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Abstract
Even in the best-designed experiment, noncompliance can complicate analysis. While the intent-to-treat
effect remains identified, randomization alone no longer identifies the complier average causal effect
(CACE). Instrumental variables approaches, which rely on the exclusion restriction, can suffer from
high variance, particularly when the experiment has a low compliance rate. We provide a framework
which broadens the set of design and analysis techniques political science researchers can use when
addressing noncompliance. Building on the growing literature about the advantages of ex-ante design
decisions to improve precision, we show blocking on variables related to both compliance and the out-
come can greatly improve all the estimators we propose. Drawing on work in statistics, we introduce
the principal ignorability assumption and a class of principal score weighting estimators, which can exhibit
large gains in precision in low compliance settings. We then combine principal ignorability and blocking
with a simple estimation strategy to derive a more efficient estimation strategy for the CACE. In a re-evalu-
ation of a study on the effect of GOTV on turnout, we find that the principal ignorability approaches result
in confidence intervals roughly half the size of traditional instrumental variable approaches.

Keywords: Experimental design; noncompliance; principal ignorability

1. Introduction
Experimental trials identify causal effects under a relatively minimal set of assumptions. However,
while a researcher can control the random assignment to encouragement for a unit to take-up treat-
ment, she often cannot control whether treatment is ultimately received. Identifying the effect
among those who receive treatment requires the careful consideration of additional assumptions.

In this paper, we provide a framework for designing and analyzing experiments in the face of
noncompliance. We pull together concepts from the experimental design literature, including
blocking and placebo-controlled designs, and the literature on identification and estimation
under noncompliance with principal stratification. We elucidate the multiple options that polit-
ical science researchers have for addressing noncompliance, including an approach in the statis-
tical literature, principal ignorability (PI), that is largely overlooked in political science. Finally, we
build on the existing literature by incorporating PI into the design stage and proposing a blocked
design with a simple blocked-difference-in-means estimator that shows numerous advantages
over existing estimation approaches. This framework expands the toolkit of approaches political
scientists can use when addressing noncompliance in experiments. A summary of our proposed
framework can be found in Figure 5.

To build our framework, we start with a review of principal stratification, the exclusion restric-
tion, and the introduction of PI and principal score weighting (PSW) (Stuart and Jo, 2015; Ding
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and Lu, 2017; Feller et al., 2017) to the political science literature. This serves as an alternative to
instrumental variables (IV), the most common approach for addressing noncompliance, using a
different set of assumptions about subject behavior. The efficiency of the IV estimator decreases
exponentially as compliance rates decrease (i.e., they have high variance), motivating our proposal
for an alternative, more efficient, approach to addressing noncompliance. The associated princi-
pal score methods are largely absent from the current political science literature.1 These methods
provide a promising, flexible way for researchers to analyze experiments with noncompliance and
show great potential for improvement in precision with significant noncompliance, when IV esti-
mates are most unstable.

Second we discuss a design consideration, block-randomization, for when noncompliance is
an issue. While blocking on prognostic variables is well known to improve precision, we show
that blocking on variables related to both compliance and the outcome prior to treatment assign-
ment can greatly improve precision regardless of which identifying assumption is invoked or esti-
mator is used.

Third, building on the growing literature about the advantages of ex-ante design decisions to
improve precision (e.g., Pashley and Miratrix, 2021a, 2021b), this paper introduces a way to com-
bine PI and blocking with a simple estimation strategy for more efficient estimation of the com-
plier average causal effect (CACE). This approach forces balance on important covariates
necessary for identification within the experiment and reduces reliance on the modeling assump-
tions required for PSW.

Our framework suggests blocking on variables related to both compliance and the outcome to
improve precision in traditional IV and PI estimators, and it will provide the most benefits when
researchers have access to rich covariate information at the design stage; we also show PSW can
effectively incorporate such information in the analysis stage. Both the exclusion restriction and
principal ignorability are inherently unverifiable, and researchers may be concerned that principal
ignorability is unlikely to hold exactly in practice. We provide a set of diagnostic tests and sen-
sitivity analyses that researchers can use to evaluate robustness to violations of PI. Through a ser-
ies of simulations, we show the potential advantages of PI approaches, including that they
dominate IV on a mean-squared error criterion due to their low variance even when principal
ignorability fails to hold to some extent and bias may still be a concern, demonstrating the
importance of having multiple options for identification and estimation in our framework.

We re-evaluate the Green et al. (2003) Get-Out-the-Vote experiment, a multi-site voter mobil-
ization experiment on the effects of personal canvassing on verified voter turnout, where compli-
ance was roughly 29%. We find that the PI approaches for estimating the CACE result in
confidence intervals roughly half the size of IV. We conclude with a discussion of practical guid-
ance for improving precision through the design and analysis of experiments when noncompli-
ance is a concern, including how researchers can determine if the exclusion restriction or PI is
appropriate for their experiment.

