THE CO-ORDINATION OF HYDRATED Cu(II)- AND Ni(II)-IONS ON MONTMORILLONITE SURFACE

FIRMIN VELGHE,* ROBERT A. SCHOONHEYDT and JAN B. UYTTERHOEVEN

Centrum voor Oppervlaktescheikunde en Collo'idale Scheikunde, . Katholieke Universiteit Leuven, De Croylaan 42, B-3030 Heverlee, Belgium

(Received 15 *April* 1977; *and in final form* 26 *May 1977)*

Abstract-The optical spectra of Cu^{2+} and Ni^{2+} on Camp Berteau montmorillonite after lyophilization and evacuation at room temperature are characteristic for the presence of $Cu(H₂O)₄²⁺$ and $Ni(H₂O)₆²⁺$ in the interlamellar space. The most probable ligand field parameters for $Cu(H_2O)_4^{2+}$ are $D_{q_{xy}} =$ 1310 cm⁻¹, $D_s = 1807$ cm⁻¹ and $D_t = 664$ cm⁻¹. The covalent character of the Cu²⁴-OH₂ bond is
not negligible as indicated by the orbital reduction factors $k^2 - 0.66$ and $k^2 - 0.76$. This is also the not negligible as indicated by the orbital reduction factors $k_{\parallel}^2 = 0.66$ and $k_{\perp}^2 = 0.76$. This is also the case for $\text{Ni}(\text{H}_2\text{O})_6^{2+}$ which is characterized by a ligand field strength, $D_q = 850 \text{ cm}^{-1}$ and an electronic repulsion parameter $B = 920 \text{ cm}^{-1}$. After desorption in vacuum the optical spectra of Cu²⁺ were poorly resolved, while Ni²⁺ was present partially as $(O_l)_3Ni^{2+}$, partially as $(O_l)_3Ni-OH_2$ where O_l means an oxygen of the hexagonal rings in the tetrahedral layers.

INTRODUCTION

Much effort was devoted to the study of the coordination of Cu^{2+} with water on smectite surfaces with EPR. The work was recently reviewed and need not be repeated here (Pinnavaia, 1976). Typical EPR parameters for $Cu(H₂O)₄²$ were $g_{||} = 2.33-2.34$; $A_{\parallel} = -0.0175 \text{ cm}^{-1}$ and $g_{\perp} = 2.08 \text{--} 2.09$ (Clementz *et al.,* 1973 ; Pinnavaia, 1976). They differ from the parameters of Cu(H₂O)²⁺ on reduced charge montmorillonites, $g_{\parallel} = 2.30 \pm 0.01$, $A_{\parallel} = -0.0154$ cm⁻¹ and $g_{\perp} = 2.085 \pm 0.005$ (Clementz *et al.*, 1974). On a completely hydrated Cu^{2+} -hectorite $(d_{001} = 16-$ 19.5 Å) most of the Cu²⁺ was present as Cu(H₂O)²⁺, but a small amount of Cu(H₂O)²⁺ was also reported with $g_{\parallel} = 2.31$, $A_{\parallel} = -0.0151$ cm⁻¹ and $g_{\perp} = 2.04$ (McBride, 1976). It seems then that the EPR parameters of Cu(H₂O₄)²⁺ significantly depend on the environment. Moreover, on the basis of his parameters McBride predicted the $d-d$ transitions of $Cu²⁺$ in the range 20000-30000 cm⁻¹, far above the 12500 cm^{-1} found in solution and in hydrated synthetic faujasites (McBride, 1976; Holmes and McClure, 1957; De Wilde *et al.,* 1977). We measured the electronic spectra of hydrated Cu^{2+} on a montmorillonite surface to verify McBride's predictions and to account for eventual differences with the solution spectra. An hydrated $Ni²⁺$ montmorillonite was added to establish differences in behavior between these two transition metal ions and to supplement the work of Tarasevich and Sivolov (1975a,b).

