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Abstract

In this note, we provide refined estimates of two sums involving the Euler totient function,∑
n≤x

φ
([ x

n

])
and

∑
n≤x

φ([x/n])
[x/n]

,

where [x] denotes the integral part of real x. The above summations were recently considered by Bordellès
et al. [‘On a sum involving the Euler function’, Preprint, 2018, arXiv:1808.00188] and Wu [‘On a sum
involving the Euler totient function’, Preprint, 2018, hal-01884018].
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1. Introduction

Let [x] denote the integral part of a real number x. In a recent paper, Bordellès et al.
[3] studied the asymptotic behaviour of the function

S f :=
∑
n≤x

f
([ x

n

])
.

In particular, if f (n) is set to be φ(n) and φ(n)/n where φ(n) is the Euler totient function,
Bordellès et al. obtained the estimates∑

n≤x

φ([x/n])
[x/n]

= x
∑
n≥1

φ(n)
n2(n + 1)

+ O(x1/2) (1.1)

and(2629
4009

·
1
ζ(2)

+ o(1)
)
x log x ≤

∑
n≤x

φ
([ x

n

])
≤

(2629
4009

·
1
ζ(2)

+
1380
4009

+ o(1)
)
x log x

(1.2)

for x→∞.
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Subsequently, Wu improved the upper and lower bounds in (1.2) in [7] and the
error term in (1.1) in [8]. More precisely, Wu showed that the error term in (1.1) can
be sharpened to O(x1/3 log x), while the bounds in (1.2) can be refined as

2
3
·

1
ζ(2)

x log x + O(x) ≤
∑
n≤x

φ
([ x

n

])
≤

(2
3
·

1
ζ(2)

+
1
3

)
x log x + O(x). (1.3)

To bound
∑

n≤x φ([x/n]), the main idea in Bordellès et al. [3] and Wu [7] relies on
an estimate of the summation

Sδ(x,N) :=
∑

N<n≤2N

φ(n)ψ
( x
n + δ

)
for x ≥ 2 and 1 ≤ N ≤ x where ψ(x) = x − [x] − 1

2 and δ ∈ {0, 1}. Such an estimate
is built on Vaaler’s expansion formula of ψ(x) (see [6] or [2, Theorem 6.1]) and the
theory of exponential pairs (see [2, Section 6.6.3]). Further, as Wu has shown in [8],
the estimate of a similar summation

S
∗
δ(x,N) :=

∑
N<n≤2N

φ(n)
n
ψ
( x
n + δ

)
is useful to deduce the error term in (1.1).

We observe that, with the aid of an elaborate result due to Huxley (see [5] or [2,
Theorem 6.40]), the estimate of S∗δ(x, D) in [8] can be further sharpened. In fact,
Huxley’s result is strong enough in the sense that the best known error term up to now
for the Dirichlet divisor problem can be deduced from it.

In this note, we shall prove the following results.

Theorem 1.1. As x→∞,∑
n≤x

φ([x/n])
[x/n]

= x
∑
n≥1

φ(n)
n2(n + 1)

+ O
(
x131/416(log x)26947/8320). (1.4)

Theorem 1.2. As x→∞,

285
416
·

1
ζ(2)

x log x + O(x log log x)

≤
∑
n≤x

φ
([ x

n

])
≤

(285
416
·

1
ζ(2)

+
131
416

)
x log x + O(x log log x).

We have two remarks to make on these results.

(1) Let τ(n) denote the number of divisors of n. It is known that the main term of∑
n≤x τ(n) is x(log x + 2γ − 1) where γ is the Euler constant. The error term,

denoted by ∆(x), can be trivially bounded to be O(x1/2). Hardy [4] also showed
that ∆(x) cannot be o(x1/4). The best known bound up to now for ∆(x) is
O(x131/416(log x)26947/8320), which is due to Huxley as we have mentioned above.
We can see that the error term in (1.4) can also reach this size.
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(2) Numerically,

285
416
·

1
ζ(2)

≈ 0.41649 and
285
416
·

1
ζ(2)

+
131
416
≈ 0.73139.

This slightly improves the bounds of Wu [7] in (1.3):

2
3
·

1
ζ(2)

≈ 0.40528 and
2
3
·

1
ζ(2)

+
1
3
≈ 0.73861.

2. An auxiliary estimate

Let δ ∈ {0, 1}. We will focus on the following auxiliary function already defined in
the introduction:

S
∗
δ(x,N) :=

∑
N<n≤2N

φ(n)
n
ψ
( x
n + δ

)
.

