − 1/2)) , m ∈ N,

Φ(2m)(t) = ∑
k∈Z

(−1)k+1Bm ,k Φ (t + k) , m ∈ N.

Together with

( d
dt

)
k

Φ(t) = ⟨Hk e tHa, a∗⟩ ,

it shows

⟨e tH H2m−1a, a∗⟩ = ∑
k∈Z

(−1)k+1Am ,k ⟨e(t+(k−1/2))Ha, a∗⟩ , m ∈ N,

and also

⟨e tH H2ma, a∗⟩ = ∑
k∈Z

(−1)k+1Bm ,k ⟨e(t+k)Ha, a∗⟩ , m ∈ N.

Since both series (5.3) and (5.4) converge in l 2 and the last two equalities hold for any
a∗ ∈ l 2, we obtain the next two formulas

e tH H2m−1a = ∑
k∈Z

(−1)k+1Am ,k e(t+(k−1/2))Ha, m ∈ N,(5.13)

e tH H2ma = ∑
k∈Z

(−1)k+1Bm ,k e(t+k)Ha, m ∈ N.(5.14)

In turn, when t = 0, these formulas become formula (5.10). Theorem is proved. ∎

Let us introduce the notation

RH = R
(1)
H .

One has the following “power” formula, which easily follows from the fact that
operators RH and H commute.

Corollary 5.1 For any r ∈ N and any a ∈ l 2,

Hra = R
(r)
H a = Rr

Ha,(5.15)

where Rr
Ha = RH (. . . (RHa)) .
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Let us express (5.10) in terms of H and e tH . Our starting sequence is a = (an), and
then we use the notation Hka = (a(k)

m ) , k ∈ Z. One has

Ha = 1
π ∑
(n , n≠n1)

an

n1 − n
= (a(1)n1 ) ,

H2a = 1
π2 ∑
(n1 , n1≠n2)

∑
(n , n≠n1)

a(1)n1

(n2 − n1)(n1 − n) = (a(2)n2 ) ,

and so on up to an r ∈ N

Hra = 1
πr ∑
(nr−1 , nr−1≠nr)

∑
(nr−2 , nr−2≠nr−1)

. . .

. . . ∑
(n1 , n1≠n2)

∑
(n , n≠n1)

a(r−1)
nr−1

(nr − nr−1)(nr − nr−1) . . . (n2 − n1)(n1 − n) = (a(r)nr ) .

(5.16)

Theorem 5.2 For any a = (an) ∈ l 2 , and r = 2s − 1, we have in (5.11) the equality of
two sequences where on the left-hand side we have a sequence whose general term is
a(2s−1)

m , and on the right-hand side we have a sequence whose general term is cm ,s
where

cm ,s = ∑
k∈Z

(−1)k+1 sin(π(k − 1/2))
π

As ,k ∑
n≠m

an

m − n + (k − 1/2) .

The equality (5.11) tells that a(2s−1)
m = cm ,s .

For the case r = 2s, a sequence on the left-hand side of (5.12) has a general term a(2s)
m ,

and a sequence on the right-hand side has a general term dm ,s of the form

dm ,s = − ∑
k∈Z

Bs ,k am+k ,

and (5.12) means that a(2s)
m = dm ,s .

Let us introduce the following notations:

R
(2s−1)
H (N)a = ∑

∣k∣≤N
(−1)k+1As ,k e(k−1/2)Ha,

R
(2s)
H (N)a = ∑

∣k∣≤N
(−1)k+1Bs ,k ekHa.

One obviously has the following set of approximate Riesz–Boas-type formulas.

Theorem 5.3 If a ∈ l 2 and r ∈ N, then

Hra = R
(r)
H (N)a + O(N−2).(5.17)

The next theorem contains another Riesz–Boas-type formula.
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Theorem 5.4 If a ∈ l 2, then the following sampling formula holds for a ∈ R and
n ∈ N:

Hn e tHa = (n sinc(n−1) (t) + t sinc(n) (t)) Ha

+ ∑
k≠0

(n sinc(n−1) (t − k) + t sinc(n) (t − k)) ekHa − a
k

,(5.18)

where the series converges in the norm of l 2. In particular, for n ∈ N, one has

Hna = Qn
Ha,(5.19)

where the bounded operator Q(n)H is given by the formula

Q
(n)
H f = (sinc(n−1) (0) + sinc(n) (0)) n Ha

+n ∑
k≠0

(sinc(n−1) (−k) + sinc(n) (−k)) ekHa − a
k

.(5.20)

Remark 5.5 We note that (sinc t)(m)(0) = (−1)m/(m + 1)! if m is even, and
(sinc t)(m)(0) = 0 if m is odd.