2. Approaches to addressing noncompliance
We begin by formalizing the issue of noncompliance using principal stratification, a framework
for dealing with variables that lie causally between treatment assignment and the outcome, such
as noncompliance, attrition, or causal mediators (Frangakis and Rubin, 2002). Assume a finite-
sample of N = 2n units, with n units assigned to each of encouragement and control.2 We assume
Zi∈ {0, 1} is a completely randomized encouragement. Let Yi(z) be the potential outcome for unit

1A search for “principal score” and “principal ignorability” in the American Political Science Review, American Journal of
Political Science, Journal of Politics, and Political Analysis, through Google Scholar, turned up no results. A search for “com-
pliance score” returns one relevant citation, Aronow and Carnegie (2013), which focuses on a different estimand.

2See Appendix A-2.1 for a discussion of blocks of arbitrary size and an imbalanced number of units assigned to treatment
and control.
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i when assigned to encouragement (Zi = 1) or control (Zi = 0). We invoke the stable unit treat-
ment value assumption (Rubin, 1980)—there exists only one version of treatment that is assigned
and received with no interference.

Randomization identifies the intent-to-treat effect (ITT), tITT = E[Yi(1)− Yi(0)], where the
expectation is taken over the randomization distribution. This is estimated as the difference-in-means
between those assigned to encouragement and control. With perfect compliance, the ITT is equiva-
lent to the average treatment effect, but may not be so under noncompliance (see Hirano et al.,
2000). Naively evaluating the effect using an as-treated analysis risks bias due to confounding by
compliance status. We discuss an example data generating process that demonstrates this in
Figure 1, which forms the basis of our simulations. Researchers interested in evaluating the effect
of treatment, rather than encouragement, must rely on additional assumptions.

Let Ti represent whether treatment is received by an individual. Ti(Zi) is a potential outcome
based on encouragement, and as such it is fixed, but unobserved, before treatment. The combin-
ation of Ti(Zi) define our principal strata. We focus on one-way noncompliance and assume that
every unit assigned to the control condition complies, formalized as:

Assumption 1 (Strong Monotonicity) Ti(Zi = 0) = 0 ∀ i

Assumption 1 rules out the existence of two “principal strata”:3 units where Ti(1) = 0 and Ti(0) =
1 (“defiers” who take the opposite of their encouragement status) and units for which Ti(1) = 1
and Ti(0) = 1 (“always-takers” who always receive treatment) (Imbens and Rubin, 2015). In
encouragement experiments when control units are not given access to treatment, and thus can-
not opt-in to treatment, this assumption holds by design, as is often the case with the canonical
GOTV outreach experiments. However, in some trials this may not be guaranteed by design, such
as for a unit that will attend a rally regardless of whether or not they are encouraged. Under
strong monotonicity with one-way noncompliance, there exist two remaining principal strata
defined by the latent compliance status, Ci:

Ci = 1 (Complier) if Ti(1) = 1 and Ti(0) = 0,
0 (Never− Taker) if Ti(1) = 0 and Ti(0) = 0.

{

The strength of principal stratification comes from assuming Ci is fixed pretreatment; randomiza-
tion ensures ignorability holds within subgroups defined by compliance status as it would for any
pretreatment covariate, such as age or gender. Principal causal effects are defined within principal
strata (Ding and Lu, 2017; Feller et al., 2017), including the CACE, which gives the effect of actu-
ally receiving treatment among compliers:

CACE = E[Yi(1)− Yi(0) | Ci = 1]

Figure 1. Data Generating Process for Simulations. The dashed
line between Z and Y represents a hypothetical path that would
occur under a violation of the exclusion restriction. When this
path does not exist, the exclusion restriction holds.

3This is sometimes weakened to Ti(1) ≥ Ti(0) ∀ i, which only rules out defiers (Angrist et al., 1996).
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The CACE is a local effect for compliers, which is policy relevant for treatments that can be tar-
geted to individuals likely to take-up the treatment in the real world, and thus it is important for
cost-benefit analyses. It is also important for testing theory, where theorized mechanisms only
operate on those who take up treatment in the real world. The CACE could differ substantially
from the ATE, and researchers should carefully defend the relevance of this estimand for their
broader research goals. In particular, because compliers are likely not representative of the full
experimental sample, it is important to understand how these individuals differ from the larger
experimental sample (Sovey and Green, 2011; Marbach and Hangartner, 2020), and whether the
CACE should be adjusted to better reflect the overall average treatment effect (Aronow and
Carnegie, 2013).

With noncompliance, we emphasize that randomization alone no longer identifies the CACE.
There exist two alternative substantive assumptions researchers can invoke: the excludability
assumption invoked with IV, and the principal ignorability assumption invoked with PSW.
Neither assumption is guaranteed by randomization but researchers must rely on at least one
for identification of the CACE.

