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We investigate how inhomogeneity influences the k−5/3 inertial range scaling of turbulent
kinetic energy spectra (with k the wavenumber). For weak statistical inhomogeneity,
the energy spectrum can be described as an equilibrium spectrum plus a perturbation.
Theoretical arguments suggest that this latter contribution scales as k−7/3. This prediction
is assessed using direct numerical simulations of three-dimensional Kolmogorov flow.
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1. Introduction

Kolmogorov postulated in 1941 that the small scales of turbulent flows away from
boundaries can be considered universal if the Reynolds number is sufficiently large
(Kolmogorov 1941). The small scales are then supposed to be in equilibrium, and the
energy spectrum satisfies

E(k, x, t) ∼ ε(x, t)2/3k−5/3, (1.1)

where ε is the average energy dissipation rate. For this expression to hold, the wavenumber
k should be sufficiently large compared to L(x, t)−1, the inverse of the length scale
characterising the largest scales of the flow, and sufficiently small compared to the inverse
of the Kolmogorov-scale η(x, t)−1 (with η = ν3/4ε−1/4), associated with the smallest
scale of the flow.

In (1.1), the time and space dependence of E and ε need some particular attention.
Theoretically, the most convenient flow type for investigating inertial range scaling is an
infinitely large and statistically stationary flow without boundaries. Since all practical
flows are limited in size and lifetime, the dissipation rate will be dependent, even on
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average, on either position x or time t, or both. Therefore (1.1) will hold only locally in
subdomains of space and time intervals large enough compared to the considered length
and time scales.

Indeed, the assumptions allowing the simple prediction (1.1) are that the scales k
can be considered locally isotropic, stationary and homogeneous. The criterion k �
L−1 represents the implicit assumption that the influence of anisotropy, instationarity
and inhomogeneity decreases as a function of scale. The present investigation aims to
substantiate this assumption, particularly regarding the influence of inhomogeneity.

As an illustration, let us discuss the influence of statistical instationarity on the
behaviour of the small scales. This subject was addressed by Yoshizawa (1994), who
proposed that the influence of instationarity at large wavenumbers can be described as
a perturbation on the energy spectrum as

E(k, x, t) = E0(k, x, t) + E1(k, x, t), (1.2)

where the equilibrium part E0 is given by (1.1), and the perturbation scales as

ET
1 (k, x, t) = CY

dε(x, t)
dt

ε(x, t)−2/3k−7/3, (1.3)

where the superscript T denotes that we consider perturbations due to instationarity.
Numerical evidence of this scaling was first obtained by Horiuti & Ozawa (2011) for the
case of homogeneous shear flow, and by Horiuti & Tamaki (2013) for statistically isotropic
turbulence in a periodic box. Further theoretical discussion and a more straightforward
derivation of (1.3) can be found in Rubinstein & Clark (2005), Woodruff & Rubinstein
(2006) and Bos & Rubinstein (2017).

A similar approach is applied in various other configurations where the influence
of external effects on isotropic turbulence is modelled as a perturbation to the energy
spectrum. The effect of a mean shear on isotropic turbulence was treated perturbatively
by Ishihara, Yoshida & Kaneda (2002). Stratified turbulence was considered in Kaneda &
Yoshida (2004), and the limit of weakly compressible turbulence by Bertoglio, Bataille &
Marion (2001).

The effect of large-scale temporal fluctuations on the kinetic energy spectrum is thus
proportional to k−7/3, which decays more rapidly than the equilibrium spectrum (1.1) with
the k−5/3 scaling. In the remainder of this investigation, we will focus on the influence
of inhomogeneity on the scaling of turbulent kinetic energy, which has received little
attention. Using Karhunen–Loève eigenfunctions, it was illustrated that Kolmogorov’s
equilibrium spectrum can be observed in statistically inhomogeneous flows (Knight &
Sirovich 1990; Moser 1994; Liao & Su 2015). By using the SO(3) symmetry group
decomposition, Kurien et al. (2000) showed that structure functions contain a subdominant
scaling component associated with inhomogeneity.

We further assess at which rate statistical homogeneity is recovered at small scales.
To do that, in § 2 we derive an analytical prediction of the scaling of EX

1 (k, x), where the
superscript X denotes the perturbation due to inhomogeneity, in stationary inhomogeneous
turbulence. This expression will be the inhomogeneous equivalent of (1.3). In § 3,
we report the results of direct numerical simulations (DNS) of the three-dimensional
Kolmogorov flow to assess the predictions. Section 4 concludes this investigation.
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Inertial range scaling of inhomogeneous turbulence

2. Derivation of the spectral correction due to inhomogeneity

The main difficulty in the present investigation comes from the fact that we investigate a
multi-scale description (the energy spectrum) in an inhomogeneous setting. To simplify
as far as possible, we restrict ourselves to a fairly simple setting, where the (statistical)
inhomogeneity is periodic in space, and the flow is stationary and far away from
boundaries. Before addressing the inhomogeneous multi-scale description, we will first
consider the pointwise energy balance of the flow.

2.1. Kinetic energy budget in inhomogeneous turbulence
We consider a statistically inhomogeneous flow kept in a statistically stationary state
by a steady forcing f (z). The forcing in the present paper consists of a unidirectional
steady body force in the x-direction with a sinusoidal dependence in the z-direction. The
Navier–Stokes equations for this specific system are

DU(x, t)
Dt

= −∇P(x, t) + ν �U(x, t) + f (z) ex, (2.1)

where D/Dt is the material derivative, P is the pressure (divided by density) ensuring
incompressibility ∇ · U = 0, and ex denotes the unit vector in the x-direction.