EXPERIMENTAL

Samples

The Camp Berteau (CB) montmorillonite was prepared by the method of Cremers and Thomas (1966)

C.C.M. $25/6- A$

with slight modifications. The crude clay was immersed in a 1 M NaCl solution, which was renewed several times to obtain a monoionic Na⁺-clay. During subsequent washings with distilled water and centrifuging at 1800 rounds min^{-1} for 15 min the fraction $< 0.5 \mu m$ remained in suspension and was collected. It was flocculated again in 1 N NaCl, washed with an acidified ($pH = 3.5-4$) and a neutral 1 N NaCl solution to remove hydroxy-aluminium compounds, possibly generated during the repeated washings. The clay was dried in an oven at 70° C and stored as such.

For each sample, 2 g of this clay stock were immersed in \sim 150 ml distilled water, brought into dialysis tubings and washed salt-free. The dry weight was determined by drying 10 ml of the suspension at 110° C until constant weight. The salt-free suspensions were equilibrated with solutions of $Ni(NO₃)$, or $Cu(NO₃)₂$ for 24 hr. The total Cu²⁺- or Ni²⁺-contents were three times the cation exchange capacity (CEC) of the clay. The samples were washed three times with distilled water, freeze-dried and stored as such. The exchangeable cation and water contents are given in Table 1.

Procedures and techniques

Diffuse reflectance spectra in the region 5000-30000 cm $^{-1}$ were taken with a Cary 17 instrument with a type I reflectance unit. The reflectance cell is shown in Figure 1. The reference was MgO fitted in a matching reflectance cell. In the case of NiCB the reference was NaCB. Spectra were taken of the samples as such and after evacuation between room temperature and 150° C. At each temperature, the equilibration time was at least 48 hr. The spectra were digitalized with a Hewlett-Packard *3480C* digital voltmeter and punched on paperband with a Hewlett-Packard 3489A data punch. These spectra were * Oleofina, Ertvelde, Belgium. computerized and plotted with an off-line Calcomp

 M^{2+} Na+ $(mequiv, g^{-1})$ Samples (mequiv. g^{-1}) H_2O/M^{2+} + Na⁺ CuCB 0.05 1.27 NiCB 0.06 1.27 $=$ $\frac{1}{2}$ $\frac{1}{2$ E 0.040 <u>r</u>
E 0.020 C A B

Table 1. Exchangeable cation and water contents

plotter as $F(R_{\infty})$ against wavenumber. $F(R_{\infty})$ is the Kubelka-Munck function:

$$
F(R_{\infty}) = \frac{(1 - R_{\infty})^2}{2R_{\infty}} = \frac{K}{S}.
$$

 R_{∞} is the experimental reflectance. *K* and *S* are respectively the absorption and scattering coefficients (Kortüm, 1969).

RESULTS

The diffuse reflectance spectra of CuCB as such and after evacuation at room temperature were presented in Figure 2. In the hydrated state the spectrum showed a maximum near 13100 cm^{-1} , asymmetric both at the low and high frequency sides of the band maximum. This spectrum was decomposed in three

5.29 7.17

Figure 3. Decomposition in three Gaussian bands of the spectrum of Cu^{2+} in hydrated CuCB.

Gaussian-shaped bands with a Dupont type 310 curve resolver as shown in Figure 3. The band maxima were at 10550, 13100 and 15200 cm⁻¹. The overall band intensity increased significantly after evacuation at room temperature (Figure 2). Dehydration *in vacuo* at 131°C increased the background and the Cu^{2+} band could not be unambiguously resolved, although a shift to higher frequencies was visible. Prolonged equilibration with water vapor at room temperature generated a new band around 11200 cm^{-1} at the expense of the 13100 cm^{-1} band (Figure 4). The process was very slow and even after 5 days the 13100 cm^{-1} band remained the most intense. The spectrum in Figure 4 also shows the overtones and

Figure 2. Reflectance spectrum of CuCB: 1, hydrated; 2, after evacuation at room temperature.

CuCB

Figure 4. Reflectance spectrum of CuCB after exposure to water vapour at room temperature for 72 hr.

combination bands due to the vibrations of the H_2O molecule and/or lattice hydroxyl groups in the region 5000-7500 cm^{-1}. Because of the large background, the $Cu²⁺$ spectra on reduced charge montmorillonites were not well resolved.

