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Mr H FUCHS was born in Czechoslovakia in 1930 and emigrated to
this country in 1939 He was educated at Northampton Grammar School,
and obtained his Honours Degree in Physics at the Manchester University
in 1952 Prior to obtaining his Ph D in Electronics, on the subject of
helicopter computers in ground resonance, at Southampton University, he
was employed in the Guided Weapons Laboratory at Vickers Armstrongs
as an Electronic Engineer Since 1956 he has been with Blackburn and
General Aircraft as Chief Electronic Engineer in charge of the Electronic
Laboratory and the Electronic Design of Aircraft His work has included
the design and production of Blackburn's analogue computer, and is cur-
rently engaged in designing an airborne analogue digital converter, fully
transistorised, and associated electronic data handling equipment to a system
of flight testing of aircraft

Historical
Since 1926, when Cierva produced his first autogyro, rotary wing

aircraft have been known to suffer from a vibration when their undercarriage
is in contact with the ground, which has become known as " Ground
Resonance "

No systematic work had been done on this subject until the helicopter
became a practical proposition in 1941 In that year Sikorsky built his
VS-300 machine which incorporated the single rotor, swash plate control,
drag and flap hinges, and the tail anti-torque propeller Soon after this the
U S Army and Navy were equipped with large numbers of the R-4, a
production model of the Sikorsky XR-4

The problem of ground resonance at this time became extremely

* The author wishes to express his thanks to Professor E E Zepler, of the University
of Southampton, for his invaluable advice and criticism and to the Chief Scientist
of the Ministry of Supply for permission to publish the work
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important, as indeed it still is, and the National Advisory Council for Aero-
nautics (NACA) took up the work As a result there followed the publica-
tions of Coleman (Ref 1 1 and 1 2) in 1943 and 1947, and of Deutsch (Ref
1 4) in 1946

The phenomenon under investigation can be described as follows
Helicopters, either stationary or taxying, with their undercarriage in contact
with the ground can, under certain circumstances, begin to vibrate The
oscillation is usually a combination of lateral and transverse motion If no
action is taken by the pilot, the oscillation will build up in amplitude and
the machine will capsize and often become a total loss

Explanation of Coleman's Theory
A hehcopter chassis on the ground has freedom to move in roll, yaw and

pitch as well as in transverse, longitudinal and vertical motion Neglecting
fuselage bending and twisting, this gives the chassis six degrees of freedom

If a three bladed rotor is mounted at the pylon head, each blade having
a drag and a flap hinge, there are seven additional degrees of freedom,
two per blade and one associated with the rotation of the pylon shaft

Hence, assuming a rigid fuselage and rigid blades, there are thirteen
degrees of freedom Some of these motions will have appreciable inter-
coupling

In the treatment outlined by Coleman, the following assumptions are made
(a) All blade-chassis coupling occurs in the rotor plane, i e, there is no

coupling to the flapping degrees of freedom
(b) There is no vertical motion of the hehcopter
(c) The fuselage and blades are assumed to be rigid
(d) All springs are linear and all dampers are viscous
(e) Resonance occurs in only two degrees of chassis freedom, viz,

longitudinal and transverse displacement
A simple hehcopter may now be considered, the undercarriage of which

has one degree of freedom, for example transverse motion
Let a three bladed rotor without flapping hinges have a rotational

frequency co The chassis resonant frequency fc is measured when the drag
hinges of the blades are locked This frequency will then obviously be
independent of rotor frequency, i e, fc = a (a constant) (Fig 1)

The chassis freedom is now considered locked but the blade drag hinges
unlocked The blades will swing in the field of the centrifugal force, like
pendulums, and the frequency of oscillations will be proportional to the
rotor speed, i e, fB = koo If all the blades oscillate in phase, then only a
torque tending to turn the chassis about the pylon shaft will be transmitted,
but if the phase relationship of the blades is different the centre of gravity
of the blade system will be displaced from its mean position at the pylon
head In rotating axes this displacement of the centre of gravity is oscillatory
and takes place along a fixed line In stationary axes it is also oscillatory
but has two frequency components,

te, fBi = co — fB = co (1 - k)
fBi = co + fB = co (1 + k)