The equations for the mean flow and the kinetic energy of the fluctuations can be
derived by introducing the Reynolds decomposition U = 〈U〉 + u, where 〈U〉 is the
ensemble-averaged velocity, and u = (u, v, w) is the fluctuation. The specific forcing
considered in the present investigation leads to a mean flow 〈U(x, t)〉 = U(z) ex. Then
the kinetic energy corresponding to the mean flow can be written as

KU(z) = U(z)2/2, (2.2)

and the kinetic energy of the fluctuations is

K(z) = 1
2 [〈u2〉(z) + 〈v2〉(z) + 〈w2〉(z)]. (2.3)

The equation for the mean velocity U(z) reduces to

DU(z)
Dt

= − ∂

∂z
〈uw〉(z) + f (z) + ν

∂2U(z)
∂z2 = 0. (2.4)

The details are provided, for instance, in Bos (2020). The equation for the turbulent kinetic
energy in a steady state is

DK(z)
Dt

= p(z) − ε(z) + d(z) = 0, (2.5)

where the production p(z), dissipation ε(z) and diffusion d(z) terms are given by

p(z) = −〈uw〉(z) ∂U(z)
∂z

, (2.6)

ε(z) = ν

〈
∂ui

∂xj

∂ui

∂xj

〉
(z), (2.7)

d(z) = − ∂

∂z

(
〈Pw〉(z) + 〈uiuiw〉(z) − ν

∂K(z)
∂z

)
, (2.8)

respectively. The first term, p(z), represents the production of turbulent kinetic energy
through the interaction of the turbulent fluctuations with the mean-velocity gradient

978 A9-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.940


R. Araki and W.J.T. Bos

∂U(z)/∂z. The viscous dissipation term ε(z) involves the gradients of the fluctuating
velocity.

In statistically homogeneous flows, production and dissipation are the only terms
appearing in the turbulent kinetic energy balance. In statistically inhomogeneous flows,
we also have spatial diffusion of turbulent kinetic energy d(z). The diffusion contains
contributions associated with the turbulent fluctuations of the velocity and pressure (first
two terms) and a contribution through viscous diffusion (the last term). This viscous part
of the diffusion is generally negligible compared to the contribution of the other two terms
and will be dropped in the following.

The main question in the present investigation is how such inhomogeneous
redistribution processes d(z) affect the scaling of the kinetic energy spectrum E(k, x) in
the inertial range of high-Reynolds-number turbulence.

2.2. Fourier analysis of inhomogeneous turbulence
The use of energy spectra in general turbulent flows needs some justification. In principle,
Fourier modes are associated with infinite or periodic domains. This property would
exclude the use of spatial Fourier analysis of any realistic, non-periodic flow. However, a
closer look at the length scales involved in turbulent flows permits invoking an assumption
of scale separation, allowing us to get around this problem. Indeed, the theoretical basis for
practical Fourier modelling of non-periodic turbulent flows can be found in various works
(see Jeandel, Brison & Mathieu 1978; Yoshizawa 1984; Bertoglio & Jeandel 1987; Laporta
& Bertoglio 1995; Besnard et al. 1996). In practice, to develop a spectral description
of inhomogeneous flows, one needs to introduce a length scale L characterising the
inhomogeneity of the flow geometry. Then one can consider Fourier spectra associated
with scales r ∼ k−1 small compared to L.

In the present investigation, we consider a spatially periodic flow without solid
boundaries or obstacles to avoid most of these complications. Furthermore, to derive
corrections due to statistical inhomogeneity, we consider statistically stationary turbulence
with a single inhomogeneous direction z. An advantage of the present configuration, where
only one inhomogeneous direction is present, is that we can compute energy spectra in
planes perpendicular to the z-axis. We thus define

E(k⊥, z) ≡ 1
2

∫
ui(k⊥, z) u∗

i (k⊥, z) dA(k⊥), (2.9)

where A(k⊥) denotes a wavenumber-shell of radius k⊥ in the (kx, ky) plane. The velocity
field in (2.9) is defined by the two-dimensional Fourier transform

ui(k⊥, z) ≡
∫

exp(−i(kxx + kyy)) ui(x, y, z) dx dy. (2.10)

The resulting energy spectrum E(k⊥, z) is a function of a perpendicular wavenumber
k⊥ =

√
k2

x + k2
y and a vertical coordinate z. We note that if isotropy is restored in small

scales, then E(k⊥, z) is expected to scale like the three-dimensional spectrum E(k, z) (see
Appendix A for the definition). In the following subsections in § 2, we will keep the
notation E(k, z) for the sake of generality, but it should be kept in mind that the scaling of
E(k, z) and E(k⊥, z) should be equivalent in statistically isotropic flow at large k.
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Inertial range scaling of inhomogeneous turbulence

2.3. Governing equation and modelling
The derivation in this subsection follows closely the rationale used to derive the
instationary correction presented in Bos & Rubinstein (2017). This same methodology
is here applied to the evolution equation of the energy spectrum in inhomogeneous
turbulence.

