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Abstract

Current understanding of global late Quaternary fire history is largely drawn from sedimentary charcoal data. Since publication,
CharAnalysis increasingly has been relied upon as a robust method for analyzing these data. However, several underlying assumptions
of the algorithm have not been tested. This study uses replicated charcoal count data to examine the assumption of Poisson distribution
and reproducibility of peak detection. Results show <10% of the replicate counts are Poisson distributed, a maximum peak replication
rate of 60%, and, for >90% of the data, intra-level count differences were larger than the threshold used to identify significance in inter-
level differences. A pronounced “edge effect” was observed at the beginning and end of the records, cautioning against validation of results
based on sections corresponding to the historical period. The proximal cause for low reproducibility is likely a lack of spatial randomness of
charcoal particles at the scale of a core diameter. Until and unless decomposition methods can be developed that accommodate the observed
limitations inherent in particle count data, best practices for interpreting charcoal records may be to rely on qualitative interpretations based
on smoothed influx values and minimum particle count values in the hundreds.

(Received 2 February 2021; accepted 28 July 2022)

INTRODUCTION

In recent decades efforts to reconstruct fire histories on decadal to
millennial timescales have come to rely heavily on quantitative
analysis of time series data developed from sub-fossil charcoal
extracted from lake and wetland sediments. Algorithms that iden-
tify statistically significant positive anomalies (i.e., “peaks”) in the
context of changing background values are commonly employed.
Peaks are interpreted to represent fire events, which are then used
to derive fire frequency, or the inverse, fire return intervals. The
most widely used algorithm is the CharAnalysis software package
(hereafter CharAnalysis; Higuera et al., 2009; Supplementary
Section 1). Since its introduction in 2009, CharAnalysis has
become the community standard for analysis and interpretation
of charcoal timeseries as a proxy for fire event history
(e.g., Mooney and Tinner, 2011; Feurdean et al., 2012, 2013;
Gill et al., 2012; Hawthorne and Mitchell, 2016; Iglesias et al.,
2016; Barhoumi et al., 2019; Mariani et al., 2019). This program
has been critically evaluated with respect to statistical issues rele-
vant to time series data (Higuera et al., 2005, 2009, 2010a). Several
excellent supporting studies on charcoal dispersal, transport, and
depositional processes have informed and improved the method-
ological criteria (e.g., Clark, 1988; Clark and Royall, 1995; Lynch
et al., 2004; Tinner et al., 2006; Higuera et al., 2007, 2010b).

However, studies aimed at assessing and improving CharAnalysis
have focused primarily on landscape-scale processes and variables. A
fundamental assumption remains untested: that charcoal deposition
is a function of a homogeneous Poisson process. Specifically, this
assumption states (Higuera et al., 2010a, p. 1003) “If charcoal
count and volume data are available, then it is possible to assess
the minimum increase in charcoal count required to be statistically
greater than a previous sample, assuming measured counts are
Poisson-distributed around the ‘true’ (unknown) count for a given
sample volume.” This assumption pertains to the distribution of
charcoal particles on a discrete horizon in the sediment column
and accepts an individual sample from that horizon as representative
of adjacent charcoal concentration at that level (i.e., “intra-level”).
However, several critical aspects of charcoal deposition, including
the pattern of particle distribution, the degree of homogeneity of
the spatial distribution, the scales at which these distribution patterns
hold, as well as the associated implications for sampling uncertainty
(and hence reproducibility) have not yet been assessed.

In order for the probability thresholds in CharAnalysis to be
appropriate, intra-level count variability, or sampling uncertainty,
must be lower than the thresholds defining the probability of
inter-level populations being statistically similar or different,
and those used to distinguish between noise and signal in the
time series. In other words, defining sampling uncertainty
requires understanding how counts may vary across the plane
of sampling, at the scale of the sample. For objective identification
of significant count differences between levels in a sediment core,
the thresholds must be scaled to the population variance and
resultant sampling uncertainty from within an individual level.
However, the probabilities calculated in CharAnalysis are based
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on the variability observed in the temporal domain, but not in the
spatial domain. This absence of consideration of the spatial
domain has important implications for how well CharAnalysis
parses signal from noise, and how well the Minimum Count
Test (MCT) works as a final assessment of peak significance.
To our knowledge, this is the first study to assess intra-level char-
coal count variability and its effect on quantitative peak detection.

The original impetus for the current study arose from observa-
tions made by Schlachter and Horn (2010, p. 701) in which they
stated that “Horizontally adjacent samples from the same core may
vary in charcoal concentration.” Schlachter and Horn (2010,
p. 707) further noted that “Differences between charcoal concen-
trations measured in the same stratigraphic depths suggest that
inferences about changing fire history based on small shifts in
charcoal curves may not be justified.” The need for an explicit
examination of intra-level charcoal count variability was further
clarified in an exploratory study conducted in our laboratory in
which initial results showed significant count differences between
samples drawn from within the same level of a single core. This
prompted development of the current study in order to systemati-
cally evaluate count variance of intra-level charcoal samples.

Previous studies have used replicate count data to assess the
reproducibility of macroscopic charcoal analysis. For example,
Whitlock and Millspaugh (1996) conducted an elegant replicate
study in which they examined variability of charcoal counts from
core transects taken across multiple lake basins, as well as in multi-
ple cores recovered from a single location. The upper 2 cm of sedi-
ment from replicated cores were analyzed for intra-site comparison.
Results showed coefficients of variation that were quite large, rang-
ing from 17.6% for a mean concentration of 29.2 particles/cc, to
49.4% for a mean concentration of 8.5 particles/cc. However, the
methodology called for the 2 cm thick by 5 cm diameter core sec-
tions to be homogenized before subsampling by aliquot.
Consequently, these findings do not address the question of intra-
level variability referenced in the Schlachter and Horn (2010) study.

More recently, Walsh et al. (2021) published a study in which
multiple cores were recovered from two lakes and the charcoal
influx records of each core were compared for qualitatively similar
patterns. Their findings showed the general shape of charcoal
curves in adjacent cores to be similar. Their study again differs
from ours in that the counts are from adjacent cores, and the
study does not analyze the charcoal records quantitatively.

Here we present an analysis of replicated samples from sedi-
ment cores taken in three different lakes, each with a distinct geo-
graphic setting and depositional environment. This is not an
attempt to reconstruct fire history, nor is it an attempt to validate
or calibrate peak detection methodology with known fire events
or regimes. This is a numerical exercise intended to assess repli-
cation of peak detection results using replicated intra-level
count data from within individual cores. Our null hypothesis
(Ho) is: iterated CharAnalysis runs using replicate intra-level
charcoal count data will replicate peaks at a rate of at least 95%.

This study addresses three questions that arise from assump-
tions relied upon by CharAnalysis. (1) Within a discrete level of
a sediment core, are charcoal particles Poisson distributed in
space? (2) What is the rate of peak reproducibility when replicate
data are run iteratively through CharAnalysis? (3) Is the MCT, as
applied by CharAnalysis, appropriate as a last test for significance
in distinguishing the probability of whether charcoal particle
counts come from similar or distinct populations?

In order to address these questions, we used replicated charcoal
particle count data from three lake sediment cores to (1) test for

Poisson distributions in the sampled populations, (2) test the rate
of reproducibility for peaks detected using CharAnalyis, and (3)
examine the appropriateness of the thresholds used to determine
significance of detected peaks. We detail our methods below and
have included the code and all data in order that other researchers
may replicate this study with our, or their own, data.

METHODS

Core recovery and site descriptions

Replicate sample datasets were developed from three sites, each
with different depositional conditions and sediment characteris-
tics. A summary of site characteristics, including sedimentation
rates and sampling resolution for this study, is shown in
Table 1. Age control for sampled sections is shown in Table 2.