A third degree of freedom corresponds, as already stated, to torsional
oscillations of the pylon shaft This does not contribute to ground resonance
When both curves are plotted on one graph, Fig 3 is obtained
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Whereas in regions A & C the frequencies of the chassis and blades are
well separated it is seen that in region B they are close together

A typical result due to mutual influence and distortion is shown in
Fig 4

As is seen from Fig 4 in region A there is only one value of f for any
value of co The suppression of two frequencies indicates the presence of
instability

This brief physical picture of ground resonance will now be followed
by an introduction to the derivation of the equations of motion of a three
bladed helicopter

Fig 4

SCHEMATIC OF BLADE SYSTEM BLADE SYSTEM DISPLACEMENT
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The Blade Equations
Coleman and Feingold showed that if three or more blades are con-

sidered, the equations of the blade system will reduce to linear equations
with constant coefficients For a two bladed rotor, however, terms in
sin cot and cos cot remain in the coefficients of the equations of the blades
unless equal chassis stiffnesses are assumed in the two directions A three
bladed rotor will be considered here

The blade system is shown m plan form in Figs 5 and 6
The following symbols are used

m' Mass of one blade
IB Moment of inertia of blade about C of G
S Centring spring stiffness
D Damper coefficient
C Interblade spring stiffness

xo, yo Acceleration of the rotor head along the two fixed axes
Po> Pi> &2> Blade angular displacements

The equations for the three blades then become

1st Blade

(m72 + IB) ft + D ft + (m'h/to2 + S) ft + C (2ft - ft - ft)

— m'/ (xo sin cot — y0 cos^cot) = 0

2nd Blade

(m'/2 + IB) ft + D ft + (m'h/co2 + S) ft + C (2ft - ft - ft)

— m'/ ( (xo (— \ sin cot + - cos cot)

+ Yo ( + \ cos cot + V- sin cot) j = 0

3rd Blade

(m'l2 + IB) ft + D ft + (m'h/co2 + S) ft + C (2ft - ft - ft)

— m'l ( x0 (— -| sin cot — - cos cot)

— yo (— tcos w t + 2 S l n w l

The blade displacements ft ft ft a r e n o w replaced by new variables
e0, e15 e2 such that

eo = 3 (Po + Pi "̂  P2)

e i = T ( — Pi sm -w- ~~ Pi s i n -5- )
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ei and e2 give the position of the centre of gravity of the blade system, in
rotating co-ordinates, while eo gives the summed angular displacement of
the blades

The equation in e0 is —

(m72 + IB) e0 + D eo + (m'h/co2 + S) eo = 0

It is seen that all the terms involving chassis motion have vanished from
this equation Hence this equation represents an uncoupled mode of
oscillation which does not affect the ground resonance of the hehcopter

When changing the equations from rotating to stationary axes, the new
variables become

Xx = ej cos cot — e2 sin cot

X2 = e2 cos cot + ej sin cot

The equations in Xi and X2 are then

(m72 + IB) X, + D Xx + ( S + 3C - (m72 + IB - m'h/)co2 \ X,

+ 2co (m72 + IB) X2 + D co X2 + ^L xo = 0

(m72 + IB) X2 + D X2 + ( S + 3C - (m72 + IB - m'/h)co2 ) X2

- 2co (m72 + IB) Xx - D co Xj + =±- y0 = 0

and writing

H = l * - ,

I =

P =

T =

2

D
m72

S —3C
m72
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(basic equation)

(blade coupling)

(chassis coupling)

