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Abstract

In this note, we provide refined estimates of two sums involving the Euler totient function,
Z ¢([5J) and ¢([x/n])’
n<x n n<x [x/ n]

where [x] denotes the integral part of real x. The above summations were recently considered by Bordelles
et al. [*On a sum involving the Euler function’, Preprint, 2018, arXiv:1808.00188] and Wu [‘On a sum
involving the Euler totient function’, Preprint, 2018, hal-01884018].
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1. Introduction

Let [x] denote the integral part of a real number x. In a recent paper, Bordelles et al.
[3] studied the asymptotic behaviour of the function

5= 52

In particular, if f(n) is set to be ¢(n) and ¢(n)/n where ¢(n) is the Euler totient function,
Bordelles ef al. obtained the estimates

¢([x/n]) _ P(n)

12
= e 0@'7) (1.1)

n<x

and

(G005 250w 2o ]) = (35 25+ o + o e

nsx

(1.2)
for x — oo.
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Subsequently, Wu improved the upper and lower bounds in (1.2) in [7] and the
error term in (1.1) in [8]. More precisely, Wu showed that the error term in (1.1) can
be sharpened to O(x'/? log x), while the bounds in (1.2) can be refined as

2 1
2. L ilogx+ oW < ([ ]) ( )x logx+0().  (1.3)
3@t 2.9 3 T3
To bound ), ¢([x/n]), the main idea in Bordelles et al. [3] and Wu [7] relies on
an estimate of the summation

SN)i= Y gu(——)

N<n<2N

for x >2 and 1 < N < x where ¥(x) = x — [x] — % and 6 € {0, 1}. Such an estimate
is built on Vaaler’s expansion formula of y(x) (see [6] or [2, Theorem 6.1]) and the
theory of exponential pairs (see [2, Section 6.6.3]). Further, as Wu has shown in [8],
the estimate of a similar summation

SN = Y ¢(")¢( =)

N<n<2N n n+o

is useful to deduce the error term in (1.1).

We observe that, with the aid of an elaborate result due to Huxley (see [5] or [2,
Theorem 6.40]), the estimate of S5(x, D) in [8] can be further sharpened. In fact,
Huxley’s result is strong enough in the sense that the best known error term up to now
for the Dirichlet divisor problem can be deduced from it.

In this note, we shall prove the following results.

TraEOREM 1.1. As x — o0,

¢(lx/nl) _ $(n)

[x/n] — n(n+1)

+ 0(X131/416(10g )C)26947/8320). (14)

THEOREM 1.2. As x — o0,

285 1
16 @xlogx+0(xloglogx)

= Z ¢([ ]) (421?2 5(12) ﬁé)x log x+ Olxlog log ).

We have two remarks to make on these results.

(1) Let 7(n) denote the number of divisors of x. It is known that the main term of
Don<x T(n) is x(log x + 2y — 1) where vy is the Euler constant. The error term,
denoted by A(x), can be trivially bounded to be O(x!/?). Hardy [4] also showed
that A(x) cannot be o(x!'/*). The best known bound up to now for A(x) is
O(x'31/*16(1og x)?6947/8320) "which is due to Huxley as we have mentioned above.
‘We can see that the error term in (1.4) can also reach this size.
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(2) Numerically,

285 1 285 1 131
22 1041649 and 2. 4+ 22 1073139
416 702) ¢ 216 72 T a6

This slightly improves the bounds of Wu [7] in (1.3):

2. L ~ 0.40528 and 2L + 1 ~ (0.73861.

3 702) 3 /2) 3

2. An auxiliary estimate

Let 6 € {0, 1}. We will focus on the following auxiliary function already defined in

the introduction: "
SN = Y ¢—”¢( al )

N<n<2N n n+o
One has
¢(n) X 1 by
> Srilis) = 2 i) D
N<n<2N N<n<2N k.l
kt=n
u(k) x

= — W ) 2.1
k;\’ k N/k;szzv/k k€ +6

Now we will apply the following result due to Huxley [5].

Lemma 2.1 (Huxley, [2, Theorem 6.40]). Let r > 5, M > 1 be integers and suppose
f e C'[M,2M] is such that there exist real numbers T > 1 and 1 < cy <--- < ¢, such
that, for all x € [M,2M] and all j €{0,...,r},

T . T
i () .
<l <o
Then

Z W(f(n)) < (MT)3Y410(log MT)!8627/8320
M<n<2M

Under the setting of Lemma 2.1, let us put f(z) = x/(kz + 9). It can be easily
computed that for j > 1, '

Jlk/x
(kz + 8)/+1"
Trivially, [N/k] =< N/k when k < N. It can be shown with almost no effort that 7 can
be chosen to be =<x/N. In fact, T = Cx/N is admissible where C = 6!/(3 - 6°). Now we
assume that N < Cx.