NiCB

CuCB, the pretreatment at 140°C *in vacuo* increased considerably the overall background. The 7100 cm^{-1} band was nearly eliminated. The 8400 cm^{-1} was only visible as a broad shoulder on a 14400 cm^{-1} band. A band at 24800 cm^{-1} emerged clearly. The negative dip at 7000 cm^{-1} was due to the instrument.

The spectra of NiCB were recorded against NaCB. DISCUSSION They were shown in Figure 5. The spectrum of NiCB
as such contained, basides the overtones of water. CuCB as such contained-besides the overtones of water and hydroxyls at 7000 cm^{-1} —a band at 8400 cm⁻¹, a double band at 13800 and 15450 cm^{-1} and a strong background starting at 23000 cm^{-1} . Upon degassing at room temperature, the same spectrum was observed together with a band at 25300 cm^{-1} . As for

On air-dried $Cu²⁺$ -montmorillonite a monolayer of water was adsorbed between the clay sheets (Clementz *et aI.,* 1973), giving rise to the formation of a square planar complex, $Cu(H₂O)₄²⁺$, in the *ab* plane of the mineral. We ascribe the composite band at

Figure 5. Reflectance spectra of NiCB: 1, hydrated; 2, after evacuation at room temperature; 3, after dehydration *in vacuo* at 140°C.

Species	v_1 -1 (cm	v_{2} (cm)	v_{3} - 11 (cm	$D_{a_{\underline{x}y_{1}}}$ (cm	D, -1 (cm)	D. (cm)	D_t/D_a	D_a/D_s				
CuCB(1)	10.550	13.100	15.200	1310	1807	664	0.51	0.72				
(2)	13.100	10.550	15,200	1055	2535	591	0.56	0.42				
$\left(3\right)$	15,200	10.550	13.100	1055	2535	1011	0.96	0.42				
$Cu(H2O)4(HCO2)2$	9200	11.200	13.200	1120	1600	560	0.50	0.70				
$Cu(H2O)4(UO2)2(AsO4)2$.4H ₂ O	13,000	12,000	15.000	1200	2286	771	0.64	0.52				
$CuSO4$.5H ₂ O	10,500	13,000	14,500	1300	1714	729	0.56	0.76				
CaCuSi ₄ O ₁₀	18,800	12,900	15,800	1290	3100	1280	0.99	0.42				

Table 2. Band assignments and ligand field parameters for $Cu(H₂O)²⁺₄$ on montmorillonite as compared to single crystal values

 13100 cm^{-1} to this species. Our experimental water: cation ratio of 5.29 is accounted for by the presence of physically adsorbed water. We rule out the presence of some Cu($H_2 O_6^{2+}$ because our prolonged hydration experiments indicated the development of a band around 11200 cm^{-1} at the expense of the 13100 cm^{-1} band. Such a frequency decrease is indicative for the transformation of $Cu(H₂O)₄²⁺$ to $Cu(H₂O)₆²⁺$ (Hathaway and Billing, 1970). The ligand field expressions of the $d-d$ transitions for square planar Cu^{2+} -complexes are (Kobinata, 1974):

$$
v_1(^2A_{1g} \leftarrow {}^2B_{1g}) = 4 D_s + 5D_t \tag{1}
$$

$$
v_2(^2B_{2g} \leftarrow {}^2B_{1g}) = 10 D_{q_{xy}} \tag{2}
$$

$$
v_3(^2E_g \leftarrow {}^2B_{1g}) = 10 D_{q_{xy}} + 3 D_s - 5 D_t, \quad (3)
$$