2.1 Exclusion restriction

The most common way that experimentalists address noncompliance is with instrumental variables
(IV), which invokes the exclusion restriction for identification. We direct readers to Sovey and
Green (2011) for details and only review important aspects below. The exclusion restriction states
that the only pathway by which encouragement affects the outcome is through receipt of treatment:

Assumption 2 (Exclusion Restriction) Yi(Zi, Ti) = Yi(Ti)

Estimation is done using two-stage least squares with robust standard errors (Angrist et al., 1996).
While often invoked, researchers must defend the validity of excludability in their application,

as it is not guaranteed by randomization. For example, in Sovey and Green (2011, pg. 199), the
authors discuss a design in which units are encouraged to watch a Fox News TV Special, and
challenge the researcher to ask, “Could it be that opinion change is induced when a person is
invited to watch the TV special, regardless of whether he or she in fact watches?” If the invitation
to participate can have an impact on the outcome, such as through priming, or changing the
behavior of enumerators implementing treatment, then the exclusion restriction is violated. It
is incumbent on researchers to justify their invocation of the exclusion restriction.

While IV provides a consistent estimator of the CACE under the additional assumptions out-
lined above, when compliance rates are low, estimation may be unstable due to the “weak instru-
ment,” making inference difficult. This is the primary concern we wish to address by proposing PI
approaches. The variance of the IV estimator is inversely proportional to the probability of com-
pliance meaning that ceteris paribus, as the compliance rate drops, the sample size must increase
exponentially to match the efficiency of full compliance (Nickerson, 2005). For example, if the com-
pliance rate is 10%, the sample size must increase 100× for the same efficiency as full compliance.

When the probability of compliance is low, even small violations of the exclusion restriction
can lead to significant bias (Gerber and Green, 2012). Furthermore, bias from failed randomiza-
tions (Imai, 2005) or differential attrition and non-response, such as may occur with survey out-
comes measured after a field experiment (Nickerson, 2005; Montgomery et al., 2018), can be
exacerbated by low compliance rates when estimating the CACE.

2.2 Principal ignorability

Recent papers in social statistics have proposed an alternative approach to the exclusion restric-
tion assumption for identifying principal causal effects using a “principal ignorability” (PI)
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assumption. We emphasize that this is an alternative, but not interchangeable, approach to iden-
tifying the CACE. Rather than an exclusion restriction, PI relies on a conditional ignorability
assumption where conditional on observable covariates, principal strata membership is as-if
randomized.

Assumption 3 (Weak Principal Ignorability)

E(Yi(0) | Xi, Ti(1) = 1) = E(Yi(0) | Xi, Ti(1) = 0) = E(Yi(0) | Xi)

In short, weak PI states that for units assigned to control, conditional on observable covariates,
compliance status when assigned to treatment, and therefore principal strata membership, is
unrelated to the outcome. We focus on the “weak” PI assumption in this paper, which identifies
the CACE under one-way noncompliance. Ding and Lu (2017) and Feller et al. (2017) provide
thorough introductions to PI, including extensions to two-way noncompliance.

While PI is not verifiable, compliance status is observable in the group randomly assigned to
encouragement; researchers should defend weak principal ignorability by identifying factors
related to the compliance mechanism among the group assigned to encouragement.
Conditioning on variables highly predictive of compliance in the randomized encouragement
group lends credibility to weak PI, since there is less residual variance for unobservables, and ran-
domization ensures these are representative compliers (Stuart and Jo, 2015). Researchers should
also evaluate covariate balance between the treated and weighted control group (Ding and Lu,
2017), after using adjustment methods described below. There will always be concerns about
remaining unobservable confounders, which researchers should probe the plausible impacts of
using sensitivity analyses like those we derive in Appendix A-2.2 and those discussed in Ding
and Lu (2017).

To clarify the difference in the exclusion restriction and PI assumptions, imagine a
researcher wishes to study the impact of political rally attendance on political participation
(adapted from McClendon (2014)). Experimental units are randomly assigned to receive a
motivational flyer encouraging rally attendance. The outcome is whether an individual votes
in the subsequent election, as reported by the Secretary-of-State. In this setting, principal strata
membership is defined by rally attendance. Thus, the exclusion restriction requires the message
in the flyer only impacts turnout through rally attendance, and not through any other mechan-
isms, such as providing information about the election. Weak PI states when units do not
receive a flyer, attendance if encouraged is unrelated to their voter turnout given a set of
observable covariates such as age, political party, etc. Both assumptions are strong. Perhaps
the flyer itself motivates individuals to vote, violating excludability. Weak PI may be violated
if, conditional on observable covariates, compliance status if encouraged is still related to turn-
out under control.