On rearranging, the equations become

Xj + 2 PI Xx + (2 TI — Hco2) Xy

+ 2 co X2 + 2 PI co X2

+ Ix + I ZH 6 + I yH p = 0

X2 + 2 PI X2 + (2 TI — Hco2) X2

— 2 co Xt - 2 PI co Xj

+ Iy - IZH <f> + IxH p = 0

XHJ YH and zH are the co-ordinates of the rotor head w r t the helicopter
C of G , (f> is the angle of roll, 6 is the angle of pitch and M is the angle of
yaw

Fig 7 Helicopter with
two degrees oj chassis

freedom

The Chassis Equations

The chassis equations like the blade equations are derived from the
simple equations of motion Sufficient stiffness and damping terms are
considered to cover the case of a conventional tricycle undercarriage having
longitudinal symmetry (Fig 7)

The symbols used are
S,, Stiffness in freedom l due to a motion in freedom j
D1( Damping in freedom l due to a velocity in freedom j
m Mass of helicopter
HIH (3m') mass of rotor
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M = 5S
m

A _ m H z H 2

3 _
m H z H 2

a, b and c are the inertias in roll, pitch and yaw respectively
Due to the mechanical nature of the system it is completely orthogonal,

te ,Dlt = D,, and S,, = S,,
Where 1 = j there is the intrinsic damping and stiffness of the degree

of freedom Where 1 ̂  j there is coupling between degrees of freedom

Longitudinal Motion

mx + D^ x + Sxx x

+ DX6 e + sx9 e

+ m M Xj = 0

Transverse Motion

my + Dyy y + Syy y

+ Dy<Z> <f> + S y 0 <f> +

+ m M X2 = 0

Rolling Motion

a 0 + D 0 0 ^ + S,^ ̂

— F e — E/x

+ D0y y + S,py y +

^ X 0

y/,

+

(basic equation)

(chassis coupling)

(blade coupling)

(products of inertia)

Pitching Motion

b 0 + D M e + s08 e

— F ^ — G IJ.

+ D t e x + SOx x
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Yawing

c

Motion

n, - j - D u w ix

— Ed d> —

+ D , y y
— cC

ZH

G Q

+ s,,y
Y H j

y -

cC
H z H

+

E, F and G are the products of inertia between the relevant degrees of
freedom

Before deriving these equations in a slightly different manner (i e, by
Lagrangian's methods) Coleman chooses the relevant degrees of freedom
which are important in ground resonance It is necessary to consider only
a maximum of four degrees of freedom in order to be able to deal with the
equations analytically Although the computer could be designed to deal
with a larger number, it was decided to confine it in the first instance to
the four degrees of freedom which Coleman considers as playing a significant
part in ground resonance These are the two degrees of freedom associated
with the blade centre of gravity and the two undercarriage degrees of freedom,
transverse and longitudinal motion

Coleman then proceeds to assume that a steady state oscillation exists
and substitutes the value of this frequency D. in the original equations

As an example, a simple case will be considered
I et the equation of a system be —

Ax + Bx + Cx = 0
This yields the stability equation

AA2 + BA + C = 0

If one writes A = l £2 the equation becomes

— AQ2 + I B Q + C = 0

If a real value of Q. satisfies such an equation an undamped oscillation
exists

Coleman now separates this equation into a real and imaginary part

ER = C - Ail2

Ex = BQ

If A, B and C vary with some parameter, say, co, the rotor speed, he
plots ER = 0 and Ei = 0 against this parameter Where the two curves
intersect both equations are obeyed simultaneously and an undamped
solution exists He further argues that between the two points where the
curves cross, lies the unstable range (See Fig 12)

The equations ER = 0 and Ei = 0 in the helicopter problem are of
high order in Q but only contain terms in co4 and co2 Hence it is easier
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to choose Q, and calculate « than vice versa, which is the more conventional
method

The drawback to Coleman's method is
(1) It gives no information about the resonant sensitivity, i e, the rate of

convergence or divergence of the solution This is a direct result of
assuming that a steady state oscillation exists