Leonard Lake (39° 16′13′′N, 123°22′09′′W) is a small lake
located in the Northern Coast Ranges of Mendocino County,
California, U.S.A. It formed ca. 4000 years ago when a deeply
incised stream was dammed by landslide activity, resulting in
an ∼81 ha catchment. The lake occupies a narrow, steep sided val-
ley. The surface of the lake is ∼8 ha, with a water depth of ∼16 m
at the coring site. At the southern end of the lake is low gradient
marsh and meadow habitat formed by infilling via the primary
stream. The majority of the shoreline and watershed is character-
ized by steep slopes supporting mixed douglas fir and redwood
forest. The sediment from Leonard Lake used in this study is
comprised of finely laminated gyttja. Sampled depths were from
18–78 cm. Age control is from 16 210Pb measurements, 237Cs
peak depth, and one radiocarbon age determination.

Laguna Yaloch (17°18′35′′N, 89°10′29′′W) is a shallow,
closed-basin lake formed in a karstic basin along the middle course
of the Holmul River, eastern Petén, Guatemala. The surface of the
lake is ∼15 ha, and water depth at time of coring was 1.15 m.
Surrounding vegetation ranges from dense closed-canopy forest
in the upland areas to shrubs and grasses in the lowest areas
(Lundell, 1937; Fedick and Ford, 1990). The section of the
Laguna Yaloch core used in this study is from 50–110 cm. The
sediment is comprised of fine-grained peat. Age control for this
section is based on four radiocarbon age determinations.

Swan Lake (42°17′37′′N, 111°59′27′′W) is a shallow carbonate
fen currently containing a shallow pond. The site is located in
southeastern Idaho, U.S.A., at the northeastern extent of the
Great Basin. It lies in the overflow channel of pluvial Lake
Bonneville. At the time of coring, open water extent was ∼14
ha, and water depth was ∼35 cm. The section of sediment core
from Swan Lake used in this study is comprised of laminated car-
bonate mud, and extended from 0–60 cm. Age control was based
on two radiocarbon age determinations.

All cores were recovered using 7 cm diameter polycarbonate
tubes fitted to a Bolivia piston corer and deployed from a floating
platform. Cores were stored in the core repository refrigerator at
the United States Geological Survey (USGS) facility in Menlo
Park, California, USA. Sediment cores were maintained at 3°C,
except when being actively split, imaged, or sampled. All labora-
tory procedures, counting, and data analyses were carried out in
the Quaternary Paleoenvironmental Research Laboratory
(Q-PRL) at the USGS, Menlo Park.

Sampling, processing, and counting protocols

Cores were split and sampled at thirty (30) contiguous, 2 cm thick
levels. Twenty (20) 1.25 cc samples were taken at each level. This
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Table 1. Site names, locations, and site descriptions for cores used for replicate charcoal particle counts.

Site
Name Location Latitude Longitude

Surface
Area (ha)

Sediment
Accumulation
Ratea (cm/yr)

Years per
Sample
(yr/cm) Site Description

Swan
Lake
(SL11)

Southeastern
Idaho, USA

42°17′37′′N 111°59′27′′W 14 0.14 14 Northern Great Basin.
Shallow open water fen
laying in low gradient
outflow channel

Laguna
Yaloch
(LY12)

Northern Petén,
Guatemala

17°18′35′′N 89°10′29′′W 15 0.20 10 Seasonally dry tropical
forest. Shallow, closed
basin lake in karstic basin
along river course

Leonard
Lake
(LL14)

Mendocino
Count, Northern
California, USA

39° 16′13′′N 123°22′09′′W 8 0.14 14 Mixed conifer and oak
forest. Steep sided, deep
lake formed in landslide
dammed stream valley

aAccumulation rates and yr/cm are for sections of core sampled in this study.

Table 2. Age control measurements by site.

Leonard Lake 210Pb, 226Ra, 137Cs, and sediment density measurements.

Sample ID Depth(cm) Density (g/cm3) 210Pb (dpm/g) ± Thickness (cm) 226Ra (dpm/g)

137Cs peak 28 — 1

Pb-01 3 0.22 12.05 0.64 1 1.58

Pb-02 4 0.18 10.73 0.88 1 1.44

Pb-03 7 0.26 12.74 0.74 1 2.11

Pb-04 8 0.12 27.57 1.46 1 2.06

Pb-05 12 0.13 14.01 1.17 1 1.96

Pb-06 16 0.18 5.3 0.6 1 2.02

Pb-07 20 0.22 4.47 0.59 1 1.55

Pb-08 24 0.31 3.17 0.46 1 1.56

Pb-09 28 0.24 3.43 0.45 1 1.52

Pb-10 32 0.23 4.28 0.55 1 1.95

Pb-11 36 0.31 3.09 0.37 1 1.55

Pb-12 40 0.26 2.92 0.38 1 1.91

Pb-13 44 0.17 2.23 0.4 1 1.25

Pb-14 48 0.23 2.51 0.34 1 1.4

Pb-15 53 0.25 2.76 0.39 1 1.83

Pb-16 59 0.22 2.47 0.42 1 2.2

Radiocarbon age determinations for each site.

Site Depth (cm) Sample ID 13C 14C yr BP Calibrated Age Range 2δ Median Calibrated Age BP

Leonard Lake 83.5 LL14-BC-S2-83.5 −25‰ 210 + 30 0–305 108

Laguna Yaloch 52 WW6555 −26.00‰ 1152 ± 35 979–1173 1075

100 WW7655 −28.19‰ 1520 ± 25 1344–1516 1400

107 WW6551 −25.00‰ 1603 ± 36 1404–1563 1480

Swan Lake 30 SL11-1B-1-30 −25.00‰ 310 + 30 229–461 388

70 SL11-1B-1-70 −25.00‰ 225 + 45 4–502 204
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sampling protocol was informed in part by a survey of the Global
Charcoal Database (Marlon et al., 2016a, b), wherein a 1cc sample
size is the most commonly used sample volume for paleo fire stud-
ies based on particle counts (Supplementary Fig. 1). The split sur-
faces of the cores were cleaned to eliminate down-core
contamination resulting from the splitting process. Ten consecutive
1.25cc samples (0.5 × 2 cm) were taken from each half to create a
total of 20 samples (Fig. 1). Each sample was cut from the split
core using a square tipped spatula and measured for volume in a
measuring spoon. Care was taken to leave the layer of sediment
closest to the liner to avoid contamination by dragging along the
outside of the core, which can occur during the coring process.
For each level, samples were taken in a crosswise progression in
order to track the proximity of samples relative to each other.

Appropriate bleaching time was determined using preliminary
experimental extractions (Anderson and Wahl, 2016). Samples
were processed in batches of 20 so that all samples from a single
level were treated together. Each sample was placed in a 50 ml
test tube in 10 ml of 3% sodium hexametaphosphate solution for
24 hours to initiate deflocculation. Clorox® bleach was used to
remove non-charcoal organic matter and to complete defloccula-
tion. Thirty (30) ml of bleach (6% sodium hypochlorite) was
added, and test tubes were laid on test tube rollers for 1 hour. In
order to achieve consistent bleaching times, samples were first
decanted into 4” sieves sitting in a water bath deep enough to sub-
merge the surface of the sieves. Samples then were sieved at
125 μm, and the >125 μm fraction was washed into disposable
petri dishes. Petri dishes were dried in an oven at 50°C for 72 hours.