2.2.1 Estimation under principal ignorability
While Assumption 3 is nonparametrically justified, in practice researchers typically estimate the
CACE under PI using a “principal score”, a balancing score that captures the part of X related to
compliance and the outcome. A principal score is defined as ec(x) = Pr(Ci = 1 | Xi = x); it is a bal-
ancing score in that, similar to a propensity score, Ci ⊥⊥ Xi | ec(x). If weak PI holds conditional
on X, it holds conditional on ec(x) (Feller et al., 2017). Principal score models are typically fit in
the encouragement group using logistic regression, mixture models, and other flexible regression
approaches; estimated scores, êc(xi), for the control group are constructed using fitted values (for
some examples see Mattei and Mealli, 2007; Feller et al., 2017; Lee et al., 2010). Methods devel-
oped to improve the estimation of propensity scores can be similarly applied to principal scores.
Adjustment can also be done by matching on the propensity score (Jo and Stuart, 2009).
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Ding and Lu (2017) find that PSW allows for additional robustness over methods that rely on
outcome modeling by bypassing potential misspecification errors in the outcome model.

The principal score weighted estimator for the CACE is:

t̂PSW = 1
nC

∑
i[{n1}

Yi · Ci −
∑

i[{n0} Yi · êc(xi)∑
i[{n0} êc(xi)

,

where {n1} and {n0} denote the indices corresponding to the units assigned to encouragement and
control, respectively; nC represents the total number of units in the encouragement group who
complied (i.e., nC = ∑

i[{n1} Ci). We discuss the variance estimator in Appendix A-5.
Alternative approaches to estimation within the broader principal stratification literature

include bounding the unobservable quantity E(Yi(0) | Ci = 1) (see Zhang and Rubin, 2003;
Lee, 2009; Miratrix et al., 2018; Knox et al., 2020; Duarte et al., 2023, for some examples), impos-
ing further assumptions of the conditional independence structure between covariates and out-
comes within principal strata (Ding et al., 2011; Mealli et al., 2016), or using more complex
model-based estimation strategies (i.e., Esterling et al., 2011; Mattei et al., 2013). However,
these approaches either do not address point estimation, or rely on stronger identifying or mod-
eling assumptions, which can lead to model misspecification issues (Feller et al., 2016). As such,
we will focus our attention primarily on the PSW approach, which, given estimated principal
scores, allows for the nonparametric estimation of the CACE.

3. Improving precision through design
It is well known that blocking can lead to efficiency gains (see Horiuchi et al., 2007; Imai et al.,
2008, for a discussion). This literature emphasizes the need to stratify on blocking variables that
explain variation in the outcome, and that blocking will generally improve precision (Pashley and
Miratrix, 2021a). We show that blocking on variables related to compliance, in addition to the
outcome, can be used to more efficiently estimate the CACE. Regardless of whether the exclusion
restriction or PI is invoked for identification, blocking allows for more stable estimates and
should be considered whenever possible.

In Appendix TA-1 we formalize the precision gains from blocking for the principal ignorabil-
ity estimators and IV. Additionally, we show that when blocking is possible and PI holds, our
ex-ante justified blocked difference-in-means estimator, discussed below in Section 3.1, is more
precise than the PSW and IV estimators, thereby demonstrating the power of design-based con-
siderations over post-hoc adjustments. In our simulations and application, we demonstrate sig-
nificant gains to the PI approaches over IV with complete randomization, and modest gains
over blocked-IV.

Extending the findings of Miratrix et al. (2013), we show that blocking can result in significant
efficiency gains in the IV setting. Previous literature has highlighted the deterioration of the IV
estimator’s performance under a weak instrument (i.e., high rates of non-compliance), specifically
with respect to inflated standard errors and finite sample bias (Bound et al., 1995). Blocking can
help offset the instability from a weak instrument. Therefore, even if researchers are utilizing the
exclusion restriction as their identifying assumption, accounting for compliance (and/or outcome
variation) during the design stage can help offset the precision loss associated with high rates of
non-compliance.

When compliance status can be measured among both treated and control units, researchers
can also consider a placebo-controlled design in which compliance is measured pretreatment and
used as an inclusion criterion for the experiment (Nickerson, 2005; Broockman et al., 2017). We
provide more detail in Appendix A-1. As outlined in the literature, these designs can provide sig-
nificant gains to precision over standard IV, which we see in our simulations, although the gains
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are not as significant as the PI approaches (see Table A-3.2). Placebo-controlled designs also
benefit from blocking, however because blocking does not guarantee balance across the complier
units, the relative precision gains from blocking for the placebo-controlled estimator are less not-
able than for the other estimators, as shown in the Table A-3.2.

3.1 A special case: principal ignorability at the design stage

We now discuss how to combine the PI assumption with a block-randomized design. To begin,
we introduce a modified version of PI, which we refer to as block principal ignorability
(Block-PI).