The kinetic energy spectrum is associated with the turbulent kinetic energy by the
relation ∫

E(k, z) dk = K(z). (2.11)

The evolution equation for E(k, z) is the multi-scale extension of (2.5). This equation reads,
for the case of a unidirectional mean flow U(z) ex as in (2.1),

DE(k, z)
Dt

= P(k, z)︸ ︷︷ ︸
production

− 2νk2 E(k, z)︸ ︷︷ ︸
dissipation

+ T(k, z)︸ ︷︷ ︸
transfer

+ D(k, z)︸ ︷︷ ︸
diffusion

. (2.12)

For self-consistency, we discuss the derivation of this equation in Appendix A. Except for
the viscous dissipation, all the terms in (2.12) are unclosed. In the following, we discuss
the different physics and contributions to propose simple models for them.

Since the flow is statistically stationary and the mean flow is unidirectional, the material
derivative on the left-hand side of (2.12) is zero. The first term on the right-hand side,
P(k, z), represents the terms directly proportional to the mean-velocity gradient. It contains
two contributions: the production of turbulent kinetic energy and a linear transfer term
(Cambon, Jeandel & Mathieu 1981; Briard et al. 2018). These terms are important mainly
at large scales, and become zero at points in space where the velocity gradient vanishes.
The order of magnitude of the production term can be estimated by (Tennekes & Lumley
1972),

P(k, z) ∼
(

∂U(z)
∂z

)2

τ(k, z) E(k, z), (2.13)

with the time scale τ(k, z) ∼ ε(z)−1/3k−2/3 in the inertial range. The integral of P(k, z)
over wavenumbers yields p(z) in (2.5). Here, ε(z) denotes the profile of the dissipation
of kinetic energy through viscous stresses (see (2.7)) and is obtained by the integral of
the second term on the right-hand side of (2.12). At large Reynolds numbers, this term is
significant only at large wavenumbers. It is the term P(k, z) that is responsible for energy
transfer between the mean velocity field U(z) and the turbulent kinetic energy.

The nonlinear transfer T(k, z) represents the energy flux and is a redistributive term
in scale space; thus its integral over all wavenumbers yields zero. The last term, D(k, z),
represents the diffusion, or transport, through turbulent fluctuations and viscous diffusion.
Note that this term is zero in statistically homogeneous turbulence. The term D(k, z) is
also a redistribution term like T(k, z), but in physical space. Its integral over wavenumbers
corresponds to d(z) in (2.5).

Both T(k, z) and D(k, z) are functions of triple correlations between Fourier modes at
different wavelengths. There is no exact expression of these quantities as a closed function
of the kinetic energy spectrum E(k, z). At this moment, we will therefore introduce
modelling assumptions. Sophisticated models exist for inhomogeneous spectral dynamics,
based on the test field model (Kraichnan 1971) or the eddy-damped quasi-normal
approximation (Laporta & Bertoglio 1995; Parpais & Bertoglio 1996). However, the
resulting closures are quite complicated and do not allow a straightforward analytical
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Figure 1. A schematic of the energy spectrum in (k, z) coordinates. Two arrows denote the directions of
energy fluxes in wavenumber and physical space, respectively.

perturbation treatment. Therefore, our approach uses simple models that reproduce their
main physical features: the redistribution of energy in scale space for T(k, z), and in
physical space for D(k, z), respectively. We use diffusion approximations for both terms:

T(k, z) = − ∂

∂k
Π(k, z), (2.14)

D(k, z) = − ∂

∂z
Φ(k, z), (2.15)

where Π(k, z) and Φ(k, z) are turbulent fluxes in wavenumber and physical space,
respectively. Figure 1 depicts schematically these two fluxes in (k, z) space. In the absence
of inhomogeneity, the flux Φ(k, z) is zero. In the inhomogeneous case, the presence of this
flux will affect the kinetic energy spectrum E(k, z).

We model both fluxes using a gradient-diffusion approximation

Π(k, z) = −ρ(k, z)
∂(k−2 E(k, z))

∂k
, (2.16)

with ρ(k, z) ∼ k11/2 E(k, z)1/2 being a turbulent energy diffusion in Fourier space, and

Φ(k, z) = −μ(z)
∂E(k, z)

∂z
, (2.17)

where μ(z) is a turbulent diffusivity in real space (see (2.29)). We have effectively
decoupled (and simplified) the transfer terms in scale and physical space. Indeed, both
Φ(k, z) and Π(k, z) are determined by the same triple velocity and velocity–pressure
correlations (see (A4)). Decomposing the physical space–scale space flux is a major
assumption that seems necessary to obtain an analytically tractable model of energy
transfer in inhomogeneous turbulence. The model (2.16) for Π(k, z) is known as the
Leith model (Leith 1967; Rubinstein & Clark 2022). This model tends to homogenise the
kinetic energy in spectral space towards equipartition among wave vectors, corresponding
to an energy spectrum proportional to k2. The gradient-diffusion model for the diffusion
(2.17) tends to homogenise the energy distribution in physical space, and is used in
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Besnard et al. (1996), Touil, Bertoglio & Shao (2002) and Cadiou, Hanjalić & Stawiarski
(2004), for instance.

Eddy viscosity models are obviously simplified representations of the real transfer
terms. For instance, see Pope (2000, § 10) for extensive discussion. However, we think that
this kind of modelling is a useful first step before turning to more sophisticated modelling
approaches.