Counts were performed manually using a binocular scope at 5–
15x magnification. A 0.5 × 0.5 mm gridded “coaster” was placed
under the petri dishes to facilitate systematic movement of the
dish to insure complete coverage. All charcoal particles were tallied,
and counts were entered into spreadsheets. Counts were performed
by a team of three technicians. In order to establish consistency,
initial counts were replicated by all three technicians to verify
that counts for the same petri dish by different technicians were
within 10% of each other. Following this visual “calibration,” all
intra-level counts were performed by a single technician. All sample
counts that fell beyond two standard deviations from the mean for
the level were re-counted by the lead author. If no replicates for a
level exceeded the two standard deviation range, then the maxi-
mum and minimum counts for that level were re-counted. For
the Laguna Yaloch samples, due to very high counts and
wide-ranging values, 5–9 samples for each level were re-counted
by the lead author. One sample from Laguna Yaloch (level 8, rep-
licate 20) was rejected due to insufficient clearing of the sample in
preparation. An abundance of dark debris effectively precluded reli-
able identification of charcoal. In this instance a value equal to the
mean of the other 19 samples from level 8 was assigned for the
count value of replicate sample 20.

Data Analysis

All analyses, including data treatments for CharAnalysis input,
were performed using the opensource R statistical software (R
Core Team, 2018). All code developed for execution of the meth-
ods described below is available for use at the USGS Gitlab link
(https://code.usgs.gov/gmeg/replicatechar).

Artificial cores and synthetic data
Artificial cores were created in order to form time series of suffi-
cient length to be evaluated in CharAnalysis (Figure 1).

Terminology used in the discussion of the artificial core creation
is defined here:

Level = A single, 2 cm thick horizontal plane from which 20
replicate, intra-level samples were taken. There are 30 contiguous
levels per core.

Replicate = Charcoal counts from within a single level (intra-
level counts). There are 20 replicates per level.

Original count = Charcoal particle counts from actual
subsamples.

Synthetic count = Poisson distributed count values generated
based on the means of each level’s 20 replicate original counts.

Set = Consecutive count values (either original or synthetic)
from 30 contiguous levels. When creating a set, levels remain
true to the stratigraphic position from which they were taken
from the core (i.e., while replicates from a level may be randomly
chosen, levels 1–30 always remain in fixed order in every set).

Artificial core = Twenty (20) contiguous sets strung together
end on end, resulting in an artificial “core” comprised of 600 val-
ues. This artificial core utilizes the data in a way that can be pro-
cessed by CharAnalysis.

Artificial cores were constructed for each site to test the expected
outcome (Ho) of a fire frequency curve that is either flat or has a
consistent periodicity that repeats in synchroneity with the repeat-
ing sets throughout the core. Four types of data were analyzed:

Sum of All: All 20 replicate counts for each level are summed.
The result is a set that has count values for each level equal to the
sum of all intra-level counts. Because the same data are used in
each set, this dataset establishes what results would look like if
intra-level count variability was insignificant, and what we
would expect to see if our null hypothesis is correct. (1) A syn-
thetic core is constructed with the same set of summed levels
repeated 20 times. (2) Three artificial cores based on Sum of
All data were generated, one for each site.

Original Data, Random (with replacement): One count value
was randomly selected from each level in a set. Sets were compiled
into artificial cores and analyzed to test reproducibility given the
actual within-level variability. (1) Sets are created by randomly
selecting one replicate from each level (with replacement). (2)
Twenty sets are stacked to produce an artificial core. (3) One
thousand artificial cores were generated for each site.

Synthetic Homogeneous Aliquots: Synthetic data were created
around the mean value for each level. This analysis tests the effect
of a Poisson distributed sample distribution on reproducibility of
results. (1) Based on the mean of the 20 replicate original counts
for each level, a set of Poisson distributed counts were generated.
Values were then randomly selected, from the generated data for
each level to create 20 synthetic sets. (2) These 20 synthetic sets
are stacked to create an artificial core. (3) One thousand artificial
cores were generated for each site.

Synthetic Heterogeneous Aliquots: Similar to Homogeneous
Aliquots, but using resampled count data to calculate a different
mean for each Poisson distribution generated. This analysis intro-
duces an additional degree of freedom in testing reproducibility.
Poisson distributed counts were constructed based on multiple
means derived from bootstrapping of original count data by
level. (1) For each level, a mean of a bootstrapped sample popu-
lation (n = 20) is calculated. (2) A set of 20 Poisson distributed
values is generated around that mean. (3) A random value is
selected from the generated Poisson distribution. (4) Repeat
steps 1–3 30 times, once for each level, to create a set. (5)
Repeat step 4 20 times to create 20 sets for one artificial core.
(6) One thousand artificial cores were generated for each site.
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Test for over dispersion
CharAnalysis assumes that counts are drawn from distributions
with means fixed at each sampled horizon such that intra-level
counts will be Poisson distributed in space around this mean
(Higuera et al., 2010a). Using replicate intra-level samples (20
per level) we are able to test this assumption. Given that a condi-
tion of a Poisson distribution is the ratio of σ : μ = unity, the null
hypothesis for this test is Ho: σ = μ. The alternative to this hypoth-
esis is over-dispersion among the replicated counts. That is, there
is higher variance relative to the mean than would be expected in
a Poisson distribution.

To determine the probability of overdispersion in the original
count data, we generated sets of means and standard deviations
for each level using a bootstrap approach on the counts. Under
the null hypothesis, a Poisson distribution for the population of
counts will have a sample count sum equal to the true population
mean, scaled by the number of samples. Conditional on (that is, fix-
ing) this sum, the individual counts are multinomially distributed, all
with equal probability. Using original count sums for the levels, we
generated a large number (n = 1000) of multinomially distributed
sets of random values and calculated the standard deviation for
each set. This provided us with an estimate of the distribution of
standard deviations. We then compared these standard deviations
to the standard deviation of the intra-level original counts. The
quantile into which the original replicate’s standard deviation falls
in the distribution of the generated standard deviations provides us
with a probability for acceptance or rejection of the null hypothesis.

Minimum count test (MCT)
Maximum intra-level count differences for each level were com-
pared to the threshold curves derived from the minimum count
test (MCT) used in CharAnalysis. This test is used as a final
check to screen potential peaks for values that, although they
exceed the locally defined thresholds, may still be statistically insig-
nificant (Detre and White, 1970; Shiue and Bain, 1982; Higuera
et al., 2010a; see section 2.3.5 below). Here we apply this test to
determine the probability that two counts from within the same
level come from different Poisson distributions (Higuera et al.,
2010a). The MCT examines count values and compares the mini-
mum count (X1) and sample volume (V1) and the maximum count
(X2) and sample volume (V2) according to the following equation:

d =
X1 − (X1 + X2)

V1

V1 + V2)

( )∣∣∣∣
∣∣∣∣− 0.5������������������������������������

(X1 + X2)
V1

V1 + V2

( )
V2

V1 + V2

( )√

d.f = 1

(Eq.1)

Critical values used for infinite degrees of freedom (two tailed
t-test) are: alpha = 0.05; Z = 1.9600 and alpha = 0.01; Z = 2.5758.
A Poisson distribution is assumed, and the d statistic is compared
to the Student’s t distribution. The probabilities of maximum and
minimum counts coming from different Poisson populations were

Figure 1. Schematic of replicate sampling and artificial core “construction.”
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tested at 95% and 99% confidence levels. The differences for counts
(x1− x2) and percentages ([x1− x2]/x1 ×100) were compared to the
critical value threshold.

The maximum difference value represents a “worst-case-
scenario” for each level. To examine a more nuanced view of
the range of intra-level count variation, and the probability of
intra-level differences being considered statistically significant by
the MCT, the d-statistics for all 190 possible pairwise differences
between the 20 replicated sample values for each level were calcu-
lated. The resulting probability distributions were plotted along
with the MCT threshold at 95% probability.