from which it follows that

$$
4v_3 = 2v_2 + 3v_1 \tag{4}
$$

and

$$
D_t/D_q = \frac{4}{7}.\tag{5}
$$

Here, D_{grav} and D_t are one electron radial integrals of the fourth order in *r,* the d-orbital distance from the Cu^{2+} nucleus. D_s is the corresponding second order integral. $D_{q_{xy}}$ is a measure of the strength of the ligand field due to H_2O . D_t and D_s express the tetragonal component of the ligand field. In Table 2 we give three possible band assignments for $Cu(H₂O)₄²⁺$ on the surface of Camp Berteau montmorillonite together with the values of their corresponding parameters D_q , D_s and D_t . These parameters and frequencies are compared with those derived from polarized single crystal spectra of Cu^{2+} salts with $Cu(H₂O)₄²$ and $Cu(H₂O)₆²$ entities and of a Cu^{2+} silicate (Hathaway and Billing, 1970; Holmes and McClure, 1957). In the latter case Cu^{2+} is strictly co-planar. The first two possibilities $(v_1 < v_2 < v_3)$ and $v_2 < v_1 < v_3$) agree very well with the spectra and parameters of the Cu^{2+} salts. This means that $Cu(H₂O)₄²⁺$ between the clay sheets behaves as a tetragonally elongated octahedral complex with the clay surfaces acting as weak axial ligands. The strength of the ligand field due to the clay surfaces, D_{q_z} , is obtained from: $D_t = \frac{4}{7} (D_{q_{xy}} - D_{q_z})$ (Lever, 1968). It follows that D_{q} equals 148 and 21 cm⁻¹ for (1) and (2) in Table 2, respectively (we neglect covalent bonding). The third hypothesis ($v_2 < v_3 < v_1$) resembles the strictly co-planar case of $CaCuSiO₄$, although the frequency of each individual component of $Cu(H₂O)₄²⁺$ on CB is at least 2000 cm⁻¹ lower. This assignment seems therefore less likely. We can obtain an idea about the covalent character of the bonding in Cu(H₂O)²⁺ on montmorillonite from a combination of our band assignments and the EPR parameters .(Clementz *et aI.,* 1973). To the first order in the spin orbit coupling constant λ we have (Hathaway and Billing, 1970):

70):
\n
$$
g_{\parallel} - 2.0023 = \frac{-8\lambda k_{\parallel}^2}{v_2}
$$
 (6)

$$
g_{\perp} - 2.0023 = \frac{-2\lambda k_{\perp}^2}{v_3}.
$$
 (7)

 K_{\parallel} and k_{\perp} are the so-called orbital reduction factors, which allow for the nephelauxetic effect and the covalent character of the Cu---O bonds. $\lambda = -829 \text{ cm}^{-1}$ for the free Cu^{2+} ion. Table 3 shows the results for $Cu(H₂O)₄²⁺$ on montmorillonite and compares them with those of similar Cu^{2+} salts. It is striking that on the montmorillonite surface $k_1 > k_{\parallel}$, the reverse of what is usually observed for Cu²⁺ complexes. The fact that g_{\perp} for Cu(H₂O)²⁺ on montmorillonite is larger than g_{\perp} for the same species in Cu²⁺ salts is

Table 3. g-values, hyperfine splitting constants, orbital reduction factors and M.O. coefficients of Cu(H₂O) $_6^{2+}$ systems

Species	g_{\parallel}	A_{\perp} (cm ⁻¹)	$g_{\perp} \pm 0.005$	k_{\perp}^2	$k_{\perp}^2 \pm 0.05$	α^2		
CuCB(1)	2.335	0.0175	2.085	0.66	0.76	0.91	0.88	0.75
(2)	2.335	0.0175	2.085	0.53	0.76	0.91	0.88	0.60
(3)	2.335	0.0175	2.085	0.53	0.65	0.91	0.80	0.60
$Cu(H2O)4(HCO2)2$	2.35	\sim	2.06	0.59	0.46			
$Cu(H2O)4(UO2)2(AsO4)2.4H2O$	2.3554		2.0676	0.64	0.59			
CaCuSi ₄ O ₁₀	2.326		2.054	0.63	0.49			

also the reverse of our observations for Cu(en) 2^+ $(en = ethylenediamine)$ on the same montmorillonite and on zeolites (Velghe *et al.,* 1977, Peigneur *et al.,* 1977). The reason for this is not clear at this moment. The coefficients of the M.O.s of Cu(H₂O)²⁺, calculated with the Kivelson and Neiman theory (1961), are also displayed in Table 3. Here, α , β_1 and β are respectively the coefficients of $dx^2 - y^2$, dxy and dxz (or dyz) in the M.O. expressions of the in-plane σ bond, in-plane π -bond and out-of-plane π -bond. If we adhere to the hypothesis that π -bonding is very small $(\beta_1^2 \rightarrow 1 \text{ and } \beta^2 \rightarrow 1)$, as is usually the case with simple ligands (Hathway and Billing, 1970), then case 1 is nearest to the real situation. It should be helpful to have available A_{\perp} values to substantiate this idea.