2.4. Linear perturbation analysis and scaling predictions
Our goal is to derive a prediction for inertial range scaling at large Reynolds numbers in
the limit of weak inhomogeneity, where the influence of inhomogeneity can be treated
as a perturbation. In the following, the leading-order contributions and perturbations are
indicated by subscripts 0 and 1, respectively. We define an inertial range L−1 	 k 	 η−1,
with the length L representing the typical length of the largest and energy-containing scales
of the flow. Furthermore, in our description, it is associated with the longest wavelength
in our flow domain and is chosen constant. We will define this length scale more precisely
later, in § 2.5.

We now define the equilibrium about which we expand the equations. To do so, we
consider the decomposition

E(k, z) = E0(k, z) + E1(k, z), (2.18)

with |E1| 	 |E0|. The other quantities, such as Π(k, z) and Φ(k, z), are decomposed in
the same manner. We recall here that in addition to these two contributions to the energy
spectrum, the flow also contains the time-averaged velocity profile, which consists of a
single wave vector in the z-direction in the present case (see (2.2)). This mean flow is not
present in the inertial range, on which we will focus in the following. Therefore, in the
remainder of this section, we can focus on the contributions E0(k, z) and E1(k, z).

For very high Reynolds numbers in the limit of vanishing inhomogeneity, we assume
that the equilibrium contributions to the kinetic energy balance (2.12) do not depend on
the inhomogeneous turbulent diffusion D(k, z). By integrating the balance between the
transfer and dissipation terms in (2.12) from k to ∞, we find∫ ∞

k
T( p, z) dp =

∫ ∞

k
2νp2E( p, z) dp (2.19)

or, using (2.14) and the equilibrium/non-equilibrium decomposition,

Π0(k, z) = ε(z). (2.20)

Indeed, this corresponds to the equilibrium between the energy flux and the energy
dissipation rate, essential to the inertial range description of Kolmogorov (1941). The
constant flux solution of the Leith model is consistent with this framework and is given by

E0(k, z) ∼ ε(z)2/3 k−5/3. (2.21)

This expression defines our equilibrium solution. We now assess the influence of the
inhomogeneity of ε(z) on this scaling as a perturbation.

In the following, we consider the terms in the balance equation (2.12) for the
non-equilibrium contributions. The order of magnitude of the production term (2.13) and
the diffusion-gradient modelling with the flux (2.17) lead us to deduce that D(k, z) �
P(k, z) at k � L−1. Therefore, the first-order perturbation to the equilibrium scaling in the
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inertial range is due to the inhomogeneous diffusion D(k, z). Then, in the inertial range,
we have

T(k, z) = −D(k, z) (2.22)

and

− ∂

∂k
Π1(k, z) = ∂

∂z
Φ0(k, z), (2.23)

since ∂Π0(k, z)/∂k = 0. Thus the first-order correction of the nonlinear transfer balances
the zeroth-order contribution of the inhomogeneous diffusion. The first-order perturbation
to the nonlinear flux Π1(k, z) is evaluated as (Rubinstein & Clark 2005)

Π1(k, z) = E1(k, z)
∂Π

∂E

∣∣∣∣
E0

, (2.24)

where ∂Π/∂E|E0 is the Fréchet derivative of the total flux Π evaluated at E(k, z) =
E0(k, z). In the inertial range, assuming E1 to scale as a power law, this yields the scaling,

Π1(k, z) ∼ ε(z)
E1(k, z)
E0(k, z)

. (2.25)

Note that we obtain (2.25) not only for the Leith model, but also for most of the other
classical closures, such as the Kovaznay and Heisenberg model (Rubinstein & Clark 2022).
Integrating (2.23) from k to ∞, we have

Π1(k, z) = ∂

∂z

∫ ∞

k
Φ0(k, z) dk. (2.26)

By combining this with (2.17) and (2.25), we obtain

E1(k, z) ∼ −E0(k, z)
ε(z)

∂

∂z

⎛
⎜⎜⎝μ(z)

∂

∫ ∞

k
E0( p, z) dp

∂z

⎞
⎟⎟⎠ . (2.27)

Substituting (2.21), the above expression gives

E1(k, z) ∼ −μ(z) ε(z)1/3 k−7/3

[
2
3

εzz(z)
ε(z)

+ 2
3

μz(z)
μ(z)

εz(z)
ε(z)

− 2
9

(
εz(z)
ε(z)

)2
]

, (2.28)

where the subscripts denote derivatives with respect to z, for example, εzz = ∂2ε(z)/∂z2.
We will model the unknown eddy diffusivity in its simplest way,

μ(z) ∼ L4/3 ε(z)1/3. (2.29)

Doing so, we obtain

E1(k, z) ∼ −εzz(z) L4/3

ε(z)1/3 k−7/3. (2.30)

Note that although all the terms involving εz and μz vanish exactly for the current definition
of μ(z) in (2.29), this might not be the case for arbitrary choices of μ(z). It is therefore
possible that in more sophisticated descriptions of turbulent diffusion, terms involving
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first-order derivatives might appear. In our description this is, however, not the case at
leading order.

Considering expressions (2.25) and (2.30), it is observed that the non-equilibrium
contribution Π1(k, z) to the energy flux flux can change sign, according to the sign of
εzz(z). This implies that this part of the flux can vary from large to small k values in the
inertial range. However, since Π1 is small compared to Π0, the total flux in the inertial
range, which is the sum of the two contributions, will be towards large k as in the classical
three-dimensional picture of an inertial range energy cascade.