One has ∑
N<n≤2N

φ(n)
n
ψ
( x
n + δ

)
=

∑
N<n≤2N

1
n
ψ
( x
n + δ

) ∑
k,`

k`=n

µ(k)`

=
∑
k≤2N

µ(k)
k

∑
N/k<`≤2N/k

ψ
( x
k` + δ

)
. (2.1)

Now we will apply the following result due to Huxley [5].

Lemma 2.1 (Huxley, [2, Theorem 6.40]). Let r ≥ 5, M ≥ 1 be integers and suppose
f ∈ Cr[M, 2M] is such that there exist real numbers T ≥ 1 and 1 ≤ c0 ≤ · · · ≤ cr such
that, for all x ∈ [M, 2M] and all j ∈ {0, . . . , r},

T
M j ≤ | f

( j)(x)| ≤ c j
T
M j .

Then ∑
M<n≤2M

ψ( f (n))� (MT )131/416(log MT )18627/8320.

Under the setting of Lemma 2.1, let us put f (z) = x/(kz + δ). It can be easily
computed that for j ≥ 1,

f ( j)(z) = (−1) j j!k jx
(kz + δ) j+1 .

Trivially, [N/k] � N/k when k < N. It can be shown with almost no effort that T can
be chosen to be �x/N. In fact, T = Cx/N is admissible where C = 6!/(3 · 66). Now we
assume that N ≤ Cx.

For k < N, ∑
N/k<`≤2N/k

ψ
( x
k` + δ

)
=

∑
[N/k]<`≤2[N/k]

ψ
( x
k` + δ

)
+ O(1).
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It follows that, for k < N ≤ Cx,∑
N/k<`≤2N/k

ψ
( x
k` + δ

)
�

( x
k

)131/416(
log

Cx
k

)18627/8320
.

Further, for N ≤ k ≤ 2N, ∑
N/k<`≤2N/k

ψ
( x
k` + δ

)
� 1.

Hence, by (2.1), we conclude that∑
N<n≤2N

φ(n)
n
ψ
( x
n + δ

)
=

∑
k≤2N

µ(k)
k

∑
N/k<`≤2N/k

ψ
( x
k` + δ

)
�

∑
k<N

1
k

( x
k

)131/416
(log x)18627/8320

� x131/416(log x)18627/8320.

To summarise, we have proved the following result.

Proposition 2.2. Let δ ∈ {0, 1}. Then∑
N<n≤2N

φ(n)
n
ψ
( x
n + δ

)
� x131/416(log x)18627/8320

uniformly for 1 ≤ N ≤ 6!/(3 · 66)x.

3. A partial summation

Consider the following partial summation of a general positive-valued function f
on N with the parameter D ≤ x: ∑

D<n≤x

f
([ x

n

])
.

If we assume that d = [x/n] with D < n ≤ x, then d ≤ x/D and∑
D<n≤x

f
([ x

n

])
=

∑
d≤x/D

f (d) · card
{
D < n ≤ x :

[ x
n

]
= d

}
=

∑
d≤x/D

f (d)
∑

x/(d+1)<n≤x/d
D<n≤x

1.

We now observe that when d ≤ x/D − 1, the interval (x/(d + 1), x/d] is indeed a
subinterval of (D, x] for in this case

x
d + 1

≥
x

x/D − 1 + 1
= D
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and x/d ≤ x. It follows that∑
D<n≤x

f
([ x

n

])
=

∑
d≤x/D−1

f (d)
∑

x/(d+1)<n≤x/d

1 +
∑

x/D−1<d≤x/D

f (d)
∑

x/(d+1)<n≤x/d
D<n≤x

1

=
∑

d≤x/D

f (d)
∑

x/(d+1)<n≤x/d

1

−
∑

x/D−1<d≤x/D

f (d)
( ∑

x/(d+1)<n≤x/d

1 −
∑

x/(d+1)<n≤x/d
D<n≤x

1
)
.

On the one hand, ∑
x/(d+1)<n≤x/d

1 −
∑

x/(d+1)<n≤x/d
D<n≤x

1�
∑

x/(d+1)<n≤x/d

1� 1 +
x

d2 .

On the other hand, there is only one d such that x/D − 1 < d ≤ x/D, which is [x/D]. It
turns out that∑

x/D−1<d≤x/D

f (d)
( ∑

x/(d+1)<n≤x/d

1 −
∑

x/(d+1)<n≤x/d
D<n≤x

1
)
� f

([ x
D

])(
1 +

D2

x

)
.

