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Abstract

Data irregularities, namely small disjuncts, class skew, imbalance, and outliers significantly affect the performance of
classifiers. Another challenge posed to classifiers is when new unlabelled data have different characteristics than the
training data; this change is termed as a data shift. In this paper, we focus on identifying small disjuncts and dataset shift
using the supervised classifier, sequential ellipsoidal partitioning classifier (SEP-C). This method iteratively partitions
the dataset intominimum-volume ellipsoids that contain points of the same label, based on the idea ofReducedConvex
Hulls. By allowing an ellipsoid that contains points of one label to contain a fewpoints of the other, such small disjuncts
may be identified. Similarly, if new points are accommodated only by expanding one or more of the ellipsoids, then
shifts in data can be identified. Small disjuncts are distribution-based irregularities that may be considered as being rare
but more error-prone than large disjuncts. Eliminating small disjuncts by removal or pruning is seen to affect the
learning of the classifier adversely. Dataset shifts have been identified using Bayesian methods, use of confidence
scores, and thresholds—these require prior knowledge of the distributions or heuristics. SEP-C is agnostic of the
underlying data distributions, uses a single hyperparameter, and as ellipsoidal partitions are generated, well-known
statistical tests can be performed to detect shifts in data; it is also applicable as a supervised classifier when the datasets
are highly skewed and imbalanced. We demonstrate the performance of SEP-C with UCI, MNIST handwritten digit
image, and synthetically generated datasets.

Impact Statement

With classifiers being employed in diverse safety-critical applications, it becomes important to understand the
nature of the data on which they are trained, in addition to the underlying algorithm. The problems of identifying
small disjuncts, which may be understood as rare and under-represented samples of data, and the occurrence of
data shift, where new unseen samples are considerably different than used in training, are considered.
SEP-C is a supervised classifier that partitions a dataset into ellipsoids that mostly contain points of the same
label. The rules of classification are determined on the basis of the ellipsoid(s) that contains the test point—this
also leads to the calculation of a trust score in the prediction of a label and a possible explanation of why a label
was assigned. By suitably changing a single, intuitive, hyperparameter, small disjuncts can be identified. Further,
as ellipsoids are in essence Gaussians, well-known methods can be used to detect changes in data.
SEP-C can have an impact in understanding artifacts in data without resorting to heuristics or requiring a priori
knowledge. It lends itself naturally to active learning scenarios where a classifier may continuously need to be
retrained in the presence of new data.
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1. Introduction

The performance of traditional supervised learning algorithms is dependent on the quality of the training
dataset. Inherent irregularities such as class imbalance, skewness, small disjuncts, and outliers present in
the training data influence the learning and reduce the accuracy of predictions. For example, class-
distribution skew can increase the effect of class imbalance, especially around the overlapping region in
the dataset. Preprocessing techniques such as exploratory data analysis, Tukey (1977), and data visual-
ization are additionally used to identify such characteristics in the dataset.

The review of data irregularities by Das et al. (2018) observes that traditional classification algorithms
assume that each class in the dataset is comprised of one or more subconcepts that are equally represented.
This assumption is violated when a small number of rare cases are present in the dataset. These under-
represented and rare samples give rise to the problem of small disjuncts while learning. While there is no
formal definition that identifies a disjunct as being small, in the literature, samples of sizes 5, 10, or 15 are
termed as small disjuncts. Further, errors in prediction due to small disjuncts become pronounced in the
presence of noisy data. As also discussed by Das et al. (2018), pruning or reducing the importance of small
disjuncts results in eliminating them, which is detrimental to the performance of the model when the rare
cases represented by the small disjunct carry valuable learning for the classifier. Alternatively, assigning a
new label to the small disjuncts, increases the number of classes in the dataset, converting the problem to
multiclass classification. However, the literature does not indicate any practical application of this idea to
solve the issues arising out of small disjuncts.

Classifiers for balanced datasets are equally affected by the presence of small disjuncts (Prati et al.,
2004). Pruning is ineffective when skewness is observed in the dataset and oversampling to handle class
imbalance can result in an increase of small disjuncts. The problem of class imbalance, which is more
common and well-studied, has often been attributed to the failing performance of a classifier, but Jo and
Japkowicz (2004) observe that cluster-based oversampling improves the accuracy when the issues of class
imbalance and small disjuncts are addressed together. Work on the effect of class imbalance, pruning,
noise, and training set size inWeiss (2010) highlights that identifying small disjuncts helps to improve the
quality of classification to a large extent.