Assumption 4 (Block Principal Ignorability) Yi(0) ⊥⊥ Ci | Bi

The implication of Block-PI4 is that the researcher should construct blocks based on covariates
Xi (or in high dimensional settings, a principal score ec(xi)) related to the outcome and compliance.
Assuming a matched-pair design (i.e., blocks of size 2), a natural way to estimate the CACE is to
limit the analysis to pairs in which the unit receiving encouragement complies5 and compute the
difference-in-means over these pairs. We refer to this as the block-DIM estimator, formalized as:

t̂B = 1∑B
b=1 Cb

∑B
b=1

Cb̂tb, (1)

where t̂b is the difference-in-means estimated within the bth block, Cb is an indicator that takes on
a value of 1 if the bth block contains a complier in the encouragement group, and B is the total
number of blocks. We show our estimator is consistent, extend it to blocks of arbitrary size, and
derive a conservative variance estimator in Appendices TA-2.1 and A-5.

Conceptually, Block-PI is very similar to the standard weak PI assumption; since the blocks are
constructed using pretreatment covariates Xi, we are, in effect, creating blocks within which we
assume weak PI holds. However, there are two advantages to the proposed design-stage approach
over principal score weighting: it relies on a weaker set of modeling assumptions, and it ensures
balance within the sample. First, blocking provides a nonparametric alternative to PSW by dir-
ectly controlling for the covariates Xi, without invoking additional, untestable assumptions
about the underlying principal score model.6 Second, PSW ensures balance on X in expectation,
but not within individual samples. Block-randomization reduces finite-sample variation because
it guarantees balance within blocks for every realization of treatment. Thus, within each random-
ization, Bi will be orthogonal to Zi, eliminating the need for adjustment on variables exactly
balanced by blocking. Under regular PI, we can only assume that Xi is independent of treatment
assignment in expectation. In Appendix TA-1.2.1 we formally derive when the block-DiM will
have lower variance than PSW. Intuitively, the reduction comes from a term that captures the
average variance of the compliance rate within a given block. If we can closely “match” these
units with similar probability of compliance within blocks, we obtain more precision gains.
Additionally, in Appendix A-2.2 we derive the bias due to violations of Block-PI, and introduce
a two parameter sensitivity analysis to evaluate robustness of the CACE estimate.

We note that this approach is similar in spirit to that of Jo and Stuart (2009), which does
ex-post pair-matching using an estimated propensity score, particularly if blocks are created

4Identification of the CACE only requires mean exchangeability, similar to weak PI, but we require full independence for
the variance results in the technical appendix.

5This is conceptually similar to the placebo-controlled design. The included encouraged units will be the same but the
controls come from the corresponding blocks, and are representative of compliers under block PI.

6When blocking on a principal score, the parametric assumptions underlying the principal scores still matter.
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using the principal score. As with PSW, this method relies on PI, but justifies it using a balancing
score based on the propensity to comply; this imposes parametric modeling assumptions.7 The
advantage of block PI is that it incorporates the standard PI assumption into the design stage,
emphasizing the need to block not just on variables related to the outcome, as one would do
to improve precision, but also on variables that render compliance ignorable, as required for
identification.

3.2 Variable selection for blocking designs

An important question is how to select what variables to block on. While identification under PI
indicates researchers should block on covariates that are related to compliance, precision is largely
dependent on blocking on covariates related to variation in the outcome, consistent with the
existing literature on when to expect precision gains from blocking. We suggest researchers
should block on covariates related to compliance and the outcome. When a researcher has exist-
ing data from a similar context, she can do statistical variable selection for determining the
important predictors of compliance and the outcome. We discuss one approach, using
permutation-based variable importance plots for Random Forest models, in our application in
Section 5. An in-depth review of statistical methods for variable selection is beyond the scope
of this manuscript.

When existing data is unavailable for researchers to investigate predictors of compliance and
outcome, theory must drive variable selection. For example, in a GOTV experiment, if number of
children in a household is predictive of a voter’s likelihood to answer a GOTV canvassing
attempt, researchers should include it as a blocking variable to meet PI. This is true even if it
is not predictive of turnout, the primary outcome, especially after accounting for age and previous
vote history, which researchers might already block on given their strength in predicting turnout.
This demonstrates the difference in what variables researchers should consider for identification,
i.e., those related to compliance, versus those they should consider for precision, i.e., those related
to the outcome. In Appendix A-2.2 we discuss sensitivity analyses that can help researchers evalu-
ate the robustness of the blocking sets under block principal ignorability.