CharAnalysis
The artificial cores were analyzed with the CharAnalysis program
(Higuera et al., 2009, 2010a; Kelly et al., 2011; freeware available at
http://phiguera.github.io/CharAnalysis/). Terms used in this dis-
cussion are defined in Table 3 (Higuera, 2009). In essence, the

algorithm decomposes the interpolated charcoal influx variability
into background (Cback) and non-background (Cpeak). Cback is
assumed to represent low frequency changes in charcoal influx,
not related to local fires; Cpeak is assumed to include the local
fire signal but must undergo further analysis to identify local
fire events. To accomplish this, Cpeak values are evaluated for con-
sideration as potential fire events (Cfire) against a locally defined
threshold to remove the random noise component (Cnoise, see
below). To validate the statistical significance of the potential
fire events, Cfire values are then subjected to a MCT. Cfire values
that pass the MCT are designated as peaks, which indicate local
fire events. Because the nomenclature around CharAnalysis out-
put varies somewhat in the literature, in the remainder of this
discussion we will refer to values that pass both the noise thresh-
old test and the MCT as PEAKs, which is the peak component
that CharAnalysis identifies as characterizing local fire events.
As a final step, CharAnalysis calculates a signal to noise index
(SNI) as a metric to evaluate the strength of the distinction
between the signal and noise components of the time series
(see below).

Following is a detailed description of how the CharAnalysis
algorithm moves through each step. Input data are time series
of charcoal counts, sample volumes, depths, and modeled ages
at each depth. Charcoal accumulation rate (CHAR) is then calcu-
lated by dividing charcoal counts in each sample by the time
interval represented in that sample.

Cinterp is then calculated by converting original counts to con-
centration (particles/cc) and interpolated into even time steps
based on a user designated time parameter; in this study, counts
were interpolated to timesteps of 20 years per 2 cm depth
increment.

Cback, which is the background component of the CHAR data,
is then calculated. Cback is assumed to be comprised of low fre-
quency CHAR variations driven by environmental factors other

Table 3. Definition of terms used in the description of CharAnalysis.

CHAR: Charcoal accumulation rate (CHAR; pieces cm2/yr)

Cinterp: CHAR of interpolated record

Cback: Low-frequency trend in Cinterp, also termed “background CHAR” or
“BCHAR” in the literature

Cpeak: High-frequency trends in Cinterp, after Cback is removed. Cpeak is then
decomposed into two additive components:

Cnoise: Normally distributed random variation around Cback

Cfire: Values exceeding the designated probability threshold for Cnoise

Locally defined threshold: The value used to distinguish Cnoise from Cfire
within Cpeak based on the designated confidence interval applied to the
assumed distribution of Cnoise

PEAK: A value from within Cfire that exceeds the Minimum Count Test and is
assumed to represent a local fire event

Table 4. Parameters used in all CharAnalysis runs.

Stage Variable Parameters Units Description

Pretreatment Zones within
record

−40 cal yr BP No sub-zones were set, total of 12,000 years in “record”

11960

Yrs to Interpolate 20 yr Even time step in years for interpolation of record

transformation 0 NA The data were not transformed

Smoothing method 2 index Estimation of low-frequency CHAR (BCHAR) used a Lowess smoother, robust
to outliers (option 2 in CharAnalysis)

yr 600 yr Smoothing window for estimating Cbackground

Peak Analysis Cpeak 1 index High-frequency CHAR (Cpeak) was calculated using residuals = (Cpeak =
Cinterpolated− BCHAR) (option 1 in CharAnalysis)

threshType 2 index Threshold Locally defined. (Option 2 in CharAnalysis)

threshMethod 3 index Threshold values for peak identification defined using base threshold values
of a percentile cut-off of a noise distribution determined by a Gaussian
mixture model

threshValues 0.990 variable What threshold value evaluated

minCountP 0.05 probability Cut-off probability for minimum count test (MCT) (e.g., if minCountP = 0.05,
then the minimum charcoal count within 75 years before a peak has to have
<5% chance of coming from the same Poisson distribution as the maximum
charcoal count associated with the peak). Peaks with a probability ≥5% will
be flagged and displayed but not included in peak analysis.

Peak Analysis
Results

peakFrequ 1000 Yr Smoothing window for fire frequency and fire return intervals
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than local fire, such as redeposition, bioturbation, and distant fires
(Higuera et al., 2007). It is defined using a smoothing algorithm
within a moving window. Several methods are available (moving
mean, moving median, moving mode, Lowess smoother, or
Lowess smoother/robust to outliers). Our analyses used the
Lowess smoother/robust to outliers method.

Cpeak is derived. This component is the series of detrended
CHAR values is created by removal of Cback. It can be calculated
as either a residual of Cback (CHAR − Cback) or as a ratio (CHAR:
Cback). In this study, we use the residual method.

Cpeak is then further analyzed to parse out two components:
Cpeak = Cnoise + Cfire, in which Cnoise = normally distributed varia-
tion around Cback, and Cfire = values exceeding Cnoise.

Distinguishing the fire signal (Cfire) is next. As mentioned
above, Cpeak is composed of two additive components: Cnoise +
Cfire = Cpeak. A Gaussian mixture model (Bouman et al., 2005;
Gavin et al., 2006; Higuera et al., 2008, 2010a) is used to establish
a local threshold in order to distinguish the Cnoise component of
the positive Cpeak population. The Cpeak values that clear the
threshold are then considered Cfire. The distribution of Cfire does
not need to be known because Cnoise is assumed to have a normal
distribution. As such, values of Cpeak that fall into the extreme pos-
itive tail of the probability distribution of Cnoise (i.e., Cpeak values
above the locally defined threshold) are designated as Cfire.
Taking the Cback value at the center of the window as zero, the
Gaussian mixture model is applied to the Cpeak values within
the smoothing window. For a 600 year window, the Cpeak values
within 300 years before and 300 years following the center incre-
ment would be considered. The Gaussian mixture model

distinguishes the two component populations within the Cpeak val-
ues: Cnoise and Cfire. Each of these two component populations has
a different mean and variance, and distinct proportional contribu-
tions to the total Cpeak population. The Cnoise population is defined
as the distribution having the lower mean (smaller values), corre-
sponding to relatively small departures from Cback. The Cfire pop-
ulation encompasses the variability that diverges widely from the
background (ideally these two populations are quite distinct
from each other). By referencing the assumed Cnoise distribution,
a threshold is derived such that Cpeak values exceeding a desig-
nated confidence interval (here the 95th percentile) comprise the
Cfire component of Cpeak. The threshold value is calculated sequen-
tially for each consecutive window in the time series. The Cfire

component contains all possible PEAK values (note that Cfire is
labeled ‘peak’ in the CharAnalysis output).

Minimum count test (MCT) and PEAK determination are
next. The PEAK component (not to be confused with Cpeak) rep-
resents the “signal of interest” (Higuera et al., 2010a), indicating
discrete local fire events. As a final test to distinguish local fire
events, Cfire values are subjected to the minimum count test ref-
erenced above. This is done to exclude Cfire values that exceed
the locally defined noise threshold value, yet may be statistically
insignificant. The MCT (first introduced in “CHARSTER” by
Gavin, 2008) applies equation 1 to the original raw count values
(not interpolated) to compare the minimum count (X1) and sam-
ple volume (V1) falling within the preceding 75 years of the
potential PEAK, and the maximum count (X2) and sample vol-
ume (V2) falling within the 75 years following the potential
peak (Higuera, 2009). A Poisson distribution is assumed, and

Figure 2. Dot plots of intra-level original counts from three sites and probabilities of the observed counts originating from a Poisson distribution. Levels in red
indicate distributions with a >0.05 probability of being Poisson distributed. The y-axes represent levels sampled. Note the different ranges on the x-axes. All counts
represent particles per 1.25 cc. See methods section for full discussion of sampling and counting protocol.
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the d statistic is compared to the Student’s t distribution. If there
is a >5% chance that the maximum and minimum counts have
come from the same Poisson distribution, the potential PEAK
is rejected. Values that pass the MCT are designated as PEAKs
and assumed to represent local fire events (‘peaks Final’ in the
CharAnalysis output) (Shiue and Bain, 1982; Higuera, 2009;
Higuera et al., 2010a). Again, for clarity, in this discussion we
refer to the Cfire values that pass the MCT as PEAKs. PEAKs
then are smoothed with a moving window to present changes
in fire frequency through time. In this study a 1000-year smooth-
ing window was used.