Rule-based algorithms have been used to identify small disjuncts, for example, in inductive systems, a
rule consists of several disjuncts, where each disjunct is a conjunctive definition of a subconcept present in
the dataset, Holte et al. (1989). The decision-tree classifier performs well on large disjuncts while Genetic
Algorithm-basedmodels score better in identifying the small disjuncts. Classifiers built using RIPPER and
C4.5 algorithms have been analyzed for the influence of disjunct size and training set size on errors in small
disjuncts in Weiss and Hirsh (2000). This work on about 30 datasets, raises an objection to the definition
given by Holte et al. (1989) that a small disjunct is one that correctly classifies a few training examples. It
emphasizes the need for a threshold for size that is also related to error rate,which can correctly define small
disjuncts. Non-rule-based classification algorithms, for example, support vector machines (SVM) and
k-nearest neighbor (kNN) classifiers, fail to identify these small disjuncts.

In this paper, small disjuncts are identified using a classifier proposed by the authors, termed as the
sequential ellipsoidal partitioning classifier (SEP-C; Niranjan and Rao, 2023a). Given a dataset with points
of two labels, SEP-C uses convexmethods to find several hyperplanes iteratively, unlike a single separating
hyperplane in traditional SVMs or its variants, so that the points of different labels lie on either side of each
hyperplane. In each iteration, nonoverlapping minimum volume ellipsoids (MVEs; Boyd and Vanden-
berghe, 2004; Sun and Freund, 2004; Kong and Zhu, 2007) are found using the reduced convex hull (RCH)
algorithm (Bennett and Bredensteiner, 2000) to cover the points on either side of the hyperplane. After each
iteration, the covered samples from the dataset are removed and the process is repeated until all the data
points in the training set are exhausted or the independence-dimension (I-D) inequality is violated (Boyd
andVandenberghe, 2018). The removal of points in each iteration renders this approach as a sequential one.

SEP-C allows for a user-defined number of points of one label to be contained in the MVE of points of
another label; this becomes essential when a dataset is heavily overlapped. This number, denoted by nImp,
is the only hyperparameter used in SEP-C. With the introduction of such “impurities,” the dataset can be
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partitioned finely. In SEP-C, the presence of such impurities is interpreted as being small disjuncts, as
these form a subset of points belonging to a label that have properties that are different than themajority of
points of that label, hence, rare and under-represented. Thus, by choosing nImp ≥ 10 (the accepted size of a
small disjunct), it is possible to find small disjuncts of sizes ≤ nImp; we show that such small disjuncts exist
in some of the publicly available datasets. Unlike rule-basedmethods, where, a small training set is used to
train the classifier to find small disjuncts in the much larger testing set, in SEP-C, the entire dataset is used
to identify them. As will be discussed, the proposed method is not dependent on the underlying data
distribution and hence is immune to the presence of skewness in the training data.

In addition to identifying small disjuncts, we apply SEP-C to detect shifts in data distributions, for
example, a covariate shift which may be caused by changes in external conditions, sensor failures, or
changes in the environment; such changes may be expected in applications such as autonomous cars and
surgical robots and can occur in unanticipated ways or gradually. Such shifts lead to samples that are
generally termed as being out-of-distribution (OOD) and as they affect the entire dataset, it can be
considered to be different than outliers in the training set. Hence, the problem of data shifts is different
from handling outliers. Detecting an onset of data shift helps to identify when themodel requires retraining
without having to endure poor performance. Guerin et al. (2023) term a data point as OOD if its label does
not belong to the predefined labels handled by the classifier. While they identify the need for a threshold to
detectOODsamples, finding such a threshold itself is challenging.Overemphasizing the detection ofOOD
can result in the rejection of correct predictions from the classifier. The work highlights the importance of
separating theOOD from the in-distribution training samples whichmakes detection of OODdata a crucial
step in training a classifier.