(2) It cannot be apphed to more than four degrees of freedom as the analyti-
cal approach breaks down when equations in GO2 or Q of higher power
than the second have to be solved

(3) If a parameter such as blade mass, damping, etc, is changed, the whole
graph has to be replotted, involving a complete recalculation of all the
determinants

The Equations for the Computor
As already outlined it is seen that when all but the chosen four degrees

of freedom are ignored, the equations which the computer is to solve
become

Xj + 2 D I Xj + (2 S I - H co2) X1

+ 2 c o X 2 + 2 D I c o X 2

+ I x = 0 (1)

X2 + 2 D I X2 + (2 S I — H co2) X2

— 2 co Xj — 2 D I u Xi

+ I y = 0 (2)

m x + D^ x + S^ x

+ MX 1 = 0 (3)

m y + Dyy y + Syy y

+ M X2 = 0 (4)

It was decided to introduce into the computer all cross coupling terms
so that the most general system of four simultaneous differential equations
could be investigated These are not usually present in ground resonance
There are a maximum of forty-eight terms in four second order linear
equations, twelve in each equation

Hence the computer is able to solve equations of the form

AJXJ + BiXi + CJXJ + D ^ + EiX2 + F ^ + GtX3 + H ^
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1^3 + J A + KXX4 + LXX4 = 0

D2X2 + E2X2 + F2X2 + G2X3 + H2X3

+ I2X3 + J2X4 + K2X4 + L2X4 = 0

A3XX + B3X! + CJXJ + D3X2 + E3X2 + F3X2 + G3X3 + H3X3

+ I3X3 + J3X4 + K3X4 + L3X4 = 0

A4XX + B4Xi + C4Xi + D4X2 + E4X2 + F4X2 + G4X3 + H4X3

+ I4X3 + J4X4 + K4X4 + L4X4 = 0

It will now be shown how a computer solves these equations

( I ) INTRODUCTION TO ANALOGUE COMPUTERS
General

Many problems in engineering and physics reduce to the solution of a
set of differential equations The analytical solution is often laborious and
sometimes impossible The analogue computer which has developed in
the last fifteen years reduces the work involved in solving some of these
equations, and makes possible the solution of many non-linear ones outside
the scope of the analytical approach

An analogue computer can be defined as a device which obeys the
same equations as the system under examination and hence will give the
same solution In the science at present the term analogue computer is
limited to an electronic or electro-mechanical device which is set up to solve
the equations under examination

The reasons for using such a device can be listed as follows
(1) The equations may represent a complex system such as an aircraft

which cannot easily be tested as a whole
(2) The system may become a total loss if tested as, for instance, a guided

weapon
(3) It may be desired to know how the performance of the system varies

with some parameter If the system is mechanical, a change of para-
meter may involve considerable reconstruction

(4) The analytical solution of the equations may take a considerable time,
or may even be impossible An analogue computer will give the
solution to the equations quickly, i e, in a matter of seconds The
variation of a parameter merely involves the turning of the appropriate
dial
The main drawback of the analogue computer is its relative lack of

accuracy compared to analytical or digital methods of computation This is
compensated by the ease and speed of setting up the problem on the computer
and the simplicity of the presentation of the solution

The analogue computer dealing with linear differential equations, to
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Fig 8

which this work is confined, requires three basic elements These are
(1) A device which will simulate the various rates of change of the variable

with respect to time
(2) A device which will simulate the coefficients of the equation
(3) A device which will equate the sum of all the terms to zero

Referring to Fig 8 it is seen that if a variable y exists at point B, then

y dt will exist at C and y dt at D, etc These outputs are passed

through attenuators, as shown, whose attenuation is proportional to the
various constants in the equation which it is required to compute Finally,
all the outputs of the attenuators are fed into the summing device, which
has the property of equating them to zero The equation thus simulated
is of the form