Finally, it is worth emphasizing that when pre-existing data is unavailable for blocking,
researchers will have to rely on ex-post methods at the analysis stage to estimate the CACE. In
our simulations, PSW is more efficient than IV for estimating the CACE when compliance is
low. Alternatively, poststratification can be used in the analysis stage to recover many of the ben-
efits of blocking for many estimators, including IV (Miratrix et al., 2013; Pashley et al., 2023).
However, researchers must measure variables related to compliance in order to estimate principal
scores or perform poststratification. When blocking before random assignment is not an option,
researchers should still use theory to determine what covariates meet principal ignorability, and
they should measure these with, or append them to, their experimental data whenever possible.

4. Simulation studies
In this section, we evaluate the performance of the IV, PSW, and blocked difference-in-means
estimators for the CACE using simulations. Figure 1 provides a graphical depiction of the data-
generating process, and details are provided in Appendix A-3.

To evaluate the impact of the block PI assumption, and violations thereof, we consider the
following scenarios: (1) blocking on all compliance-related variables (X1, “compliance”), (2)
blocking on all compliance-related and a subset of outcome-related variables (X1 and X2, “com-
pliance + outcome”), (3) blocking on a subset of outcome-related variables (X2, “outcome”). While
both X2 and X3 affect the outcome, we do not block on X3, such that the blocks do not perfectly

7When the number of strata grows, block PI may impose additional parametric assumptions through decisions about how
to coarsen variables.
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explain outcome variation. This represents the real-world setting, in which researchers have not
accounted for all variation in the data generating process. We run 5000 simulations with sample
size n = {1000, 2000, 5000, 10000}.

Within each blocking scenario, we consider the following five estimators: under the exclusion
restriction, we consider the IV estimator with complete randomization (IV) and blocked IV esti-
mator (IV Block); under PI we consider the ex-ante justified blocked difference-in-means (Block
DiM) and the ex-post justified principal score weighted estimator under complete randomization
(PSW) and blocked principal score weighted estimator (PSW Block). We include results for the
as-treated difference-in-means (AT) for comparison, and provide results for the placebo-control
estimator (Placebo) and the blocked placebo-control estimator (Placebo Block) in Appendix
Table A-3.2. Pair blocking was performed using the quickblock package in R (Higgins et al.,
2016). IV estimators were estimated using the estimatr package (Blair et al., 2022). Principal
scores were estimated using a logistic regression, where the covariates in the regression are the
same as the covariates used in blocking. As shown in Figure 1, the exclusion restriction holds
under all scenarios, and PI holds when blocking and controlling for compliance-related variables
(i.e., Scenarios 1 and 2).

Table 1 presents bias and MSE results for all of the simulation scenarios. Overall, we see large
improvements in precision for the IV and principal ignorability estimators from using a blocking
design, although the efficiency gains the PI approaches is more notable under our low compliance
regime, even when PI does not hold.

We first consider the scenarios under which PI holds, Scenario 1 (“compliance”) and Scenario
2 (“compliance + outcome”). As expected, the blocked difference-in-means, which incorporates PI
into the ex-ante design, and the ex-post PSW estimators are unbiased. We see significant preci-
sion gains from blocking on variables related to the outcome in Scenario 2 (“compliance + out-
come”), where the MSE for the PI estimators is between 10% and 30% of the MSE from blocking
on compliance variables alone. The gains for the blocked IV estimator are even more significant,
with the MSE of blocking on compliance and outcome related variables is 2% that of blocking on
compliance alone.

Table 1. Summary of simulation results

Simulation Results

MSE Bias

Sample
Size

As
Treated IV

IV
(Block)

Block
DiM PSW

PSW
(Block)

As
Treated IV

IV
(Block)

Block
DIM PSW

PSW
(Block)

Scenario 1: Block on Compliance-Related Variables
1,000 21.68 94.33 67.99 8.62 8.08 6.17 3.53 −0.13 0.10 0.00 −0.02 −0.01
2,000 16.75 44.37 33.68 4.20 3.81 3.08 3.51 −0.10 0.04 −0.00 −0.02 0.00
5,000 14.25 18.25 13.39 1.69 1.52 1.20 3.54 0.03 0.04 −0.02 0.00 −0.02
10,000 13.39 8.60 6.73 0.86 0.74 0.61 3.54 0.03 0.01 0.01 0.01 −0.00
Scenario 2: Block on Compliance and Outcome-Related Variables
1,000 21.83 95.01 1.60 0.88 3.23 0.96 3.56 −0.02 0.02 −0.00 −0.00 −0.02
2,000 17.26 45.38 0.71 0.42 1.52 0.47 3.60 0.13 0.03 0.01 0.04 −0.00
5,000 14.33 16.88 0.25 0.16 0.58 0.18 3.55 0.12 −0.01 −0.01 0.02 −0.01
10,000 13.46 8.66 0.12 0.08 0.29 0.09 3.55 −0.02 0.00 −0.00 0.01 −0.01
Scenario 3: Block on Outcome-Related Variables
1,000 21.01 93.42 1.27 0.83 2.79 0.95 3.53 −0.13 −0.00 0.15 0.17 0.14
2,000 16.73 45.74 0.63 0.44 1.40 0.49 3.52 0.07 0.01 0.16 0.17 0.16
5,000 14.17 17.86 0.25 0.19 0.57 0.21 3.53 −0.03 −0.00 0.16 0.15 0.15
10,000 13.26 8.92 0.12 0.11 0.31 0.12 3.52 0.02 0.00 0.16 0.16 0.16