State-of-the-art classifiers assume that new data samples follow the same distribution as the training
data. However, when a shift occurs, there is naturally a decline in the performance of the classifier resulting
in unreliable predictions. Deep neural networks (DNNs) that use softmax layers are known to provide
overconfident wrong predictions for the OOD data. Lee et al. (2018) describe methods to detect OOD
samples and propose a technique that can be applied to any pretrained softmax neural classifier and for
in-class incremental learning. This method defines a confidence score that is based on the Mahalanobis
distance of the sample from the closest class-conditional distribution. This score controls the high
confidence from the softmax layer by reducing the score if the sample is situated far from the class,
thereby identifying it as potentially anOOD sample. Thismethod has also been used for adversarial sample
detection. Recent research in active learning (AL) promotes a human intervention to take action when the
learning model encounters an anomaly. In such applications, Barrows et al. (2021) propose a data
distribution shift-detecting method that triggers AL when the model detects a deviation in the arriving
data. In thismethod, the confidence scores fromparallel softmax layers are added and a threshold is fixed to
indicate the known zone of operation for the classifier. The AL is triggered when the samples produce a
confidence score when the threshold is violated.

In another attempt to discover OOD samples, Sastry and Oore (2020) identify inconsistencies between
activity patterns and predicted class and use Gram matrix values to achieve superior OOD detection. The
Gram matrix values are compared against the range observed for the training data and used along with
softmax output to achieve the desired detection; standard metrics, such as true negative and positive rates,
accuracy, and AUROC metrics are employed to evaluate the results. Li et al. (2021) employ Bayesian
online learning to detect shifts. In this method, a binary change variable is used for the informative prior so
that any shift in the distribution is recorded. The authors assume that the samples are independent and
identically distributed (i.i.d.), whichmaynot be always true in reality andno assumption ismade about how
frequently the shifts occur in the test samples. Themodel is updated to the new distributionwhen change is
detected and erases the past information.

In SEP-C, dataset shift is detected by the expansion of theMVE that is closest to the new data point, if it
occurs. According to the rules of classification stated inNiranjan andRao (2023a), if a newdata point does
not lie in any of the existing MVE partitions, the MVE closest to it is expanded to cover it and the data
point is given the label of those carried by the majority of the points in that MVE. Note that SEP-C finds
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nonoverlapping MVEs containing points of the same label and at most nImp of the other. Thus, a dataset
shift can be detected if all new samples continue to be covered by the expandedMVE and not in any of the
original MVEs. Indeed, the question that should be asked is: “Is there a threshold for MVE expansion to
detect the shift?” In this work, this question is answered by resorting to the univariate Kolmogorov–
Smirnov (KS) test to detect changes in distribution. The application of this test is justified for two reasons:
i. the MVEs are Gaussians and hence, the local distribution of data is known; and ii. by transforming the
data along the eigenvectors of the MVE, they are transformed to n univariate Gaussians, when the
dimension of the data is n. It is remarked that theMahalanobis measure and other KS test variants can also
be employed once the MVEs are known. The authors of Rabanser et al. (2019) attempt to predict OOD
data and expect a fall in accuracy of the classifier in its prediction.When the ellipsoidal partitions found by
SEP-C are used for classification, if the ellipsoids are not expanded, a similar drop in classification
accuracy is observed. Amarked change in the ellipsoidal parameters is used to identify the OOD nature of
the incoming unseen data samples.

The main contributions of the paper are as follows:

1. use of convex methods to partition a training dataset into multiple ellipsoids that contain mostly
points of the same label,

2. identify under-represented points of one label that are “different” thanmost points of that same label
—the small disjunct problem, and

3. detect shift in the data based on the expansion of the ellipsoids.

As discussed in Niranjan and Rao (2023a) and will also be shown here, SEP-C is immune to dataset
irregularities such as skewness and imbalance; further, the underlying distribution or the new one (in case
of shift), is also not required for classification. The results of this paper, mainly the detection of dataset
shift, are an extension of those presented by the authors in Niranjan and Rao (2023b).

The paper is organized as follows: in Section 2, SEP-C is introduced. In Sections 3 and 4, the
properties of SEP-C being independent of skew and its ability to identify small disjuncts are discussed,
respectively; results on identifying small disjuncts in publicly available datasets are presented in
Section 4.1. Dataset shift detection is demonstrated using SEP-C in Section 5 for a 2D synthetic dataset
as well for the MNIST dataset, where the images are distorted in three different ways. Concluding
remarks are provided in Section 6.