Ar [ (r )y dt = 0 I" (r) H= [ [ [ up to r

Differentiating n times and putting n — r = k, this becomes

o k

This is the general linear differential equation of the nth order having
constant coefficients

Several ways are available of extending the usefulness of such a com-
puter If a multiplier is available, powers and products of the differentials
may also be included, thus solving non-linear equations Similarly the
attenuators may be made to vary either with time or with the variable, in
any desired way This will be dealt with later under the section on bouncing

The Operational Amplifier
The basic element in an electronic computer is the operational d c

amplifier
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From Fig 9 it is seen that the amplifier is connected through impedances
Zi, Z2, etc, to various e m f ' s and that its feedback impedance is Zo The
forward gain of the amplifier is —A, where A is large and the bandwidth is
infinite By equating the currents at the input grid of the amplifier to zero
the equation obtained is

V, 1
Z2 ' Zo

provided that no current flows into the amplifier

= 0

Also Vg = - 1°g A

Hence —°
A

Because of the large negative feedback, Vo is of the same magnitude as V, ,
hence the right-hand side may be assumed zero if A is large It can be shown
that the errors introduced by making this assumption are permissible within
the accuracy of the instrument

VV
Finally ^ ~ =

If the impedances Zi, Z2, etc, are resistances, the nodal equation
becomes

There two forms of the same equation represent two different ways of
looking at the summing device The first is the method adopted when
deriving the block diagram of the analogue computer The second is useful
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if addition, as such, is required for some particular operation
Zo is now replaced by a capacitor The generalised impedance of a

capacitor is — where p is a complex frequency and at the same time an
pL

d 1 f
operator defined as p E= — , — = dt

— = — Vo pC
i R J

or Vo = -

Hence each input voltage is integrated and multiplied by the constant
CR,

With these two elements and potentiometers as attenuators it is possible
to build up a computer for solving the equations derived in the last chapter

Before doing so, a word must be said on accuracy It can be shown
that the whole design of the amplifiers is intimately associated with the
accuracy to be achieved, but some points may be worth noting here First,
neither the bandwidth nor the gain of the amplifiers are infinite This
restricts the signal frequencies which the amplifier will handle, and limits
the accuracy with which the amplifier performs the operation defined by
its nodal equation In addition, the operational impedances are not known
exactly This limits the accuracy achieved m any operation

The equations which it is required to simulate are four simultaneous
second order linear differential equations with constant coefficients The
set-up shown in Fig 10 will simulate a second order equation A variable
yi at B is integrated twice, and then via the potentiometers fed back to the
summing amplifier At A, therefore, the equation

Ayi + B | yj dt + C | | y i dt = 0

is obeyed within the accuracy of the instrument

d2x
Replacing y, by — - the equation becomes

dt

If now variables x2, -j-2 etc are added to the summing device, the system
dt

will solve the new equation denoted by
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where S is the sum of all additional terms added
It is obvious that if the additional variables are available from some

other part of the computer (t e, other second order set-ups) the whole set
of simultaneous equations may be solved

The final set-up will consist of four " degrees of freedom," with the
outputs of all the integrators and summing amplifiers cross connected as
shown in Fig 11

Each amplifier has a negative gain This is required in order that the
feedback is negative and the amplifier stable Hence each time an operation
is performed on the variable the sign is changed This fact can be utilized
since it makes available a sign reverser in the case of a umty gam summing
amplifier This is added to the beginning of each degree of freedom If a
positive sign is required for any variable the voltage is fed back in a negative

LI_L>

KEY

1ST DEGREE
FREEDOk

EACH FEECfiAOC
UNIT REPRESENTS

) CHANNELS

4 DEGREE OF FREEDOM
SCHEMATIC

Fig 11

feedback sense (an odd number of amplifiers in the feedback loop) If a
negative sign is required, the feedback is positive and there is an even
number of amplifiers in the loop