We designated an age model and CharAnalysis parameters
similar to those used for example data provided with
CharAnalysis, and to those used in previously published method-
ological evaluations of CharAnalysis (Higuera et al., 2010a; Kelly
et al., 2011). A deposition time of 20 years per 2 cm interval was
assigned, giving each artificial core an “age” of −40 to 11,960
years BP. It is worth noting that the time and depth intervals
used here are not of particular significance. As long as the values
are constant between runs, the comparison of the replicated
counts remains valid. The depth interval could be changed to
1 cm, for example, and it will not affect the results.
Alternatively, if the interpolation interval were changed to 40
years, and the window widths and age estimates were also dou-
bled, the results would likewise remain unaffected. Cback was cal-
culated using a Lowess smoothing, robust to outliers, within a 600

year window, which ensured the recommended minimum of 30
values in each window (Higuera et al., 2009) and falls within
the window width typical for most studies using CharAnalysis
(Higuera et al., 2010a). Parameters were held constant for all
runs and are presented in Table 4.

Signal to noise index (SNI)
CharAnalysis uses a signal to noise index (SNI) (Kelly et al.,
2011) to determine which sections of the time series are reliably
recording fire events. For each moving window, noise and signal
are treated as distinct populations (N and S, respectively) sepa-
rated by a threshold set near the upper limit of the noise distri-
bution. The signal (S) contains the values in Cpeak (the residuals
after Cback is removed) exceeding the threshold; the noise popu-
lation (N) contains all Cpeak values equal to or less than the
threshold for a specific time window:

SNI =
1
ns

∑ns
i=1

Si − �N
sN

( )
nN − 2
nN

( )
ns ≥ 1

0 ns = 0

⎧⎪⎨
⎪⎩ (Eq.2)

Here ns is the number of values in S and nN is the number of values
in N. The mean and standard deviation of the values in N are
�N and σN, respectively, and S1, S2…Sn are the individual values

Figure 3. (a–c) Histograms showing frequency (gray bars) for all 190 possible differences between the 20 replicated values at each level compared against the MCT
threshold (vertical red line). Values in upper right of each plot indicate the proportion of difference values that are statistically significant for the level. (Figure
continued on the following pages).
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in S. The equation scales the separation of signal and noise by the
standard deviation of the noise population within the moving win-
dow. Thus, the SNI value provides an intuitive measure of how
divergent the two populations are. For example, assuming a normal
distribution in the noise population, SNI = 3 would indicate that
the mean for the signal population falls at least 3 standard devia-
tions above the mean of noise. Kelly et al. (2011) recommended
that sections of the record in which SNI < 3 be discussed in
terms of changes in background values only. In order to evaluate
the relationship between signal strength and PEAK reproducibility,
PEAKs were binned by SNI values.

Similarity Index
To quantify the degree of similarity in PEAK identification
between the runs, a Jaccard index (Chung et al., 2019) was calcu-
lated for the runs based on the count data. Sets were compared
pairwise from randomly selected runs such that:

J(X, Y) = |X>Y |/|X<Y | (Eq.3)

Where J is the index of similarity between the sets X and Y,
where is all of the peaks shared by each set and are all of the
peaks that occur in either set. Two identical sets would have
an index of 1, while completely dissimilar sets would have an
index of 0.

RESULTS

Our findings reveal the following. (1) The test for overdispersion
shows that only 9% of the replicate counts have a probability >5%
of originating from a Poisson distribution. (2) The maximum rate
of peak replication based on iterated intra-level counts is 60%. (3)
The 95% probability threshold calculated for the noise distribu-
tion is spurious given the intra-level count variability. (4)
Intra-level count differences were larger than the MCT threshold
used to identify statistical significance in inter-level count differ-
ences in over 90% of the data.

Several unanticipated outcomes are also significant. (1) Even
when a Poisson distribution is imposed using synthetic data, in
only one instance did the peak detection rate exceed 95%. (2)
Inconsistences in the results were not resolved by increasing the
signal to noise index (SNI) threshold as a criterion for confidence
in fire frequency reconstructions. (3) A pronounced “edge effect”
is observed at the very top and bottom of the artificial cores, call-
ing for caution when attempting to calibrate CharAnalysis output
from the most recent sections of sediment cores with instrumen-
tal, historical, or tree ring (fire scar) data.

Original counts, analysis of over dispersion, and within-level
count differences (MCT)

Our results provide strong evidence that charcoal distribution in
all three cores does not conform to a Poisson distribution in

Figure 3. Continued.
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space (Fig. 2). Only 9% of the 90 intra-level original count distri-
butions have >5% probability of originating from a Poisson dis-
tributed population. In other words, data from >90% of the
levels do not support the null hypothesis of sample counts
being derived from a Poisson distribution. The descriptive statis-
tics for original counts by level and by site are shown in
Supplementary Table 1. Full data sets are included in
Supplementary Table 2, as well as count data presented in the
order and relative proximity of samples taken from the sediment
(Supplementary Table 3a–c).

These data exemplify the range of particle concentrations typ-
ically found in lake cores, in that the three sites include low counts
at Leonard Lake, moderate counts at Swan Lake, and both
extremely high and moderate counts at Laguna Yaloch. Leonard
Lake (LL14) minimum and maximum particle counts for the
entire core range from 0–93, and the maximum intra-level differ-
ence for the core is 64 (min = 7, max = 71). The coefficient of var-
iation (CV = standard deviation/mean), an intuitive measure of
dispersion of values, ranges from 21.5–70.3%. Laguna Yaloch
(LY12) has minimum and maximum counts of 15 and 1,679 par-
ticles, with a maximum intra-level difference for the core of 1,569
(min = 110, max = 1679), and the CV ranges from 12.2–91.0%.
The Swan Lake (SL14) minimum and maximum are 17 and
146 particles, the maximum intra-level difference for the core is
108 (min = 24, max = 132), and the CV ranges from 9.6–45.2%.

The count differences from within all levels counted include
ranges large enough for counts from within the same level to be

flagged as originating from different populations at both 95%
and 99% probability (Supplementary Section 2; SI Fig. 2). The
probability distributions of the d-statistic for all 190 possible
count differences between the 20 intra-level values for each level
compared against the MCT threshold are shown in Figure 3a–c
and Table 5. For Laguna Yaloch, 25% of the differences fail the
MCT in 100% of the levels. Data from Leonard Lake and Swan
Lake show a failure rate of 25% or more for 50% and 56% of
the levels, respectively.

PEAK detection and smoothed fire frequencies

CharAnalysis results showing fire events (PEAKs) are presented
in Figure 4. Fire frequency is plotted for qualitative comparison
of the runs to illustrate the effect of different PEAK detection
results on the frequency curves. A representative set of replicate
CHAR values is shown in Supplementary Figure 3. The Sum of
All analysis for each site shows PEAKs occurring at regular inter-
vals along the cores, as expected, because these cores were con-
structed by repeating sets of the same 20 summed intra-level
values for each level. As a result, PEAKs occur at the same levels
in each set, creating a consistent periodicity in the fire frequency,
except, importantly, where edge effects influence the results. For
all three sites, edge effects appear to influence between 30–60 lev-
els (one to two sets) at the beginning and end of the record.
The Sum of All plots represent what would be expected in plots
from the other three analyses conducted with these data if there

Figure 3. Continued.
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was little or no variability in intra-level count values. A randomly
selected group of 10 plots (of the 1000 cores generated) is shown
for the three data treatment methods (Fig. 4). Variability in fire
frequencies is highest for reconstructions based on the Original
Count, Random data at all sites. Some improvement is shown
in the range of smoothed frequencies corresponding to the
Poisson distributed data analyzed in the Homogeneous Aliquots
and Heterogeneous Aliquots for all sites, but notable inconsisten-
cies persist.