2. Methodology

2.1. Preliminaries

Ellipsoidal approximation for datasets is widely used for clustering and outlier detection. Ellipsoids
provide an advantage of being regions that are bounded in the feature space, unlike the leaves of a
Decision Tree, which can be unbounded; this boundedness, and a resulting change, forms the basis for
identifying dataset irregularities, as shown in this paper. All ellipsoid-based problems can be posed as
convex optimization problems, which by their nature, have a unique global minimum; moreover, the
solution is guaranteed to converge, if found to be feasible. The work of the authors, Niranjan and Rao
(2023a), contains a detailed literature survey and the benefits offered by adopting an ellipsoidal
partitioning approach for classification, using SEP-C.

The SEP-C algorithm has the advantage of a single hyperparameter usage, unlike many of the state-of-
the-art techniques, and implicitly contains multiple hyperplanes which make possible the classification of
nonlinearly separable datasets without the need for the “kernel trick.”SEP-C provides a trust-scored based
prediction which enhances the explainability of the classifier and reveals dataset nuances such as
distribution skews, small disjuncts, and OOD data. Further details on the applications of SEP-C in
trustworthy predictions can be found in Niranjan and Rao (2023a).
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2.2. Sequential ellipsoidal partitioning classifier

Consider the dataset in Figure 1a, with points denoted by the sets X = xif g, xi ∈ℜ2, i= 1,⋯,N and
Y = yj

� �
, yj ∈ℜ2, j = 1,⋯,M, whereN ≥M > 2. The points in setX have label Lþ1 and those inY have

label L�1. TheMVEs, denoted byEX andEY , respectively, can be found such that each ellipsoid contains
points of the respective set either in its interior or its boundary. By expressing an ellipsoid in the form
E = zj∥Azþb∥≤ 1f g, z∈ℜ2, for example, for set X , EX is found by solving the convex optimization
problem (CP)

min log det A�1
� �

subject to ∥Axiþb∥≤ 1, i= 1,⋯,N,
(1)

with the symmetric positive definite (SPD) matrix A and the vector b as the variables (Boyd and
Vandenberghe, 2004). It is highlighted that for the CP (1) to be feasible, the I-D inequality has to be
satisfied, that is, N > 2 (Boyd and Vandenberghe, 2018).

As can be seen in Figure 1a, the ellipsoids EX and EY intersect each other. SEP-C now partitions the
dataset such that the MVEs for each dataset become nonintersecting by applying the RCH algorithm
(Bennett and Bredensteiner, 2000). First, the matricesX∈ℜN × 2 andY∈ℜM × 2 that contain the datapoints
xi and yj, respectively, are defined. Next, the RCHs of the sets X and Y are found. These are the set

of all convex combinations c=XTu and d=YTv, respectively, where u= ui½ �∈ℜ2, v= vi½ �∈ℜ2;P
ui = 1, 0≤ ui ≤D,

P
vi = 1, 0≤ vi ≤D; and the scalar D< 1, which is a design parameter. The

RCH algorithm finds the closest points in each RC-Hull by solving the CP

min
u,v

1
2

XTu�YTv
�� ��2

subject to eTu= 1, eTv= 1, 0≤ u, v≤De:
(2)

The vector eT = 11⋯½ �. Now, if the solution to this CP exists for someD < 1, the RC-Hulls do not intersect
and thus, the line normal to the line connecting the closest points is the separating hyperplane. Solving the
CP (2) results in the nonintersecting RCHs for the two sets, as shown in Figure 1b.

In SEP-C, the RCH algorithm is implemented differently. Beginning with K = min N,Mð Þ and
D = 1=Kð Þ, the CP (2) is solved iteratively, where K is reduced in each iteration until such time that the
RCHs of both sets do not intersect or the RCH of points of one label contain at most nImp points of the
other. To determine that the RCHs indeed do not intersect, the check on the intersection is performed on

Figure 1. (a) Intersecting CHs, andMVEs, of the two sets; (b) RCHs, andMVEs, that are nonintersecting
(solid lines).
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the MVEs that cover them. The RCHs intersect if their respective MVEs intersect. This approach is
selected to minimize computational cost, especially for high-dimensional datasets. The MVEs shown in
Figure 1b are the first partitions of the dataset. Having found these partitions, the points contained in them
are removed from the dataset and SEP-C continues to find similar partitions on the remainder of the
training data. If the dataset is linearly separable, then SEP-C terminates in the first iteration itself. For
datasets with significant overlap, additional iterations are performed. SEP-C is guaranteed to terminate in
a finite number of iterations, as either there are no more points to be partitioned or the I-D inequality is
violated. The pseudo-codes of SEP-C and the RCH algorithmwith time complexity analysis are described
in detail in Niranjan and Rao (2023a).