CuCB *after evacuation*

The intensity increase after room temperature evacuation is best ascribed to a change of the scattering power of the powder as the band maxima positions of Cu(H₂O)²⁺ remain the same, and thus also the structure of the complex. After the 130°C evacuation, the spectrum becomes poorly resolved due to a strong background, although there seems to be a shift to higher frequencies. Tarasevich observed the same shift upon dehydration of a Cu^{2+} montmorillonite at 150°C (Tarasevich, 1975a). He assumed that the Cu²⁺ ions after entering the ditrigonal holes of the mineral, caused this frequency shift. The inability of part of the Cu^{2+} ions to complex with adsorbed ethylenediamine confirms this assignment (Velghe *et al.,* 1977).

NiCB

Although the $H_2O(Ni^{2+}$ ratio is 7.29, the spectrum of NiCB as such agrees perfectly with that of octahedral Ni $(H_2O)_6^{2+}$ in solution. The ligand field theory satisfactorily accounts for the spectrum (Liehr and Ballhausen, 1959) with the strength of the ligand field D_q equal to 850 cm⁻¹ and with Racah's electronic repulsion parameter *B* equal to 920 cm^{-1} (König, 1971). The ${}^{3}T_{1a}(P) \leftarrow {}^{3}A_{2g}(F)$ transition around 25300 cm^{-1} is not observed in our experimental spectra, as it is masked by the strong background in that region, typical for all clay minerals (Sindberg and Snyder, 1972). After dehydration at room temperature the spectrum shows the same features and the 25,300 cm⁻¹ band, indicating a Ni $(H_2O)_6^{2+}$ on the surface. After desorption at 140°C the intensity increase of the spectrum is strong evidence for a symmetry lowering, although a change in scattering cannot be excluded. The intense band at 14000 cm^{-1} is considered to be the ${}^{3}T_{1}(P) \leftarrow {}^{3}T_{1}(F)$ transition of tetrahedral Ni²⁺ (Lever, 1968). The ³ $A_2(F) \leftarrow {}^{3}T_1(F)$ transition is expected around 7000 cm^{-1} in tetrahedral fields. Its low-frequency tail can be observed, but the maximum is masked by OH and H_2O overtones and a negative dip due to the instrument. The two other bands, a shoulder near 9000 cm^{-1} and the band at $24,800 \text{ cm}^{-1}$ are the same as observed on a dehydrated NiA zeolite (Klier and Rafek, 1968).

Therefore we ascribe them to Ni^{2+} co-ordinated to the oxygens of the hexagonal rings of the tetrahedral layers of the mineral. The corresponding symmetry is D_{3h} , when Ni²⁺ is in the plane of the sixring, but more probably C_{3v} , i.e. Ni²⁺ is somewhat recessed from the center of the hexagonal ring toward the interlamellar space. A third band is expected around 4000 cm^{-1} in this symmetry, but this is outside our experimental frequency range and therefore not observed.

We conclude that after dehydration at 140°C under vacuum part of the Ni^{2+} is present as a tetrahedral complex, formed with three oxygens of the hexagonal rings in the tetrahedral layers and one residual water molecule. The other Ni^{2+} ions are completely dehydrated and co-ordinated only to the three surface oxygens of the hexagonal rings in the tetrahedral layers.

Acknowledgernents- F.V. is indebted to the l.W.O.N.L. (Belgium) for a Ph.D. grant. R.A.S. acknowledges a grant as Bevoegdverklaard navorser from N.F.W.O. (Belgium). The authors thank Prof. H. Koch for the use of the Dupont 310 curve resolver and Miss J. Pelgrims for the chemical analysis of the samples. Financial support from the Belgian Government (Dienst Wetenschapsbeleid) is gratefully acknowledged.