PEAK detection replicability and SNI

For the purposes of this discussion, “opportunity” is defined as a
chance for one of the intra-level original or synthetic count values
from a given level to be identified as a PEAK. Because sets are
appended to create the artificial cores, each level of each artificial
core scenario has 20,000 opportunities (1000 simulations × 20 sets
per artificial core) for a level to be associated with a PEAK. Here,
we define significant-positives as PEAKs detected with SNI >3 in
95% or more of the opportunities within a level. Insignificant-
positives are PEAKs detected with SNI >3 in >5%, but <95%, of
the opportunities. The peak detection rate is the percentage
of peaks identified as a proportion of the opportunities.

The range and median of the SNI are presented in Figure 5, by
site and level. All three sites show a SNI ≥3 for the set. Table 6
presents the percentage of opportunities from each core that
indicate PEAKs with a SNI >3 that were detected in the 1000
CharAnalysis runs (excluding sections affected by the edge
effect; n = 16,000 opportunities, blank cells represent no PEAKs
detected). For the intra-level count data, the highest rate of detec-
tion for a peak is 60.1% at level 8 in Laguna Yaloch. If levels 7 and
8 are combined, the detection rate increases to 80.8%, and if 7, 8,
and 9 are combined, the detection rate sums to 92%. Only one
significant-positive occurs (≥95% rate of a PEAK being detected at
a level) corresponding to level 8 in the synthetic Homogeneous
Aliquots data from Laguna Yaloch.

Visualizations of PEAKs detected by level, along with the asso-
ciated SNI strength are shown in figures 6 a-c (A full set of tabular
data are presented in Supplementary Table 4a, b). All 20 sets are
shown in the figures, however discussion and interpretation of the
results focuses on sets 3 to 18 in order to isolate the impact of the
edge effect mentioned above. Gray bars indicate potential PEAKs
that were detected but fall below the SNI threshold of 3. All other
colors indicate PEAKs exceeding the threshold binned by
strength.

Original counts, random
No significant-positives occur, however insignificant-positives are
common; that is, no PEAK was found in the same level in 95% of
the opportunities (Table 6), although many levels show PEAKs
detected >5% of the time. Leonard Lake shows 13.3% of the levels
(4 of 30 levels) have insignificant-positives >5% of the time,
including 24.8% of the time for level 24. Level 8 from Laguna
Yaloch has the highest replicability overall, with a 60.1% PEAK
detection rate. Given that these PEAKs are not detected 95% of
the time, this reflects a 60.1% rate for insignificant-positives.
High SNI values correspond to a large portion of the
insignificant-positives at Laguna Yaloch, including for levels 4,
5, 7, and 8, for which 6–15% of the PEAKs detected had SNI of
>6 (Supplementary Table 4a, b). The Swan Lake data produced
the most consistent results overall with no significant-positives

identified, and only level 7 produced an insignificant-positive in
>5% of the opportunities.

Homogeneous Aliquots
The Leonard Lake homogeneous Poisson distributed data pro-
duced insignificant-positives in 10% of the levels, again recording
26% for level 24. Laguna Yaloch also produced insignificant-
positives in 10% of the levels. Level 8 does reflect a significant-
positive. Swan Lake produced insignificant-positives in 7% of
the levels.

Table 5. Percentages of all possible count differences with d-statistic larger
than MCT threshold, per level, in each core. Bolded numbers indicate the
percentage of levels for each site in which >25% of the possible differences
exceed the MCT threshold. All values shown as percent.

Level ID Leonard Lake Laguna Yaloch Swan Lake

1 1 33 5

2 27 62 31

3 15 85 17

4 15 88 3

5 4 78 22

6 12 84 11

7 21 72 13

8 34 74 32

9 23 83 27

10 16 66 23

11 15 65 12

12 28 56 8

13 6 45 28

14 34 33 17

15 23 40 29

16 39 49 23

17 46 40 32

18 25 41 54

19 29 45 41

20 27 58 51

21 31 52 35

22 28 38 12

23 42 28 34

24 18 37 9

25 24 33 31

26 22 44 24

27 27 53 40

28 18 35 45

29 33 41 35

30 36 25 58

>25% 50 100 56
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Figure 4. Representative examples of replicated CharAnalysis runs, randomly selected, form 1000 iterations. Red + indicates peaks detected with 600 year moving
window. Blue curve represents fire frequency smoothed with 1000 year moving window. Sum of All: single run using repeating values (note edge effects in Sum of
All curves for all sites). Original Data, random: selection, with replacement, from original replicate count data. Homogeneous Aliquots: sampled from synthesized,
Poisson distributed data based on means of original counts (this simulates mixing and then subsampling all the sediment sampled in each level). Heterogeneous
Aliquots: sampled from synthesized, Poisson distributed data, based on means derived from resampling of original counts. Results are shown with the x-axis indi-
cating sets to clearly indicate the bounds of repeating sets in the artificial cores.
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Heterogeneous Aliquots
The Leonard Lake heterogeneous Poisson distributed data pro-
duced insignificant-positives in 10% of the levels, including for
26% of opportunities in level 24. Laguna Yaloch produced
insignificant-positives in 13.3% of the levels. Levels 5 and 8
have SNI values >4 for between17–60% of the PEAKs detected
(Supplementary Table 4a). Swan Lake produced insignificant-
positives >5% of the time in 7% of the levels.

The Jaccard index for the original count data is shown in
Figure 7. In all cases, there is a <10% probability of two replicate
runs having a similarity index of >90%. There is an 8–15% prob-
ability of a similarity index between 40–50%. Even in the case of
Laguna Yaloch, in which there is a pronounced contrast between
the low and high count sections of the data and so an intuitive
expectation that PEAKs would be detected consistently, there is
only a 10% probability of replicate runs showing the same PEAKs.

DISCUSSION

To our knowledge, this is the first replicate study documenting var-
iability of intra-level charcoal count data. The range of count values
found in the original data is significant. Given this, and the failure
to meet the assumption of Poisson distribution, the low rate of
reproducibility in CharAnalysis PEAK detection using replicated
intra-level count data is not surprising. Repeated analyses of intra-
level data using CharAnalysis resulted in a maximum detection rate
for replicated PEAKs of 60.1%. Distribution of the Jaccard Index of
Similarity showed a <10% probability of a >90% similarity.

Synthetic data conforming to the assumptions of Poisson distribu-
tions produced a detection rate >95% for only one level at a single
site. Increasing the threshold for the SNI does not resolve the issue.
The “edge effect” observed at the beginnings and ends of the
records raises significant concerns regarding “calibration” or “vali-
dation” of PEAKs detected in the most recent sections of the cores
with independent records of fire. These results suggest that some
assumptions explicit to the CharAnalysis algorithm are unsup-
ported and, as a consequence, the data are being over interpreted.
Moreover, this study reveals inherent limitations in charcoal parti-
cle data, which call into question the ability to detect statistically
significant peaks in this type of data at all.

Of the three sites, Laguna Yaloch had the highest rate of PEAK
replication. This is due to the influence of the inclusion of very
high counts in the levels where peaks were identified. However,
even in this instance, the large intra-level count variability
restricted the overall rate of peak detection to a maximum of
61%. Leonard lake showed a probability of producing an “ephem-
eral” PEAK >25% of the time.

The results from the synthetic Poisson distributed data were
unexpected. It is reasonable to anticipate that by meeting the statis-
tical assumptions of the program, the detection rate of PEAKs asso-
ciated with a SNI ≥3 would be >95%. Yet using Poisson distributed
count values, derived from observed count means, in only one
instance did the detection rate for PEAKs exceed 95% (Table 6).
Insignificant-positives were identified at all three sites, in some
cases at detection rates >30%, showing the high likelihood for
these ephemeral peaks to be produced. Such high rates of ephemeral
PEAK detection casts into question the reliability of the software,
and PEAK detection methods using charcoal particle data in general.