2.5. Case of a sinusoidal dissipation profile
The comparison of (2.21) and (2.30) indicates that the inhomogeneous contribution
(∝ k−7/3) is subdominant compared to the equilibrium energy spectrum (∝ k−5/3) at large
wavenumbers. Furthermore, the expression is proportional to the second spatial derivative
of the dissipation rate εzz(z) and can thus be both positive and negative. Let us illustrate the
implication of this expression by considering a large-scale inhomogeneity characterised by
a cosine function with a characteristic wavelength of order L:

ε(z) = 〈ε〉 + ε̃ cos(z/L), (2.31)

with 〈ε〉 � ε̃. We consider L, first introduced in § 2.4, to be of the order of and proportional
to the characteristic large-scale length of the flow. Substituting this expression for ε(z) in
(2.30), we find

E1(k, z) = EX
1 (k) cos(z/L), (2.32)

with

EX
1 (k) = CAε̃〈ε〉−1/3L−2/3k−7/3, (2.33)

where the superscript X indicates the perturbations due to inhomogeneity.
Let us now assume that both the equilibrium spectrum E0(k, z) and E1(k, z) extend from

k = L−1 to ∞. Integrating the spectra in this range, we find that

K0(z) ∼ L2/3 ε(z)2/3 (2.34)

and

K1(z) ∼ −εzz(z) L2

〈ε〉 K0(z). (2.35)

Comparing these last two expressions illustrates that the formal expansion parameter in
our system is

γ = εzz(z) L2

〈ε〉 . (2.36)

The main analytical results of the present investigation, (2.33)–(2.35), are obtained
by phenomenological modelling based on gradient-diffusion assumptions of nonlinear
transfer in both physical and scale space. The models and their consequences are, at best,
crude approximations of the intricate nonlinear interactions in the actual flow. Therefore,
the resulting expressions need verification by experiments or DNS.
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N ν u′ λ Reλ Ttotal/T

128 0.07 1.31 0.371 69.6 959
256 0.028 1.35 0.233 113 645
512 0.01 1.33 0.138 184 170

Table 1. DNS parameters and statistical quantities. The resolution N and kinematic viscosity ν are the control
parameters. The remaining statistical quantities are the fluctuating isotropic root mean square velocity u′ ≡√

2K′/3, where the energy of the temporal fluctuating velocity is K′ ≡ 〈u′
iu

′
i〉x,t/2 and u′

i(x, t) ≡ ui(x, t) −
〈ui〉t(x); the Taylor microscale λ ≡ u′√15ν/ε, where the energy dissipation rate is evaluated by ε = ν〈ωiωi〉x,t;
the Taylor-length Reynolds number Reλ ≡ u′λ/ν; the integral time scale T ≡ L/u′, with L = k−1

f = 1; and the
simulation time in the statistically steady state Ttotal as a function of T .

3. Assessment of the inhomogeneous scaling

3.1. Numerical set-up
In order to verify the theoretical predictions, in particular (2.33), we carry out DNS
of three-dimensional Kolmogorov flow in a triple-periodic box. Such flow has the
convenient properties of being statistically inhomogeneous in one direction and free of
solid boundaries. Furthermore, its properties have been widely investigated numerically
(Borue & Orszag 1996; Musacchio & Boffetta 2014; Wu et al. 2021).

The dynamics of the Kolmogorov flow in the present investigation is governed by (2.1)
with f (z) = sin(kf z). The numerical domain is a cube of size 2π. These choices imply that
the forcing wavelength is equal to the width of the cubic domain, and we set kf = L−1 = 1.
Simulations are carried out using a standard pseudo-spectral solver (Delache, Cambon &
Godeferd 2014) with a third-order Adams–Bashforth time-integration scheme. The details
of the simulations are reported in table 1. Since we focus on the effect of inhomogeneity,
we attempt to obtain statistics in a steady state over a long-enough time interval to allow
the effects of the temporal variations to become as small as possible (see the last column
in table 1).

3.2. Visualisation and dissipation profile
In the following, we will discuss the simulation at the highest considered Reynolds number
Reλ = 184. A flow visualisation is shown in figure 2(a) with the x-component of the
velocity field Ux(x, t). The influence of the large-scale mean flow, proportional to the
sinusoidal forcing along the z-axis, is distinguishable. Figure 2(b) shows the instantaneous
profile of Ux(z, t) = 〈Ux(x, t)〉⊥. The single curve corresponds to the horizontal average
of a snapshot, as shown in figure 2(a). Its time average U(z) = 〈Ux(x, t)〉⊥,t is also shown
in figure 2(b) with a smooth sinusoidal profile.

In figure 3(a), the instantaneous profile of the energy dissipation rate ε(z, t) = 〈ε(x, t)〉⊥
is shown along with its time average ε(z) = 〈ε(x, t)〉⊥,t. The instantaneous profile shows
large fluctuations in comparison to the velocity profile (figure 2b). Its time average,
in contrast, shows a smooth sinusoidal profile. This property allows us to use the
approximations in § 2.5. As expected, the dissipation peaks at values where the mean
velocity gradient is strongest (at z = 0 and ±π). For numerical convenience, we perform
a sinusoidal fitting ε̄(z) introduced in (2.31). This profile is also shown in figure 3(a).