2.3. Ellipsoidal partitioning algorithm

The pseudocode of ellipsoidal partitioning used in SEP-C is described in Algorithm 2.3; the notation ∣X ∣
denotes the number of points in the setX andX Y denotes the difference of setsX ,Y. This algorithm uses
the RCH algorithm to find nonintersecting convex hulls of the two sets X and Y in each iteration, as
explained in Section 2.2. The pseudocode for the RCHalgorithm is presented inNiranjan andRao (2023a)
and omitted here in the interest of brevity. Algorithm 1 consists of two user-defined parameters: the
integers n> 0, which denotes the dimension of the feature space, and nImp ≥ 0, which denotes the number
of permitted misclassifications.

Algorithm 1 Ellipsoidal partitioning.

1: i 1
2: EX ,EY MVEs of X and Y
3: Xþ,X�,Yþ,Y� ∅
4: Eþ,E� ∅
5: nImp ≥ 0 ⊳ Number of points of one label allowed in the set of another
6: n> 0 ⊳ Dimension of the feature space
7: while ∣X ∣> n and ∣Y∣> n do ⊳ Ensure I-D condition is satisfied
8: Xþi ,Y

�
i ,EXþ ,EY�

� � RCH X ,Yð Þ ⊳ RCH Algorithm
9: if Xþi =∅ Y�i =∅ then
10: Datasets X and Y cannot be separated further
11: break
12: else
13: while ∣Y ∈EXþ ∣ ≥ nImp do
14: Xþi  RCH Xþi ,Y

� �
⊳ Subset ofX containing no greater than nImp points of Y; found by

solving CP (2)
15: end while
16: while ∣X ∈EY� ∣ ≥ nImp do
17: Y�i  RCH Y�i ,X

� �
⊳ Subset of Y containing no greater than nImp points of X ; found by

solving CP (2)
18: end while
19: Xþ Xþi

� �
,Y� Y�i

� �

20: Eþi  MVE Xþi
� �

,E�i  MVE Y�i
� �

> CP (1)
21: Eþ Eþi

� �
,E� E�i

� �

22: X X∖Xþi ,Y YY�i
23: EX ,EY MVEs of X and Y
24: end if
25: i iþ1
26: end while
27: if ∣X ∣ orjYjð Þ≥ n then
28: Eþ E�ð Þ MVE of X Yð Þ
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29: else
30: Consider points in X Yð Þ as individual ellipsoids
31: end if

The operation of SEP-C, based onAlgorithm1, is presented next, using the dataset irregularity of being skewed.

3. Handling class skew

We first discuss how SEP-C is not influenced by class skew while acting as a supervised classifier.
The ellipsoids found in each iteration of SEP-C are a basis for classification. Since, by construction, the
ellipsoids contain mostly points of the same label (lines 14, 17, and 20 in Algorithm 1), if an unseen test
point is now contained within one of them, it is assigned the label of the majority of the points in that
ellipsoid; see Niranjan and Rao (2023a) for issues on calculating the trust score for such classification
rules. In any iteration of SEP-C, the CP (2) is solved to find the points c and d. It can be observed that c, or
d, is a convex combination of points inX alone, orY alone, and not on any joint characteristics of the sets
X and Y. Further, if the solution to the CP (2) exists, then c,d, and the separating hyperplane, which is
normal to the line joining these points, are also unique. The points c and d may lie in the region of
intersection of the respective CHs, thus leading to points of both labels on either side of the obtained
hyperplane. If the number of such points, which are in essencemisclassifications, is less than the permitted
number nImp, then SEP-C terminates in that iteration.