One critique of this study could be that the data do not produce
a sufficiently strong signal to be a fair test of the CharAnalysis pro-
gram. However, the signal strength met or exceeded the recom-
mended SNI threshold for all the sites. A second critique of this
study might question the parameters chosen for CharAnalysis.
Window width in particular could have been increased to allow
for a wider range in the noise component of the interpolated
data. While this could affect the presence, absence, and signal
strength of the PEAKs detected, the goal of this study was to assess
reproducibility based on replicated data. The evaluative component
of this study is the consistency of the peak detection when repli-
cated data are analyzed with consistent parameter settings.

Although this is not an exhaustive assessment of PEAK repli-
cability using CharAnalysis, this study does represent a reasonable
test of the algorithm’s ability to reproduce results in a representa-
tive range of real-world conditions typical of those found in appli-
cations of CharAnalysis in the peer-reviewed literature. We
acknowledge the imperfect fidelity of charcoal as a record of
local fires, the importance of relying on multiple proxies
(Whitlock et al., 2004; Higuera et al., 2005; Allen et al., 2008;
Crawford, 2012; Brossier et al., 2014; Stivrins et al., 2019), and
that more reliable results may come from systems in which char-
coal influx peaks are more pronounced and obvious, such as
infrequent and high-severity fires (Whitlock et al., 2004; Allen
et al., 2008). However, attempts to constrain paleo-fire reconstruc-
tions to studies in which past fire regimes of interest are, a priori,
deemed as “appropriate” to the algorithm would require circular-
ity in the logic of the research design.

The violation of the assumption of conformity to a Poisson
distribution demonstrated here is not surprising—it has long
been recognized as an issue with field data (David and Moore,
1954). Overdispersion of count data most commonly arises

Figure 5. Signal to Noise Index (SNI) by level for 1000 random with replacement runs
using the original replicate counts. The x-axis is the level number from which the rep-
licate data were counted, the y-axis is the SNI value. Median, maximum, and mini-
mum SNI values for each level sampled are shown for each site. Edge effect has
been eliminated by omitting results from the first two and last two sets in each
run. Red + marks represent occurrences of peaks identified at the corresponding
level that exceeded the final MCT and are associated with a SNI ≥3.
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from “clumping” (Efron, 1986; Wilson, 1998). The depositional
processes causing the aggregation of charcoal particles are at
this point unknown. It also must be noted that variation of intra-
level charcoal counts may arise from variation in experimental
design and/or in sample preparation methods, although these
last two factors have been controlled for in this study (see meth-
ods section). All samples from a single level were processed
together, so any processing-related changes, such as breakage or
disintegration, would affect all replicated samples consistently,
and are therefore highly unlikely to increase the observed vari-
ance. The finding of overdispersion suggests that, at the scale of
a typical sediment core, the spatial pattern of the charcoal parti-
cles may not be random. This in turn suggests conventional sam-
pling scales are not appropriate to produce data representative of
the particle population in the lake at a single level.

Another reason for divergence of the particle distribution from
the Poisson assumption is likely due to the disjunct between the
theoretical “depositional plane” of the lake bottom, and the actual
sediment sampling resolution. If it were possible to record the
pattern of particle dispersion at the time of deposition on an
imaginary two-dimensional plane (i.e., the lake bottom), the par-
ticles may very well be Poisson distributed. In practical terms,
however, it is all but impossible to avoid sampling across surfaces
(integration of time) when subsampling sediment cores. Any
thickness of sample, except in the most extreme high-
sedimentation environments, integrates multiple years of deposi-
tion. As a result, all samples are likely mixed. Given the integra-
tion of time in charcoal samples, coupled with several other
poorly understood processes, there is no reason to expect particle
distributions to reflect a theoretical spatial pattern of deposition.

Table 6. Percentages of opportunities (based on 16,000 possible) in which PEAKs were detected associated with SNI >3.

Leonard Lake Laguna Yaloch Swan Lake

level Original Homogenous
Aliquot

Heterogeneous
Aliquot

Original Homogenous
Aliquot

Heterogeneous
Aliquot

Original Homogenous
Aliquot

Heterogeneous
Aliquot

1

2

3 1.0% 0.1% 6.7% 3.2% 2.5% 2.5%

4 32.0% 14.1% 18.6% 0.3% 0.1% 0.1%

5 28.4% 37.5% 33.3% 0.8% 0.6% 0.7%

6 0.3% 0.1% 0.1% 6.9% 0.1% 2.2% 2.0% 2.0%

7 1.5% 0.2% 0.2% 20.7% 2.5% 5.0% 5.2% 7.2% 7.0%

8 2.5% 0.5% 0.8% 60.1% 97.4% 93.8% 0.2%

9 2.6% 1.4% 1.7% 11.2%

10 0.1% 0.4% 0.1% 0.1%

11 0.8% 0.2% 0.2%

12 1.5% 0.4% 0.5% 3.3% 5.2% 5.3%

13 0.6% 0.1% 0.2%

14 0.1% 0.4% 0.1%

15 1.4% 0.2% 0.2% 5.8% 0.1% 0.2% 1.2% 1.3% 1.3%

16 12.5% 6.8% 7.6% 0.6% 0.5% 0.5%

17 4.8% 0.1% 0.4% 0.1% 0.3%

18 4.5% 1.2% 0.1%

19 0.2%

20 0.3%

21 0.7% 0.2%

22 0.5% 0.3% 0.3% 0.4%

23 2.8% 0.2% 0.3% 0.6% 0.2% 0.2%

24 24.8% 26.7% 26.3% 0.2%

25 8.7% 6.4% 6.5%

26 1.0% 0.9% 0.9% 0.2%

27 0.7% 0.1% 0.1% 0.1%

28 5.4% 3.7% 4.1% 0.3%

29 1.3% 0.1% 0.1%

30 0.5% 0.8%
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A potential resolution of this issue rests in determining the
appropriate sampling scale. The clumped distribution of charcoal
particles results in unpredictable heterogeneity. This problem has
been examined extensively in geologic studies because it has sig-
nificant implications for modeling sub-surface rock structures
associated with ore deposits and oil reservoirs. Attempts to
account for heterogeneity have found that the issue lies with the
inability to scale distribution patterns, and hence models generally
estimate uncertainty via a suite of stochastic simulations (Isaaks
and Srivastava, 1989; Anguy et al., 1994; Armstrong, 1998).
Thus, the solution is determining a sample size that will accom-
modate the clumped pattern, such that the distribution is random
at the scale of the sampling, thereby meeting the assumptions
implicit in CharAnalysis. The ideal sampling scale would be (1)

large enough to accommodate the clumping (returning count dis-
tributions that conform to the assumption of a Poisson distribu-
tion) and (2) still small enough to be practical given the typical
size of coring devices employed.

Graduated quadrat analysis can be used to provide an empir-
ically derived estimate of the appropriate scale needed to support
the assumption of a random distribution (Wiegert, 1962;
Kershaw, 1964; Upton and Fingleton, 1989). In this method a
quadrat sampling structure is used to sum progressively larger
sets of successive adjacent cells. The scale at which the variance
of the sets of summed samples diminishes is used to determine
the appropriate sampling scale. We attempted this with the 2 ×
10 grid of replicates from our cores (Supplementary Section 3;
Supplementary Table 5) by combining data from two and four

Figure 6. (a–c) Bar plots showing the proportion of peaks detected (probability of detection), by level and set, for iterated CharAnalysis runs. Each level has 20,000
values, 1000 per set. Color coding indicates binned SNI strength. Calculations of percentages discussed it the text are based on 16,000 values after removal of sets
1, 2, 19, and 20 to minimize edge effects. (Figure continued on the following pages).
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contiguous samples. Results from all sample volumes (1.25, 2.5,
and 5.0 cc) show clumping persists. The graduated quadrat proto-
col recommends starting with the smallest quadrat size possible,
an ideal scale resulting in ∼20% zero values. Our smallest quadrat
of 1.25 cc was not small enough to satisfy this criterion, and our
largest quadrat was too small to capture a random distribution.
Given the constraints presented by the size of sediment cores
and the resolution of our sampling grid, a sampling scale appro-
priate to the spatial patterns of particle distribution for these lakes
remains to be determined.