To summarise, we have proved the following proposition.

Proposition 3.1. Let f be a positive-valued function on N and D a parameter with
D ≤ x. Then,∑

D<n≤x

f
([ x

n

])
=

∑
d≤x/D

f (d)
∑

x/(d+1)<n≤x/d

1 + O
(

f
([ x

D

])(
1 +

D2

x

))
.

4. Proof of Theorem 1.1

Again, let C = 6!/(3 · 66). Then∑
n≤x

φ([x/n])
[x/n]

=
∑

1/C<n≤x

φ([x/n])
[x/n]

+ O(1).

It follows from Proposition 3.1 that∑
1/C<n≤x

φ([x/n])
[x/n]

=
∑
d≤Cx

φ(d)
d

∑
x/(d+1)<n≤x/d

1 + O(1)

=
∑
d≤Cx

φ(d)
d

( x
d(d + 1)

+ ψ
( x
d + 1

)
− ψ

( x
d

))
+ O(1)

= x
∑
d≥1

φ(d)
d2(d + 1)

+ O(1) +
∑
d≤Cx

φ(d)
d

(
ψ
( x
d + 1

)
− ψ

( x
d

))
.
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Using a dyadic split together with Proposition 2.2, we see that for δ ∈ {0, 1},∑
d≤Cx

φ(d)
d

ψ
( x
d + δ

)
� x131/416(log x)26947/8320.

We therefore arrive at Theorem 1.1.

5. Proof of Theorem 1.2

We first split the sum
∑

n≤x φ([x/n]) into two parts:∑
n≤x

φ
([ x

n

])
=

∑
n≤D

φ
([ x

n

])
+

∑
D<n≤x

φ
([ x

n

])
,

where the parameter D with 1/C ≤ D ≤ x1/2 is to be determined later.
It follows again from Proposition 3.1 that∑

D<n≤x

φ
([ x

n

])
=

∑
d≤x/D

φ(d)
∑

x/(d+1)<n≤x/d

1 + O
( x

D
+ D

)
= x

∑
d≤x/D

φ(d)
d(d + 1)

+
∑

d≤x/D

φ(d)
(
ψ
( x
d + 1

)
− ψ

( x
d

))
+ O

( x
D

+ D
)

=
1
ζ(2)

x log
x
D

+ O(x) +
∑

d≤x/D

φ(d)
(
ψ
( x
d + 1

)
− ψ

( x
d

))
. (5.1)

In the last identity we use the standard result (see [1, Exercise 3.6]) that∑
n≤x

φ(n)
n2 =

1
ζ(2)

log x + O(1).

Thus ∑
n≤x

φ(n)
n(n + 1)

=
∑
n≤x

φ(n)
( 1
n2 + O

( 1
n3

))
=

1
ζ(2)

log x + O(1).

Applying Abel’s summation formula to the last part in (5.1) yields∑
d≤x/D

φ(d)
(
ψ
( x
d + 1

)
− ψ

( x
d

))
=

x
D

∑
d≤x/D

φ(d)
d

(
ψ
( x
d + 1

)
− ψ

( x
d

))
−

∫ x/D

1

∑
d≤t

φ(d)
d

(
ψ
( x
d + 1

)
− ψ

( x
d

))
dt. (5.2)

For t ∈ [1, x/D] and δ ∈ {0, 1}, by a dyadic split, it follows from Proposition 2.2 that∑
d≤t

φ(d)
d

ψ
( x
d + δ

)
� x131/416(log x)26947/8320.

It turns out that by (5.2)∑
d≤x/D

φ(d)
(
ψ
( x
d + 1

)
− ψ

( x
d

))
�

x
D

x131/416(log x)26947/8320. (5.3)
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Let us choose
D = x131/416(log x)26947/8320.

It follows from (5.1) and (5.3) that∑
D<n≤x

φ
([ x

n

])
=

1
ζ(2)

(
1 −

131
416

)
x log x + O(x log log x)

=
285
416
·

1
ζ(2)

x log x + O(x log log x). (5.4)

We can also trivially bound

0 ≤
∑
n≤D

φ
([ x

n

])
≤

∑
n≤D

x
n

=
131
416

x log x + O(x log log x). (5.5)

Theorem 1.2 is a direct combination of (5.4) and (5.5).
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