The compliance rate is set at 10%. The simulation is run across varying sample sizes and varying blocking variables, for 5000 total iterations
for each sample size and blocking scenario. The default is a complete randomization design, with blocked designs denoted as such. We
highlight the lowest MSE estimator in each scenario.
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We now consider scenarios where PI does not hold. In Scenario 3 (“outcome”), we block on a
variable that is related to the outcome and is correlated with compliance at ρ = 0.5. This reduces
bias by about 95%, relative to the as-treated estimator, but, as expected, does not eliminate bias in
the Block DiM and PSW estimators. Because the exclusion restriction still holds, the IV estimator
is unbiased, and the blocked IV estimator shows significant improvements in precision over the
IV estimator under complete randomization. This emphasizes the flexibility and advantage of
using a blocked design, even for estimators that do not rely on principal ignorability. Despite
the fact that IV is unbiased, the PI estimators still have lower MSE in our low compliance regime,
demonstrating the bias-variance tradeoff researchers must make when choosing between IV and
the PI estimators, particularly with low compliance rates.

We note that the efficiency gains of the blocked estimators in comparison to the other estima-
tors is most noticeable when the sample size is small. Our simulation has a low compliance rate,
where the efficiency of the IV estimator (under complete randomization) deteriorates rapidly. For
example, whenever we block on outcome related variables (i.e., in Scenario 2 or 3), both the
blocked difference-in-means estimator, which has the lowest MSE, and the blocked IV estimator
are more efficient with a sample size of 1000 than the IV estimator under complete randomiza-
tion with a sample size of 10,000. When blocking on variables related to compliance (i.e., in
Scenario 1 and Scenario 2), the researcher can use either PI or the exclusion restriction for iden-
tification of the CACE, and see significant efficiency gains. This shows that, regardless of which
identifying assumption the researcher relies on, blocking has meaningful advantages for
precision.

4.1 When to expect gains from principal ignorability or the exclusion restriction

Regardless of approach, the necessary identifying assumptions, including the exclusion restriction
and PI, are inherently unverifiable. As with any ignorability assumption, it is unlikely that PI
holds exactly in practice. Similarly, the exclusion restriction may not hold when it is not justified
by design. Therefore, we allow for violations of these identifying assumptions in our simulations
to evaluate the bias-variance trade offs researchers face.

To start, we consider simulations in which we allow the violation of principal ignorability to
range from minor to extreme. To do so, we replace blocking on X1 and X2 in our simulations
above with proxy variables that range from completely uncorrelated to perfectly correlated
with our original variables. Doing so allows us to change the degree of violation of PI by changing
the level of correlation with the original variable. More details can be found in Appendix A-3.2.

Figure 2 shows that, even in the face of violations of the identifying assumption, PI approaches
can have significantly lower mean-squared error (MSE) than IV. The variance of IV increases
exponentially as compliance rates drop, thus even with PI is violated to some degree, the variance
reduction can dominate the squared-bias in many practical applications when researchers can
adequately explain compliance or the outcome, resulting in improvements to MSE. For example,
in our simulations, if the correlation of our proxy variables is above 0.4, then PI approaches dom-
inate on MSE even though they are biased.

Of course, there is always a concern about choosing a more precise estimator in the face of
bias. While our simulations show that, in terms of MSE, this bias-variance trade-off is warranted,
we strongly suggest that researchers combine all PI analyses with the sensitivity analysis described
in Appendix A-2.2 and Ding and Lu (2017). This allows researchers to assess the impact of viola-
tions of PI, determine if potential bias is of substantive concern, and evaluate whether the bias-
variance trade-off is worthwhile.

In Appendix A-3.1, we show that when PI holds and the exclusion restriction fails, the PI
approaches strictly dominate the IV approaches. Generally, when the exclusion restriction is vio-
lated, IV estimation incurs a large degree of bias, while already exhibiting larger variance and
thus, larger MSE, than the PI approaches in our low compliance regime.
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Given the gains to precision for the PI are most prominent in low compliance regimes, a nat-
ural question is how bad noncompliance must be before the loss in precision for IV estimators is
substantial enough to consider PI approaches, which may impose stronger assumptions? To
evaluate this, we return to our original simulations set-up, this time varying the compliance
rate from 10% to 90%.