Figure 3(b) shows the kinetic energy profile of the fluctuating velocity field. The
fluctuating energy profile is defined by K(z, t) = K(z, t) − KU(z), where the total energy
is K(z, t) = Ui(z, t)Ui(z, t)/2 and the mean flow energy is KU(z) = U(z)2/2. We consider
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Figure 2. (a) Instantaneous distributions of Ux(x, t) at Reλ = 184. Blue (red) corresponds to the negative
(positive) value of Ux. (b) Instantaneous profiles of Ux(z, t) = 〈Ux(x, t)〉⊥ in grey. Time-averaged profile
U(z) = 〈Ux(x, t)〉⊥,t is indicated by a thick line.
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Figure 3. (a) Instantaneous profile of ε(z, t) = 〈ε(x, t)〉⊥. The time-averaged profile ε(z) = 〈ε(x, t)〉⊥,t is
also shown. The red dashed line denotes ε̄(z), a sinusoidal fitting of ε(z) by (2.31). (b) Time-averaged
profile of kinetic energy with fluctuating velocity K(z), and its equilibrium K0(z) and non-equilibrium K1(z)
contributions. See the main text and Appendix B for the definition.

the decomposition (see (2.34)–(2.35) and Appendix B)

K(z, t) = K0(z, t) + K1(z, t). (3.1)

In figure 3(b), we observe that the equilibrium K0(z) = 〈K0(z, t)〉t and the non-equilibrium
K1(z) = 〈K1(z, t)〉t profiles share the same phase, consistent with the prediction that the
spectrum E1(k, z) is proportional to −∂2ε(z)/∂z2.

3.3. Equilibrium and non-equilibrium spectra
Figure 4 shows the isotropic energy spectrum E(k, t) (see Appendix A for the definition) at
three different Taylor-length Reynolds numbers. For simplicity, we denote its time average
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Figure 4. Time-averaged three-dimensional isotropic energy spectrum E(k) = 〈E(k, t)〉t, normalised by
Kolmogorov variables. Results are shown at Reλ = 69.6, 113 and 184 (see table 1). The red dashed line denotes
the k−5/3 scaling for reference.
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Figure 5. (a) Non-dimensionalised two-dimensional energy spectrum. Note that E(k⊥, z) = 〈E(k⊥, z, t)〉t.
Dark (light) colour represents the small (large) value of the z-coordinate. The thick black line denotes (3.3),
the average over the z-coordinate. (b) Time-averaged non-equilibrium energy spectrum with specific signs:
E+

1 (k⊥) = 〈E1(k⊥, z) > 0〉z and E−
1 (k⊥) = 〈E1(k⊥, t) < 0〉z. Red dashed lines denote the k−7/3

⊥ slope.

by E(k) = 〈E(k, t)〉t. Normalisation using ν and ε = 〈ε(x, t)〉x,t allows an excellent
collapse for large values of k.

Next, we assess energy spectra in statistically homogeneous planes perpendicular to the
z-axis, as defined in (2.9). In the following, we analyse the time-averaged inhomogeneous
energy spectrum E(k⊥, z) = 〈E(k⊥, z, t)〉t in a statistically steady state (see table 1).
Figure 5(a) shows E(k⊥, z) non-dimensionalised by ε̄(z)2/3 L2/3. The fluctuations at small
scales are small, and variations are barely visible.
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Inertial range scaling of inhomogeneous turbulence
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Figure 6. (a) Absolute value of the time-averaged non-equilibrium energy spectrum |E1(k⊥, z)| =
|〈E1(k⊥, z, t)〉t| for three values of the Taylor-length Reynolds numbers. The red dashed line represents the
k−7/3
⊥ scaling. (b) Compensated spectrum of (a). The red dashed line denotes the compensated k−7/3

⊥ scaling.

Then we assume that the energy spectrum in the inertial range can be written, in a
general form, as

E0(k⊥, z) ∼ ε(z)2/3 k−5/3
⊥ fL[k⊥L] fη[k⊥ η(z)], (3.2)

where fL and fη determine the shapes at small and large k, respectively. Therefore, there
are two distinct choices to collapse the spectra. See Appendix B for the detail of the
two normalisation procedures. In this study, we employ the large-scale normalisation and
evaluate

fL[k⊥L] ≡
〈
E(k⊥, z) ε̄(z)−2/3 k5/3

⊥
〉
z
, (3.3)

as shown in figure 5(a). Note that this expression is valid for k⊥η 	 1, where fη(k⊥η)

tends to a constant value. Then the equilibrium spectrum can be defined as

E0(k⊥, z) ≡ ε̄(z)2/3 fL[k⊥L] k−5/3
⊥ . (3.4)

Now we can evaluate the non-equilibrium spectrum by E1(k⊥, z) ≡ E(k⊥, z) −
E0(k⊥, z). Note that (i) this quantity is defined by the time-averaged spectra, and (ii) since
this quantity can be regarded as a perturbation of E(k⊥, z) around E0(k⊥, z), it can be both
positive and negative. Figure 5(b) shows the z-average of E(k⊥, z) for specific signs.

Similar plots are shown in figure 10 of Horiuti & Ozawa (2011) and figure 2 of Horiuti
& Tamaki (2013). The scaling is consistent with that derived in § 2.4, i.e.