Fork <N,

@) =1/

X X
W)= W)+ o
N/k<t<2N/k kf + 6 [N/k]<fZSZ[N/k] kf + 6
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It follows that, for k < N < Cux,

X x\131/416 Cx\18627/8320
A=) L)
N/k<t<2N/[k kt+6 k k

Further, for N <k < 2N,

X
l/’( ) < 1.
N/k<t<2N/k k€ +6

Hence, by (2.1), we conclude that

@"[’(nia) = 2 ﬁ%k) 2 w(kfid)

N<n<2N k<2N N/k<T<2N/k
1/ x\131/416
< Z %(%) (log x)'8627/8320
k<N

< x131/416(10g x)18627/8320.

To summarise, we have proved the following result.

ProrosiTion 2.2. Let 6 € {0, 1}. Then

Z MW( X 5) <« X346 og x)18627/8320

n n+
N<n<2N

uniformly for 1 < N <6!/(3 - 6%)x.

3. A partial summation

Consider the following partial summation of a general positive-valued function f
on N with the parameter D < x:
X
2 G
n

D<n<x

If we assume that d = [x/n] with D <n < x, thend < x/D and

5, A2)- 5, o cfo<nsf]-d

D<n<x d<x/D
WIS
d<x/D x/(d+1)<n<x/d

D<n<x
We now observe that when d < x/D — 1, the interval (x/(d + 1), x/d] is indeed a
subinterval of (D, x] for in this case

x x
> =D
d+1 x/D-1+1
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and x/d < x. It follows that

YA X @ Yo Y @ Y

D<n<x d<x/D-1 x/(d+1)<n<x/d x/D—-1<d<x/D x/(d+1)<n<x/d
D<n<x
IO
d<x/D x/(d+1)<n<x/d

DN Y 1)
x/D-1<d<x/D x/(d+1)<n<x/d x/(d+1)<n<x/d
D<n<x
On the one hand,
X
1- Z IR Z 11+ ﬁ'
x/(d+1)<n<x/d x/(d+1)<n<x/d x/(d+1)<n<x/d

D<n<x

On the other hand, there is only one d such that x/D — 1 < d < x/D, which is [x/D]. It
turns out that

X D?
ol Y - Y 1<<f([—])(1+—).
D X
x/D-1<d<x/D x/(d+1)<n<x/d x/(d+1)<n<x/d
D<n<x

To summarise, we have proved the following proposition.

ProrosiTion 3.1. Let f be a positive-valued function on N and D a parameter with
D < x. Then,

S-S 3 ol %)

D<n<x d<x/D x/(d+1)<n<x/d

4. Proof of Theorem 1.1
Again, let C = 6!/(3 - 6°). Then

¢(Lx/nl) _ ¢([x/n])
n<x [X/I’l] 1/C<n<x [ /I’l O(l)
It follows from Proposition 3.1 that
¢([x/n]) ¢(d) 1+ 0(1)
1/CZ<::<x [x/n] d<ZC:x x/(d+l)Z<nSx/d ’
o(d) X X X
- d; d (d(d+ D ‘/’(d+ 1)_ ‘/’(Zz)) +o)
¢(d) ¢(d)
Z Pa+n O 2.7 ( (d+ 1) ‘”(g))

d<Cx
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Using a dyadic split together with Proposition 2.2, we see that for ¢ € {0, 1},
Z ¢(d)¢’( ) < X116 (g 5)20947/8320

d<Cx
‘We therefore arrive at Theorem 1.1.

5. Proof of Theorem 1.2
We first split the sum 3}, ¢([x/n]) into two parts:

2olla) =250+ 2 ol

where the parameter D with 1/C < D < x!/? is to be determined later.
It follows again from Proposition 3.1 that

DZ"(E]): >ood Y, 140(5+D)

d<x/D x/(d+1)<n<x/d
d((fz(f)l) Z 9 )("”( )_"”(;1))+ 0(% +D)

- %xlog— rom+ Y sy )-u(3)) (5.1)

d<x/D

In the last identity we use the standard result (see [1, Exercise 3.6]) that

() _

= 4(2) log x + O(1).

n<x

nzﬂn(ﬁ(z)l) Z¢( )( (n3)) {(z)logx+0(1)

Applying Abel’s summation formula to the last part in (5.1) yields

% sl 7z)-l3) =5 2 ") ()

d<x/D d<x/D

x/D
LS

For t € [1,x/D] and ¢ € {0, 1}, by a dyadic split, it follows from Proposition 2.2 that

é(d) X 131/416 26947/8320
—1//(—) <X (log x) .
dzs; d d+06

Thus

It turns out that by (5.2)
Z ¢(d)(lﬁ( X ) 3 lﬁ(f)) < %x131/416(log x)26947/8320. (5.3)
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Let us choose
D= x131/416(10g x)26947/8320

It follows from (5.1) and (5.3) that

Z (15([”]) (2)(1 li6)x10gx+0(xloglogx)

_ 285

416 {(z)xlog x + O(xloglog x). 5.4)

We can also trivially bound

by 131
< )< .
0_Z¢([n])_zn T wlog + O(xloglog x). (5.5)
n<D n<D
Theorem 1.2 is a direct combination of (5.4) and (5.5).
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