Since, for a “good” classifier, nImp should be low, SEP-C reduces the ellipsoids found in an iteration,
using the RCH algorithm, but by iteratively changing the value ofD. In this case, a reduced ellipsoid of
one label is still independent of the ellipsoid found for the other label. This can be demonstrated by
viewing the RCH algorithm akin to the classic Ellipsoid Algorithm discussed in Bland et al. (1981),
where a smaller ellipsoid in a later iteration is found after performing a cut on the ellipsoid found in the
earlier iteration. In our case, the cut is exactly the hyperplane found in that iteration. According to the
Ellipsoid Algorithm, the center, xk, and the properties of an ellipsoid, given by an SPD matrix Bk,

found in iteration k, expressed as Ek = x∈ℜn j x� xkð ÞTB�1k x� xkð Þ≤ 1
� �

, which is then cut by a line

aTx= b, leads to a smaller ellipsoid in iteration kþ1ð Þ that are functions of aT and xk and Bk alone. In
our case, let in iteration k, the ellipsoid Eþk , that contains a majority of points with label Lþ1, also
contain nk > nImp number of points with label L�1. Now, in the next iteration, the smaller ellipsoid,
Eþkþ1, is such that it contains nkþ1 ≤ nImp points with label L�1; indeed,Eþkþ1 may also now have fewer
points of label Lþ1 (line 22 in Algorithm 1, where datapoints that are contained in an ellipsoid are
removed). The key observation is that finding Eþkþ1 is not dependent on the properties of the
corresponding ellipsoid, E�k , found for the other label. The partitions found by SEP-C for a synthetic
dataset with points obtained from skewed distributions are shown in Figure 2 using nImp = 2. As can be
seen, SEP-C is immune to class skew and the resulting ellipsoids contain no more than two points of
the other label.

4. Identifying small disjuncts

The use of the SEP-Cmethod to detect small disjuncts or rare cases is now discussed. As finding such rare
cases is an exploratory exercise, the entire dataset is used for partitioning. Ideally, SEP-C should isolate
these rare cases in their own ellipsoids. Consider the 2D synthetic dataset shown in Figure 3a, where a few
points (10 of them) of setY have characteristics that are different from the majority of points belonging to
that set; it is evident that a single hyperplane will not be able to isolate this small cluster, thus leading to
errors in classification. Indeed, kernels, such as radial basis functions may be used, but these require
considerable tuning of the hyperparameters. As can be seen in Figure 3b, SEP-C is able to isolate these
points in their own ellipsoid. For this case, 2 iterations, with nImp = 5, are sufficient leading to 2 ellipsoids
for each label.
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It can happen that these rare cases are in proximity of points of another label or if the number of such rare
cases is lesser than the dimension of the dataset; in the latter case, anMVEcannot be found exclusively as the
I-D inequality fails. In both cases, choosing an appropriate value for nImp aids in identifying these rare, but
non-trivial number of points. Suppose a small disjunct is defined as comprising of 5< nSD < 15 number of
points. Now, by choosing nImp ≥ nSD, SEP-C can find ellipsoids of one label to also contain nImp points, or
fewer, of the other. Suppose an ellipsoid does contain nSD ≥ n points, where n is the dimension of the feature
space. Now, an MVE can be wrapped around these nSD points and checked if it is contained completely in
the larger ellipsoidal partition. If so, these points of the other class suggest a subconcept, which can be a
potential small disjunct. The number nSD now gives the coverage of the disjunct. In higher dimensional
datasets, where n> nSD > 15, though anMVE cannot be found for the disjunct, density-basedmeasures can
be used to establish if the nSD points qualify as a small disjunct or are just noise.

4.1. Results of identifying small disjuncts

SEP-C is applied on the Vote, Pima Indian Diabetes (PID), and Chess Endgame datasets (Dua and Graff,
2017), to identify small disjuncts. The 3 partitions obtained for the Vote dataset, with nImp = 17, did not
contain any small disjuncts in any of the partitions. On the other hand, SEP-C partitioned the PID dataset

Figure 3. Partitioning 2D dataset with a small disjunct.