Several methods are available for presenting the solution obtained from
the computer Any of the variables or differentials of the variables may be
plotted as functions of time on a pen recorder or similar device The paper
moving at constant speed provides the independent variable (time) and the
pen writes the function on the paper

It is also possible to plot two variables against each other if a pen having
two degrees of freedom at right angles to each other is available

In the present computor only the behaviour of one variable is of interest,
namely, the undercarriage displacement This can be plotted directly on a
high speed recorder It is necessary to ensure that the frequency response
of the recorder is much greater than the highest signal frequencies extant
in the solution
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To produce the solution, it is merely necessary to disturb the computer
by adding a d c voltage for a short time to one of the degrees of freedom
On removing this voltage, the computer provides the transient solution of
the equations (i e , the solution of the complementary function)

The attenuators required to set up the coefficients shown in Fig 9 are
ten-turn helically wound potentiometers By means of a suitable dial it is
possible to set up the coefficients to an accuracy of about 2% of full scale
For more accurate work a bridge calibration is provided which will set the
coefficients up against a standard potentiometer to about 0 1% of the full
scale value

Since d c amplifiers are used as the operational amplifiers care must be
taken to avoid the errors caused by drift The power supplies are designed
both to be stable and, also, to have a low output impedance This latter is
required to avoid lntercoupling between amplifiers connected to the same
power supply

131

§5
o

COUMAN TYPE PLOT

THREE BLADE SINGLE ROTOR
HELICOPTER WITH ONE DEGREE

OF CHASSIS FREEDOM

BLADE DAMPING P-O2
CHASSIS DAMPING

O 2 4 6 8 K3 12 M 16 18 JO
« ~ ROTOR SPEED IN RADIANS PER SECOND

Fig 12

( I I I ) A TYPICAL SOLUTION

Method of Presentation
The method of solution of the equations of ground resonance will

depend upon the information which the designer is seeking
If the information required is merely the range of rotor speed at which

the helicopter is unstable, the procedure is as follows The equations are
written in matrix form as in Table I One table is made out for each value
of rotor speed and then scaled for frequency and numerical size of coefficients
Assuming the rotor speed lies in the range 0 8 radian per second to 1 6
radians per second, one matrix is written for each rotor speed at intervals
of 0 1 radian per second Table II shows the complete set of equations
Each equation is set up on the computer and the computer disturbed with
a suitable amplitude in the undercarriage degree of freedom The solution
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of the equations is plotted on the pen-recorder
After a complete run has been made, the damping factors (the indices

of eat) causing the solution to increase or decrease in amplitude, are calculated
from the graph For this purpose a set of exponential curves are drawn for
various values of a on transparent paper, which may be superimposed over
the graphs obtained from the computer Then a graph of a against rotor
speed is plotted as shown in Fig 16 Where this curve lies below the
a = 0 axis, instability exists

The advantages of this method are
Since an analogue computer is most inaccurate near an unstable range,
the position of the curve crossing the a = 0 line is obtained by extrapo-
lation and does not depend upon an actual measurement of co at this
value of a

0)

COUMAN TYPE PLOT
THREE BLADE SINGLE ROTOR
HELICOPTER WITH ONE DECREE
OF CHASSIS FREEDOM

BLADE DAMPING P - O 2
CHASSIS DAMPING D ^ O 5

NO UNSTABLE RANGE

2 4 6 8 K> 12 M 16 ifl j7n
"> -ROTOR SPEED IN RADIANS PER SECOND

Fig 13

(2) The solution presents the ' resonant sensitivity' of the helicopter
directly as a function of rotor speed
If the information required is the amount of damping needed to close

the unstable range completely, the procedure is as follows The solution
is plotted as before and the rotor speed found, at which a has its largest
negative value (i e, the system is most unstable) The computer is then
set up to solve the equation at this value of co and the damping in the under-
carriage and blade system are increased until the computer provides a stable
solution {i e , a = 0)