〈|E1(k⊥, z)|〉z ∝ k−7/3
⊥ . (3.5)

Figure 6(a) compares 〈|E1(k⊥, z)|〉z for three different Reynolds numbers, as in figure 4.
For smaller values of Reλ, the spectrum exhibits scaling steeper than k−7/3

⊥ . At larger Reλ,
the slope approaches the k−7/3

⊥ scaling. At the same time, the spectrum in the higher k⊥
range exhibits a bump associated with scaling shallower than k−7/3

⊥ .
We plot the compensated spectra in figure 6(b). Although the scaling range extends for

less than a decade, the emergence of the k−7/3
⊥ scaling range is well captured using this

normalisation. In Appendix B, we confirm that the bump in the compensated spectra is
due to our choice of the non-dimensional function (3.2).
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4. Conclusion and discussion

The numerical simulations in the previous section support our prediction,

E(k, z) = CK ε(z)2/3 k−5/3 − CA
εzz(z) L4/3

ε(z)1/3 k−7/3, (4.1)

of the energy spectrum for turbulence with inhomogeneity in the z-direction. This scaling
quantifies the influence of spatial inhomogeneity in wavenumber space. In particular,
the special case where the dissipation fluctuates as a sinusoidal function around a mean
value, discussed in § 2.5, gives us a useful estimate of the influence of inhomogeneity
(see (2.32)–(2.33)). Indeed, introducing an average dissipation 〈ε〉 and smooth spatial
fluctuations ε̃ around 〈ε〉, so that εzz/ε̃ ∼ L−2, we obtain

EX
1 (k, z)

E0(k, z)
∼ ε̃

〈ε〉 (kL)−2/3. (4.2)

This expression shows that the influence of large-scale inhomogeneity is negligible for

k � L−1
(

ε̃

〈ε〉
)3/2

. (4.3)

Therefore, if this requirement is fulfilled in a statistically stationary flow, far enough
away from walls, then Kolmogorov’s equilibrium spectrum is expected to be dominant
compared to the contributions associated with spatial inhomogeneity.
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Appendix A. Governing equation of the inhomogeneous energy spectrum

In this appendix, we define the spectrum and the governing equations for the energy
spectrum tensor in inhomogeneous flow (see (2.12)). The generalised spectrum E(k, x) =
Eii(k, x) is defined by

E(k, x) ≡ 1
2

∫∫
e−ik·r 〈

ui

(
x + r

2

)
ui

(
x − r

2

)〉
dr dΩk, (A1)

where
∫

dΩk denotes the integral over spherical shells of radius k. The brackets in this
appendix denote the ensemble average. For statistically homogeneous turbulence, this
definition is equivalent to the expression

E(k) ≡
∫

1
2 〈ui(k) u∗

i (k)〉 dΩk. (A2)

The evolution equation for Eij(k, x, t) formally reads

∂Eij(k, x, t)
∂t

= 1
2

∫ [∫
e−ik·rΨij(x + r/2, x − r/2, t) dr

]
dΩk. (A3)
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Inertial range scaling of inhomogeneous turbulence

For the tensor on the right-hand side, we have

Ψij(x1, x2) = ν
(
∇2

1 + ∇2
2

)
Rij(x1, x2)

−
[

∂

∂x1n
Un(x1) Rij(x1, x2) + ∂

∂x2n
Un(x2) Rij(x1, x2)

+ ∂

∂x1n
Ui(x1) Rnj(x1, x2) + ∂

∂x2n
Uj(x2) Rni(x1, x2)

+ ∂

∂x1i
〈P(x1) uj(x2)〉 + ∂

∂x2j
〈P(x2) ui(x1)〉

+ ∂

∂x1n
〈ui(x1) un(x1) uj(x2)〉 + ∂

∂x2n
〈uj(x2) un(x2) ui(x1)〉

]
. (A4)

In this expression and the following, the argument t for time is omitted for visibility. The
two-point velocity tensor is defined by

Rij(x1, x2) ≡ 〈ui(x1) uj(x2)〉, (A5)

and (A4) is completed by incompressibility conditions for the mean field and the
fluctuations.

Both inhomogeneous turbulence diffusion and spectral transfer are associated with
the last two lines of expression (A4). An assumption of weak inhomogeneity must
be invoked to dissociate them to obtain a closed expression. Even retaining only the
leading-order terms in an expansion about inhomogeneity, the resulting equations become
quite cumbersome (see Laporta 1995; Besnard et al. 1996).

Subsequently, the different terms in (A4) need to be modelled to close the triple
correlations. We will not proceed in this direction, and will model them directly by their
physical effects. See (2.13)– (2.16).

Appendix B. Normalisation to extract the non-equilibrium spectrum and kinetic
energy profile

In this appendix, we investigate the different normalisation procedures mentioned in
§ 3.3. We state that the energy spectrum is decomposed into equilibrium (labelled by the
subscript 0) and non-equilibrium (labelled by the subscript 1) contributions as

E(k, z) = E0(k, z) + E1(k, z). (B1)

We further assume that the non-equilibrium contributions are zero-mean:

〈E1(k, z)〉z = 0. (B2)

We have therefore

〈E(k, z)〉z = 〈E0(k, z)〉z. (B3)

In order to compute the non-equilibrium contributions E1(k, z) = E(k, z) − E0(k, z), we
need to know the z-dependence of E0(k, z). For this purpose, we use self-similarity
assumptions and Kolmogorov’s equilibrium hypothesis.
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Scaling ranges in turbulence spectra appear when scale separation is attained, i.e. at
sufficiently high Reynolds numbers. In general, one can write the energy spectrum to scale
as (see (3.2))