Figure 2. Partitioning a skewed 2D dataset.
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into 8 ellipsoids for both labels (no diabetes and diabetes), with nImp=10, and 6 of these ellipsoids
contained possible small disjuncts of sizes 9 and 8, respectively; theMVEs of these small disjuncts did not
intersect with other ellipsoids of the same label, thus indicating that they are subconcepts of points with
that label. The ellipsoidal partitions obtained for nImp = 5,10 are listed in Table 1. The number in the
brackets indicates the number of points of the other class in each ellipsoid. The Chess Endgame dataset,
with 36 features and nImp = 37, was partitioned into 5 ellipsoids each for both labels. Three ellipsoids have
potential small disjuncts of sizes 5, 11, and 5.

5. Identifying dataset shift

The ellipsoids obtained by partitioning a dataset using SEP-C, such as shown in Figures 2b and 3b, have
different orientations and centers. Each of these ellipsoids, obtained by solving the CP (1), can be
expressed in the formE= x∈ℜn j x�μð ÞTΣ�1 x�μð Þ≤ 1

� �
, where μ is the centre of the ellipsoid and the

SPD matrix Σ admits the eigenvalue decomposition Σ =QΛQT , whereQ are the orthogonal eigenvectors
and theΛ is the diagonal matrix of eigenvalues. By expressing the part of the dataset as being contained in
the ellipsoid, the probability density function of those points can be computed using a continuous
multivariate Gaussian distribution, where Σ is the covariance matrix and μ is the mean. In addition, by
a change of variables based on the eigendecomposition of Σ, these points can be transformed to being
generated from n i.i.d. univariate Gaussians. In Figure 4a, ellipses obtained by applying SEP-C on a 2D
synthetic dataset and the transformation of one of them (red in Figure 4a) to be centered at the origin and
oriented along the axes (magenta in Figure 5) can be seen.

The role of SEP-C in detecting a shift in the dataset now becomes clear. Suppose the dataset undergoes
a shift in an unknown way and new samples emerge owing to this shift, SEP-C expands the ellipsoids

Figure 4. SEP-C results for 2D dataset with OOD test samples.

Table 1. Ellipsoidal Partitions of the PID dataset, and their coverage, for different values ofnImp

Number of
ellipsoids 1 2 3 4 5 6 7 8 9 10 11 12 13

nImp = 5 Class 0 58 (2) 73 (3) 64 (4) 27 (3) 44 (2) 25 (3) 15 (3) 23 (3) 35 (4) 24 (4) 21 (4) 27 (4) 22 (3)
Class 1 58 (2) 73 (3) 64 (4) 27 (3) 44 (2) 25 (3) 15 (3) 23 (3) 35 (4) 24 (4) 21 (4) 27 (4) 22 (3)

nImp = 10 Class 0 64 (9) 150 (9) 36 (5) 32 (6) 34 (6) 26 (9) 35 (7) 52 (9)
Class 1 57 (4) 37 (5) 35 (7) 14 (6) 18 (7) 40 (8) 22 (5) 19 (8)
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closest to these points to cover them and assign a label; note that depending on the nature of the shift, it
could be any of the ellipsoids in Figures 2b and 3b that undergos this expansion. It should be mentioned
that to detect a shift, the act of classification takes a backseat in comparison with identifying the
occurrence of this shift. Now, as i.i.d. univariate Gaussians can be computed using the ellipsoids, standard
tests to detect shift in distribution can be applied, for example, the KS test, Dodge (2008). As is known,
this test is applicable to continuous distributions and indicates a change by accepting or rejecting a
hypothesis at some level, say 95%.

For example, let F0 =N 0,λ�0:5i0

� �
be the zero-mean univariate Gaussian along the direction i with

standard deviation λ�0:5i0 obtained from applying SEP-C on the original data. Now, if there indeed is a shift,
either mean or covariate, it is clear that the new data points will most likely not belong to F0; the KS
statistic computed using some confidence interval (https://in.mathworks.com/help/stats/kstest.html) will
indicate if the null hypothesis (data comes from F0) should be accepted or rejected.

5.1. Results of identifying dataset shift—2D synthetic dataset

Consider the synthetic, 2D, linearly separable dataset with points of two classes, 0 and 1, as shown in
Figure 4a. The overlap check built into SEP-C indicates that the MVEs that cover these points do not
overlap. To detect a shift in data, 10 in-distribution test samples for Class 0 (green) and 10 OOD test
samples for Class 1 (black) are synthetically generated and shown in Figure 4b. As all Class 0 points are
in-distribution, there is no (significant) change in the correspondingMVE. On the other hand, theMVE
for Class 1 undergoes considerable expansion, marked in red and black in Figure 4b, respectively.
Running the KS test using the properties of the distribution computed using the original ellipsoid indicates
that the null hypothesis should be rejected, that is, these samples do not belong to the same distribution as the
trainingdata, in turn, indicating a shift in data.When theKS test fails for a sufficient number of new samples,
the user may choose to disregard the old data and perform partitioning on the new.