Exploration of the influence of any other parameter upon the stability
of the helicopter may also profitably be carried out The equations are set
up at a rotor speed near the unstable range and the selected parameter varied
to see how the solution of the equation is affected In many cases it will be
found that, for even small changes, some parameters have a great influence
upon the stability
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The Skeeter
In order to illustrate the use of the computer more fully, a typical

solution is set out below, using the Saunders-Roe Skeeter as an example
The equations in the range co = 0 8 — 16 radians per second are

shown in Table II It will be seen that re-scahng was necessary as the
rotor speed increased in this range The frequency scale remains unity

The solutions of the equations are shown in Figs 14 and 15 From
these graphs a is calculated by means of the masks This results in a graph
of a against GO shown in Figs 16 and 17 The relevant Coleman Plots
are shown in Figs 12 and 13

It is seen from this set of solutions that
(1) The computer solution agrees with the Coleman Plots
(2) The unstable range is completely closed by increasing the chassis

damping to 0 5 (blade damping P = 0 2)
(3) The helicopter is then only marginally stable at co = 1 2 radians per

second and will still oscillate if D ^ is reduced due to, say, wear

O-O5

0 0 4

: 0 0 3

|OO2

OOI

BLADE CAMPING P = O 2
CHASSIS CAMPING D,,»OS

Fig 16

O8 u
ROTOR SPEED N WDWNSPER SECOND

Introduction
( IV) THE NON-LINEAR PROBLEM

As will be seen from the introduction to ground resonance, Coleman
made certain assumptions in deriving his equations of motion The main
point of his assumptions was that the problems could be reduced to a set
of linear equations and hence be solved analytically

On examination, Coleman's assumptions that the springs are linear and
the dampers viscous are a good approximation in practice Even if this
ideal is not realised completely the ideal spring or damper may always be
used in the equations if the departure from linearity is small If, however,
there is a sudden large change in the spring stiffness or in the damping, at a
certain amplitude, no equivalent constant values can be used This problem
can only be represented by a set of non-linear equations which must be
solved in toto to obtain the solution with any degree of accuracy
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Bouncing
It has been noticed experimentally that certain helicopters, particularly

the Bristol 173, when ground resonating, bounce from wheel to wheel This
occurs most readily when the rotor is taking a considerable proportion of the
weight of the machine

Under these conditions the equations obeyed when the helicopter is
sitting on both its wheels are different from those obeyed when one wheel
is off the ground The following, it is thought by observers, may take place
(1) The wheel remaining on the ground continues to act linearly, i e, the

undercarriage leg in contact with the ground continues to act as a
conventional spring and damper
It is possible that the oleo leg (which provides stiffness and damping)
in contact with the ground is " bottomed " (completely compressed),
in which case the only stiffness is provided by the tyre and there is
practically no damping

(2)

OO4

BLADE DAMPING P-O 2
CHASSIS DAMPING D ^ - 0 25

IN RADIANS PER SECOND

- O O I

Fig 17

However, in the normal equation of ground resonance it is agreed by
most observers that the main transverse stiffness in the undercarriage is
provided by the tyres Hence, if one tyre leaves the ground the most
probable effect will be to halve the transverse stiffness

As for damping in the transverse mode, it is obvious that the main
damping in the undercarriage is provided by the extension or contraction
of the oleo legs If one of these legs is removed from the operation, the
damping will be halved Hence, it seems reasonable to assume that as the
wheel leaves the ground, both the stiffness and damping in the transverse
undercarriage degree of freedom are halved

For the sake of simplicity, it is intended to confine the analysis of the
effect of bouncing to three degrees of freedom

Thus in the computer a switch is required which will change the relevant
coefficients in the undercarriage degree of freedom to their new value at
some predetermined value of the amplitude of oscillation When the
amplitude again decreases below this value, the coefficients must change
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back to their original value for small amplitudes Hence the computer will
solve the complete non-linear equations