REFERENCES

- Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M. (1973) Stereochemistry of hydrated copper(Il) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study: *J. Phys. Chern.* 77, 196-200.
- Clementz, D. M., Mortland, M. M. and Pinnavaia, T. J. (1974) Properties of reduced charge montmorilJonites: hydrated Cu(II) ions as a spectroscopic probe: *Clays and Clay Minerals* 22, 49-57.
- Cremers, A. and Thomas, H. C. (1966) Self-diffusion in suspensions. Sodium in montmorillonite at equilibrium: *J. Phys. Chern.* 70, 3229.
- De Wilde, W., Schoonheydt, R. A. and Uytterhoeven, J. B. (1977) Optical spectroscopy of hydrated and ammoniated Cu(II)-exchanged zeolites, type X and Y : Fourth lnt. Conf. Molecular Sieves, Chicago, U.S.A., April 1977, *ACS Symp. Ser.* **40,** 132-143.
- Hathaway, B. J. and Billing, E. D. (1970) The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion: *Coord. Chern. Rev. 5,* 143- 207.
- Holmes, O. G. and McClure, D. S. (1957) Optical spectra of hydrated ions of the transition metals: *J. Chern. Phys.* 26, 1686-1696.
- Kivelson, D. and Neiman, R. (1961) ESR studies on the bonding in copper complexes: *J. Chern. Phys. 35,* 149-155.
- Klier, K. and Ralek, M. (1968) Spectra of synthetic zeolites containing transition metal ions. II. $Ni²⁺$ ions in type A Linde molecular sieves: *J. Phys. Chern. Solids 29,* 951-957.
- Kobinata, S. (1974) The electronic structures of Cu(lI) complexes as determined by means of the configurational interaction method: *Bull. Chern. Soc. Japan 47,* 1085- 1089.
- König, E. (1971) The nephelauxetic effect. Calculation and accuracy of the interelectronic repUlsion parameters. I. Cubic high spin d^2 , d^3 , d^7 and d^8 systems: *Struct. and Bonding* 9, 175-212.
- Kortum, G. (1969) *Reflectance Spectroscopy:* Springer-Verlag, Berlin.
- Liehr, A. D. and Hallhausen, C. J. (1959) Complete theory of Ni(II) and V(IIl) in cubic crystalline fields: *Ann. Phys.* **2.** 134-155.
- Lever, A. B. P. (1968a) The electronic spectra of tetragonal metal complexes, analysis and significance: *Coord. Chern. Rev.* 3, 119-140.
- Lever, A. B. P. (1968b) *Inorganic Electronic Spectroscopy:* Elsevier, Amsterdam.
- McBride, M. B. (1976) Nitroxide spin probes on smectite surfaces. Temperature and solvation effects on the mobility of exchange cations: *J. Phys. Chern.* **80,** 196-203.
- Peigneur, P., Lunsford, J. H., De Wilde, W. and Schoonheydt, R. A. (1977) Spectroscopic characterization and thermal stability of $copper(II)$ ethylenediamine complexes on solid surfaces. I. Synthetic faujasites X and Y: *J. Phys. Chern.* **81,1179-1187.**
- Pinnavaia, T. J. (1976) Orientation and mobility of hydrated metal ions in layer lattice silicates: *Arn. Chern. Soc.*

Syrnp. no. 34, *Magnetic Resonance* in *Colloid and Interface Science*, pp. 94-108.

- Sindberg, J. D. and Snyder, D. G. (1972) Diffuse reflectance spectra of several clay minerals: *Arn. Miner.* 57, 485-93.
- Solomon, E. I. and Ballhausen, C. J. (1975) Identification of the structure of the ${}^{3}T_{1a}(I) \leftarrow {}^{3}A_{2a}$ band in the $Ni(H₂O)₆²⁺ complex: *Molec. Phys.*$ **29,** 279–99.
- Tarasevich, Yu. I. and Sivolov, E. (1975a) Electron spectra of bivalent copper aquacations sorbed by montmorillonite: *Kolloid Zh.* 37, 814-817.
- Tarasevich, Yu.l. (1975b) The investigation of coordination compounds on the surface of layer silicates: *Proc. Int. Conf. Colloid Surface* Sci., Vol. 1, pp. 27-31. Akademiai Kiado, Budapest.
- Velghe, F., Schoonheydt, R. A., Uytterhoeven, J. B., Peigneur, P. and Lunsford, J. H. (1977) Spectroscopic characterization and thermal stability of copper(U) ethylenediamine complexes on solid surfaces. II. Montmorillonite: *J. Phys. Chern.* **81,** 1187-1194.