Proof For any a, a∗ ∈ l 2, the function Φ(t) = ⟨e tHa, a∗⟩ belongs to B∞π (R). We
consider Ψ which was introduced previously in (2.7) and (2.8). We have

Ψ(t) = ∑
k∈Z

Ψ (k) sinc (t − k),

where the series converges in l 2. From here, we obtain the next formula

( d
dt

)
n

Ψ(t) = ∑
k∈Z

Ψ (k) sinc(n) (t − k) ,

and since

( d
dt

)
n

Φ(t) = n ( d
dt

)
n−1

Ψ(t) + t ( d
dt

)
n

Ψ(t),

we obtain

( d
dt

)
n

Φ(t) = n ∑
k∈Z

Ψ (k) sinc(n−1) (t − k) + t ∑
k∈Z

Ψ (k) sinc(n) (t − k) .

Since ( d
d t )

n
Φ(t) = ⟨Hn e tHa, a∗⟩ , and

Ψ (k) = ⟨ ekHa − a
k

, a∗⟩ ,

we obtain that the formulas (5.18)–(5.20) hold. Theorem is proved. ∎
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6 The case of the Kak–Hilbert transform

We also briefly show how our methods can be applied to the Kak–Hilbert transform
to obtain similar sampling and interpolation formulas. Kak–Hilbert transform also
generates a one-parameter group of operators in l 2, but it is not a group of isometries
like in the case of the discrete Hilbert transform. However, this group of operators is
uniformly bounded. This uniform boundness is explored to include the case of Kak–
Hilbert transform into our scheme.

The Kak–Hilbert transform

Ka = b, a = (an) ∈ l 2 , b = (bn) ∈ l 2 ,

is defined by the formula

bm = 2
π ∑

n even

an

m − n
,

if m is odd, and by the formula

bm = 2
π ∑

n odd

an

m − n
,

if m is even.
It is known that K is an isometry in l 2 (see [10]). As a bounded operator, K

generates a one-parameter group e tK of bounded operators in l 2. One can verify the
property K2 = −I which implies the explicit formula for e tK (see [7]):

e tK = (cos t) I + (sin t) K ,

which gives the uniform bound ∥e tK∥ ≤ 2.
Pick an a∗ ∈ l 2, and consider a scalar-valued function

F(t) = ⟨e tK a, a∗⟩, t ∈ R.

Note that since K is an isometry, the analog of the Bernstein inequality takes the form

∥Kna∥ = ∥a∥, n ∈ N,

(compare to (2.4)). Using this inequality, one can easily prove the following analog of
Lemma 2.2.

Lemma 6.1 For every a ∈ l 2 and every a∗ ∈ l 2, the function F belongs to the Bernstein
class B∞1 (R).

We also have the following corollary similar to (2.1).

Corollary 6.1 For a fixed a ∈ l 2, the vector-valued function

e tK a ∶ R ↦ l 2

has extension ezK a, z ∈ C, to the complex plain as an entire function of the exponential
type 1 which is bounded on the real line.

https://doi.org/10.4153/S0008439522000169 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000169


Discrete Hilbert and Kak–Hilbert transforms 409

Similarly to the case of the discrete Hilbert transform, one could prove the
following statements.

Theorem 6.2 For every a, a∗ ∈ l 2 and every 0 < γ < 1, the following formula holds
true:

⟨e tK a, a∗⟩ = ∑
n∈Z

⟨e(γnπ)Ka, a∗⟩ sinc( t
γπ

− n) ,

where the series converges uniformly on compact subsets of R.
The following formulas also hold true:

e tK a = a + t sinc (t/π) Ka + t ∑
n∈Z∖{0}

enπKa − a
nπ

sinc( t
π

− n) ,

where the series converges in the norm of l 2, and

e tK a = sinc( t
π
) a + t sinc( t

π
) Ka + ∑

n∈Z∖{0}

t
nπ

sinc( t
π

− n) enπK a,

where the series converges in l 2.

One could also reformulate for the Kak–Hilbert transform all other results which
were obtained for the discrete Hilbert transform. In particular, one could introduce
bounded operators

T
(2m−1)
K a = ∑

n∈Z
(−1)n+1Am ,n e(n−1/2)πK a, a ∈ l 2 , m ∈ N,

and

T
(2m)
K a = ∑

n∈Z
(−1)n+1Bm ,n enπKa, a ∈ l 2 , m ∈ N,

and to prove relevant Riesz–Boas-type interpolation formulas

K ra = T
(r)
K a, a ∈ l 2 , r ∈ N.
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