It should be remarked that the type of test applied to detect change in distribution is not crucial here; the
OOD samples could also have been detected by computing the Mahalanobis distances or applying
variants of the KS test. The key aspect is that SEP-C provides a way by which such a change can be
measured, independent of the distribution of the new data, or the old, or the class of points that undergo
this shift.

5.2. Results of identifying dataset shift—MNIST dataset

SEP-C is applied to detect OOD samples using the MNIST dataset, Deng (2012). As an illustration, first,
1000 images from the MNIST dataset containing 97 images of digit 0 and 903 of digits 1–9 are chosen.
Since the images are of size 28×28, in order to reduce the computation time, the image size is reduced to

Figure 5. Class 1 points and MVE transformed to origin with OOD points.
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8×8. By expressing each image as a vector of size 64×1 and adopting the one-versus-all approach, the
SEP-C algorithm yielded an ellipsoid containing 92 images of digit 0 and a nonintersecting ellipsoid
containing 84 remaining digits; denote the ellipsoid containing digit 0 images as E0. The algorithm
terminated after the first iteration since 5 of digit 0 images were left and hence, as the I-D inequality fails,
further ellipsoids cannot be found; also not that 819 images of digits 1–9 also remain. However, as the
focus of this section is to show how the ellipsoidal parameters change with dataset shift, it is sufficient to
analyze the ellipsoid that contains images of digit 0 from the training dataset.

To create a dataset shift, the next 500 images (also used as a testing set) are subjected to the following
distortions: i. addition of speckle noise; ii. rotation by 60°; and iii. distortion using the disk filter
implemented using the imfilter function in Matlab; such distortions are also employed in Rabanser
et al. (2019). These distortions are shown in Figure 6 for the digit 0.

The testing set contains 43 images of digit 0. Asmentioned in the introduction to SEP-C, distances of a
test point from all ellipsoids are computed the ellipsoid closest to this test point is expanded to cover it. For
the distorted digit 0 images in the test set, for each type of distortion, several of these images were the
closest toE0 and hence, this ellipsoid had to be expanded to cover them; denote this ellipsoid asE00. It is
observed that the Euclidean distances of the centers of E0 and E00, for the three types of distortion, are
0.14, 0.19, and 0.11, respectively. Note that since the elements of the 64×1 vector, that define each image,
are contained between 0 and 1 (as the images are grayscale), such changes in the locations of the centers
are significant. The ratios of the eigenvalues of the matrices definingE00 andE0 also reflect a change with

the different distortions; define this ratio as ri =
λi E00ð Þ
λi E0ð Þ , i= 1,⋯,64. It is observed that the ratios lie in the

range ri ∈ 0:1,1:02½ � for the speckle distortion; ri ∈ 0:03,1:03½ � for the rotation distortion; and
ri ∈ 0:38,1:02½ � for the filter distortion. As can be seen, there is indeed a reduction in the magnitudes of
the eigenvalues, indicating an increase in the corresponding semi-axes lengths and in turn, that the
ellipsoid E00 is larger and different than E0; thus, SEP-C is able to detect a shift in the data.

6. Conclusion

This paper presented the application of the SEP-C algorithm for identification of small disjuncts and shift
in a dataset. As has been shown, this approach does not require additional preprocessing techniques when
underlying data distribution is unknown, skewed, shifted or imbalanced. In all the cases, the proposed
method uses a single user-defined hyperparameter, which controls the number of misclassifications to
derive the ellipsoidal partitions. SEP-C can fail to capture small disjuncts when the number of samples is
less than the dimensionality of the dataset since I-D inequality constraint restricts the formation of an
MVE. Applying density-based measures in such cases for determination of small disjuncts could be a
direction in which future study can be conducted. Robust statistical tests can be conducted to detect
change in distributions as well.
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Figure 6. Digit 0 image of reduced size with speckle, rotation, and filter distortions.
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