Although the sample volume sufficient to accommodate the
observed clumping remains to be determined, it is clear that an
understanding of the spatial distribution of charcoal at a range of
scales across a given stratigraphic level is needed to develop appro-
priate samplingmethodology. The use of amulti-corer, or very large

diameter coring devices, may be needed to adequately capture the
spatial variability of charcoal particles in sediments within a single
lake. Point Pattern Analysis of gridded counts from such cores
(Upton and Fingleton, 1989) could help determine (1) the scale
and degree of clustering, and (2) if there is a sampling area or vol-
ume that can reliably produce Poisson distributed particle counts.

While this study shows the inherent challenges presented by
charcoal particle count data to quantitative peak detection, it is
also true that charcoal particle influx in sedimentary records is
most certainly influenced by the proximity, intensity, and fre-
quency of nearby fires. The theoretical assumption that back-
ground values in time series of charcoal influx represent
non-local and non-fire related changes (i.e., Cback, defined as sec-
ondary transport, sediment mixing, and sediment sampling;
Higuera et al., 2007, 2008) may be sound. The difficulty arises

Figure 6. Continued.
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when attempting to reliably differentiate PEAK values from back-
ground and noise based on a probability. A conservative alterna-
tive is to use the straightforward method of smoothing the raw
influx data. To illustrate this, we created a set of artificial cores
using the random with replacement method and smoothed the
data with a distance weighted mean and a 30 point (600 year)
moving window (Fig. 8). Results of this analysis show CV, by
level, ranging from 3.6–12.8% (Supplementary Table 6) relative
to the original count data, which ranged between 9.6–91%
(Supplementary Table 1). This is a simple treatment, requiring
minimal manipulation of the original data. For comparison, sim-
ilar analysis of the Cback values produced coefficients of variation
remaining <3.9%, and not >13.3%, even in the most variable data
(Supplementary Fig. 4, Supplementary Table 7), while Cpeak val-
ues were highly variable, with CV values ranging from 24% to
well over 1000% (Supplementary Table 8).

Given the challenges to reproducibility using the sieve and par-
ticle count method, additional charcoal quantification methods
such as measuring particle area, or chemical assays such as
organic biomarker analysis, should also be considered as poten-
tially more robust methodologies.

CONCLUSIONS AND RECOMENDATIONS

Our findings show that when replicated intra-level samples are ana-
lyzed, even when the evaluative criteria for acceptance of peaks are
met, the probability that CharAnalysis will identify an ephemeral
peak is highly likely. We have shown that assumptions explicit in
the software are unsupported in the observed data. Specifically,
overdispersion analysis of intra-level charcoal count data demon-
strates the assumption that charcoal is Poisson distributed spatially
is violated. Greater than 90% of intra-level data failed to conform to

Figure 6. Continued.

Sedimentary macroscopic charcoal count data reproducibility 193

https://doi.org/10.1017/qua.2022.43 Published online by Cambridge University Press

https://doi.org/10.1017/qua.2022.43


a spatial Poisson distribution. The coefficient of variation, which
provides a more intuitive sense of the degree of overdispersion in
the data, is >25% in more than half of the levels analyzed.
Further, the intra-level differences show a consistently high

probability of being at least as large as the thresholds used to differ-
entiate inter-level counts with low probability of coming from
within the same population, although these intra-level counts orig-
inate from the same sampled level (Fig. 3a–c, Supplemental Fig. 2).

The failure of synthetic Poisson distributed data to produce
consistent results suggests that, even when the assumption of
Poisson distribution is met, the separation of PEAK values is an
over interpretation of the data. This study shows that to have an
understanding of the variability present in the charcoal particle
count data from any single core, replicate counts are needed.
For anything short of a full set of replicate counts of an entire
core, we suggest that a qualitative interpretation is the more par-
simonious use of the data.

If we accept that a signal of fire events is embedded in, though
not distinguishable from, the noise component in macroscopic
charcoal influx data, a more qualitative approach using smoothed
influx values may provide the most robust interpretive methodol-
ogy. With the luxury of replicated data, we can show the 95%
probability envelope surrounding the mean of the smoothed
influx values (Fig. 8). These results illustrate that “large” changes
in smoothed data are necessary to have confidence that there is a
significant change in charcoal input. That said, a typical macro-
charcoal study lacks the replicate counts needed to make a quan-
titative assessment of what “large” means. It is also important to
note that these data have a constant sedimentation rate associated
with them, as the age model is imposed. Charcoal influx rates
wholly depend on the calculations of sedimentation rates.
Accurately characterizing sediment accumulation rates requires
well-dated and precise age-depth modeling. As such, the estima-
tions of sediment accumulation rates based on age-depth models
introduce an additional element of uncertainty. This further
emphasizes the need for conservative interpretation of changes
in charcoal concentration and influx.

A final consideration for interpreting macro-charcoal influx
data is the need to have sufficiently high particle counts. It is
important that charcoal particle influx values be large enough to

Figure 7. Jaccard Index of similarity for peaks detected in 100 random with replace-
ment runs using the original count data. The index is calculated as:
J(X, Y ) = |X>Y |/|X<Y |. An index of 1 indicates 100% similarity, while 0 indicates
0% similarity. The y-axis shows the probability of occurrence, the x-axis indicates
the index values binned by 10% increments.

Figure 8. Representative examples of replicated CharAnalysis runs, randomly selected, form 100 iterations of smoothed values for the Original Data: random selec-
tion, with replacement. The black line indicates the mean of all smoothed runs, the red line indicates the smoothed value of the individual run, and the gray shows
the 95% probability envelope surrounding the smoothed mean for all runs. Results are shown with the x-axis indicating sets to clearly indicate the bounds of
repeating sets in the artificial cores.
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allow for meaningful differences between levels to be detected. We
recommend particle concentration values be in the hundreds per
cc, and careful attention be paid to how influx covaries with chang-
ing accumulation rates. Counts on the scale of tens are likely to suf-
fer from “the small number problem” (i.e., small changes in small
numbers, especially when viewed from the perspective of propor-
tionate change, can appear to be “significant” when they may in
fact fall within the random noise portion of the data variability).

The data presented here show that variability in charcoal par-
ticle count data at the scale of sediment core samples does not
conform to the statistical assumptions required by CharAnalysis
for quantitative reconstructions of local fire events (PEAKs) and
associated fire frequencies. At all three sites, and for 98% of the
levels counted, the assumption of Poisson distribution is violated.
The highest rate for replicate PEAK detection was 60.1%. These
findings warrant significant concern regarding the application
of quantitative peak detection methodology generally. At a mini-
mum, users need to test the requisite assumptions on a site by
site basis if quantitative analysis is to be applied. Specifically, it
must be shown that the intra-level count variability is less than
the noise component of the time series as calculated by
CharAnalysis. This requires replication of charcoal counts from
within the same level. Alternatively, a parsimonious solution is
to restrict interpretations to qualitative evaluation of changes in
smoothed particle influx values, substantiated by independent
proxy data indicative of pertinent environmental change. This
treatment reduces manipulation of the data, is simple and easy
to execute, and provides a means to detect qualitatively large
changes in fire activity using macroscopic charcoal.
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