To investigate the effect of bouncing upon the stability of the helicopter,
the computer was set up to solve the equations of ground resonance for a
marginally stable case This was the equation for the Skeeter at a rotor
speed of 1 2 radians per second and Dxx = 0 5 From Fig 17 it is seen
that the equations give a just damped solution

The switch was adjusted such that the coefficient of damping would
be reduced by a half at the peaks of the oscillation (t e, to D ^ = 0 25)

The computer was set oscillating with the linear equation set up and
after about 30 seconds the switch was introduced by reducing x0, the critical
amplitude (by means of the dial on the front panel of the switch chassis), to
about half the amplitude of the oscillation existing m the undercarriage
degree of freedom The result is shown in Fig 18a

The same procedure was then adopted for the stiffness in the under-
carriage degree of freedom The result is shown in Fig 18b

= O.2

to

Fig 20
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From these results it is evident that a helicopter which is " cured " of
ground resonance on Coleman's simple theory, may nevertheless ground
resonate due to bouncing from wheel to wheel

Having established that bouncing could cause ground resonance to
occur in stable helicopters, it was next decided to investigate how the ratio
of x0, the critical amplitude to xm, the maximum amplitude, affected the
stability The computer was set up to solve the equations of ground
resonance at a rotor speed giving a stable (damped) solution The computer
was then disturbed with constant amplitudes but the value of xo progressively

reduced The solutions for the ratio =r- — 1 0, 0 8, 0 6, 0 4 and 0 2 are

shown in Fig 19

Firstly it is seen that a stable helicopter becomes less stable as the

ratio ==̂ - decreases In the case chosen as an example (and one which in

practice could be a real state) the helicopter becomes completely unstable

at a ratio of ==̂ - = 0 6 At a ratio of 0 2 the helicopter is seriously ground

resonant and would be extremely unsafe to use
It may be stated that in practice ratios as large as 0 2 can be encountered
Finally, it was decided to measure the amount of damping required to

avoid instability in the case of bouncing, up to a ratio of =2- = 0 2, this being

about the worst case likely to occur in practice
The computer was set up to solve the equations at the rotor speed

giving the most unstable solution, i e, 1 2 radians per second At this point
the helicopter was just stable with a damping Dxx = 0 5

The results are shown m Fig 20 It is seen that at Dxx = 0 5 and

=p- = 0 2 the helicopter is wildly unstable When the damping is increased

to Dxx = 1 0 the helicopter becomes just stable

CONCLUSION

An analogue computer has been built which may be used as a tool in
the design of a helicopter, to ensure that no ground resonance will occur
under normal operating conditions Both the simple Coleman theory and
the case of bouncing have been considered

The computer reduces the work involved in the solution of the former
case and makes possible the solution of the latter case with some accuracy

The results show
(1) The solution obtained from the computer, in the simple case, agrees

with the analytical solution within about 1%
(2) The stabihty of the helicopter is seen at a glance from the graph of

damping v rotor speed and gives a clear picture of the ' resonant
sensitivity' of the machine at all rotor speeds

(3) In the case of bouncing the helicopter becomes more unstable due to
two causes These are (a) reduction of the damping in the under-
carriage degree of freedom at the peaks of the oscillation and (b) reduction
of the stiffness in the undercarriage degree of freedom at the peaks
of the oscillation
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Fig 20a The Linear Computer

This latter phenomenon may account for certain anomalous ground
resonance occurrences and will certainly play a significant part in cases of

(1) Taxying over rough terrain
(2) Standing on a rolling ship's deck
(3) One-wheel landings
(4) Take-offs in a high wind (particularly if it is gusty)
(5) Punctures at landing or take-off

It must be stated that at all rotor speeds corresponding to operating
conditions, the helicopter is only marginally stable by conventional aircraft
standards This fact contributes materially to the occurrences of ground
resonance in apparently stable machines
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