E0(k, z) ∼ ε(z)2/3 k−5/3 fL[kL] fη[kη(z)], (B4)

at high Reynolds numbers. We have two non-dimensional functions in (B4): fL determines
the shape of the spectrum for small k (large scale), and fη determines it for large k (small
scale). These functions satisfy the framework of Kolmogorov (1941):

lim
x→0

fη[x] = lim
x→∞ fL[x] = 1. (B5)

Therefore, we retrieve (1.1) for scales L−1 	 k 	 η−1 in the limit L/η → ∞. Multiplying
both sides of (B4) by η−5/3, and dividing by ε2/3, we obtain

E0(k, z)
ε(z)1/4 ν5/4 = Fη[k η(z)] fL[kL], (B6)

with

Fη[k η(z)] = (kη)−5/3 fη[k η(z)]. (B7)

Since F(kL) tends to unity for k � 1/L, the equilibrium spectra E0(k, z) should collapse
when normalised by (B6) for any z, for large kL.

Similarly, if the large scales are characterised by a length scale L, then we can propose
an alternative normalisation for (B6):

E0(k, z)
ε(z)2/3 L5/3 ∼ FL[kL] f [kη], (B8)

with

FL[kL] = (kL)−5/3 fL[kL]. (B9)

It should scale as purely a function of kL for kη 	 1.
There are therefore two normalisation possibilities. One focuses on the high

wavenumber limit of the inertial range close to the dissipation range (B6)–(B7), and the
other one on the low-k range close to the energy range (B8)–(B9). In the limit of infinite
Reynolds number, we should find them to be equivalent in the inertial range, since

lim
x→∞ FL[x] = lim

x→0
Fη[x] = x−5/3. (B10)

Figure 7 plots the absolute value of the non-equilibrium energy spectrum E1(k⊥, z) for
these two normalisations. It is observed that using F[kL], we reveal a larger inertial range.
We will therefore use this normalisation in the present investigation.

We have checked the data, and we verified that the spectra E1(k⊥, z) are for a given z of
a single sign, with a very occasional sign change when the statistics are determined over a
too short time interval. Perturbation spectra are, as predicted, proportional to −εzz(z), as is
also the case for K1(z), as can be seen by comparing figures 3(a) and 3(b). The procedure
to determine K1(z) is now outlined.
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Figure 7. Absolute value of the time-averaged non-equilibrium energy spectrum |E1(k⊥, z)| = |〈E1(k⊥, z, t)〉t|
for the highest Reynolds number dataset. Different non-dimensionalised functions are employed to compute the
non-equilibrium spectrum: (a) with (B7), and (b) with (B9). The black solid and red dashed lines denote the
z-average and k−7/3

⊥ scaling, respectively.

Since the kinetic energy is determined dominantly by large scales, (B8) allows us to
determine the equilibrium kinetic energy profile:

K0(z) =
∫

E0(k, z) dk = CL ε(z)2/3 L2/3, (B11)

with CL = ∫
FL[x] dx. Then we define the decomposition

K0(z) = 〈K(z)〉z + K̃0(z), (B12)

where 〈K0(z)〉z = 〈K(z)〉z follows from the assumption that 〈K1(z)〉z = 0. By employing
the decomposition for the energy dissipation rate profile

ε(z)2/3 =
〈
ε(z)2/3

〉
z
+ ˜ε(z)2/3, (B13)

it follows from (B11) that

K̃0(z)
〈K0(z)〉z

=
˜ε(z)2/3

〈ε(z)2/3〉z
, (B14)

and by (B12),

K0(z) =
⎛
⎝1 +

˜ε(z)2/3

〈ε(z)2/3〉z

⎞
⎠ 〈K(z)〉z. (B15)

Since all the terms on the right-hand side are known, one can evaluate the non-equilibrium
kinetic energy profile K1(z) = K(z) − K0(z) (see (3.1)).

REFERENCES

BERTOGLIO, J.-P., BATAILLE, F. & MARION, J.-D. 2001 Two-point closures for weakly compressible
turbulence. Phys. Fluids 13 (1), 290–310.

BERTOGLIO, J.-P. & JEANDEL, D. 1987 A simplified spectral closure for inhomogeneous turbulence:
application to the boundary layer. In Turbulent Shear Flows 5: Selected Papers from the Fifth International

978 A9-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.940


R. Araki and W.J.T. Bos

Symposium on Turbulent Shear Flows, Cornell University, Ithaca, New York, August 7–9 1985 (ed. F. Durst,
B.E. Launder, J.L. Lumley, F.W. Schmidt & J.H. Whitelaw), pp. 19–30. Springer.

BESNARD, D.C., HARLOW, F.H., RAUENZAHN, R.M. & ZEMACH, C. 1996 Spectral transport model for
turbulence. Theor. Comput. Fluid Dyn. 8 (1), 1–35.

BORUE, V. & ORSZAG, S.A. 1996 Numerical study of three-dimensional Kolmogorov flow at high Reynolds
numbers. J. Fluid Mech. 306, 293–323.

BOS, W.J.T. 2020 Production and dissipation of kinetic energy in grid turbulence. Phys. Rev. Fluids 5 (10),
104607.

BOS, W.J.T. & RUBINSTEIN, R. 2017 Dissipation in unsteady turbulence. Phys. Rev. Fluids 2 (2), 022601.
BRIARD, A., GRÉA, B.-J., MONS, V., CAMBON, C., GOMEZ, T. & SAGAUT, P. 2018 Advanced spectral

anisotropic modelling for shear flows. J. Turbul. 19 (7), 570–599.
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