Results evaluating the impact of the compliance rate are presented in Figure 3. As evident,
when compliance rates are high, such as above 70%, the IV and PSW estimators have similar per-
formance, with PSW showing only slight gains. Similarly, when blocking on variables related to
outcome, the blocked IV and PI estimators have similar standard errors with compliance above
30%. Blocking on variables related to just compliance, however, does not provide the same gains
to the blocked IV estimator in low compliance regimes as it does for the PI approaches, which
show noticeable gains with compliance at or below 50%.

5. Empirical evaluation: Get-Out-the-Vote
To evaluate the advantages of PI for addressing noncompliance, we now turn to a re-evaluation of
the Get-Out-the-Vote experiments by Green et al. (2003). The original study conducted voter
mobilization experiments across six different cities to assess the effect of personal canvassing
on verified voter turnout in the November 6, 2001 election. About half of the units within
each experimental site were assigned to a personal canvasser contact, with controls receiving
no attempt. The overall compliance rate in the encouragement group was 29%, with compliance
rates in individual sites ranging from 14% (Columbus) to 45% (Raleigh).

The original experiment did not include block-randomization and used IV to estimate the
CACE. In order to mimic a block-randomized design, we construct blocks by performing 1:1 near-
est neighbor matching (Sekhon, 2011) using all available covariates;8 we present a variable selection
method for limiting to covariates predictive of the outcome and compliance in Appendix A-4. We
are left with 17,442 matched units, where matched pairs constitute the blocks in our analyses.9

Figure 2. MSE of principal ignorability and exclusion restriction approaches with varying degrees of violation of the prin-
cipal ignorability assumption. To help identify the drivers of error, we have decomposed the mean squared error into the
squared bias and variance components.

8Since encouragement was randomized our matching algorithm does not impose a selection-on-observables assumption,
however identification of the CACE under the block-DiM does. In some sense, the approach is similar to that of Jo and Stuart
(2009), where matching is done using the full covariate profile rather than a dimension-reducing propensity score. See Gerber
and Green (2012) §4.5 for a more in-depth discussion of the similarity between blocking and analysis-stage covariate adjust-
ment with large samples similar to our analysis.

9We conduct our analyses for complete randomization on a comparable sized dataset by randomly dropping about 15% of
control units. This makes the results not directly comparable to the original point estimates, but results are substantively
similar.
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We note that we predict compliance in the encouragement group using our covariates, includ-
ing measures for vote history, age, and family size, with 72–95% accuracy across sites, and that
this set includes some of the most important predictors of both compliance (age) and turnout
(age and vote history). This lends some credibility to the PI assumption (see Appendix A-4.2)
since observables explain compliance well in the treated group. However, researchers should
rightfully be concerned there remain unobserved confounders, such as employment status. We
also highlight that our sensitivity analysis in Appendix A-2.2 indicates robustness to plausible
violations from such confounders, indicating that while there may be residual bias, it is unlikely
to overturn our conclusions. We evaluate five estimators, including two justified by the exclusion
restriction, (1) the IV estimator under complete randomization, (2) the block-IV estimator, and
three justified by PI, (3) the PSW estimator under complete randomization, (4) the block-PSW
estimator, and (5) the ex-ante justified block-DIM estimator. The principal scores are estimated
using logistic regression including the same variables used to form blocks. Standard errors are
estimated using robust standard errors (HC2) under complete randomization and cluster-robust
standard errors (CR2) under block-randomization.

We highlight two main takeaways: (1) there are significant gains in precision for the PI esti-
mators over IV, with minimal evidence of residual bias, and (2) blocking improves the precision
of all approaches. A visualization of the results is provided in Figure 4 with numerical values in
Table A-4.5. Gains to precision are presented in Table 2. We first note that across all of the experi-
mental sites, the PI approaches produce more precise estimates than IV. The PSW estimator,
under complete randomization, has a standard error 53% that of the IV estimator under complete
randomization. With block-randomization, the block-PSW and block-DIM estimator exhibit
even larger gains to precision when compared to the standard IV estimator with complete ran-
domization. In some cases, the significant gains to precision from the PI approaches change the
statistical significance of the results, thus showcasing the opportunity for more precise estimates
using PI. However, these gains should be considered in light of the fact that in this application,
the exclusion restriction is likely to hold and therefore IV should be unbiased. In contrast,
whether or not principal ignorability is a valid identifying assumption requires researcher judg-
ment. Recall our sensitivity analysis indicates robustness to plausible violations supporting min-
imal bias. The similarity in the point estimates across methods provides additional credibility that
the violations to PI, if they exist, are likely small. Therefore, we should expect a reduction in MSE
from relying on principal ignorability, driven by a reduction in variance, given the low compli-
ance rate of 29%.

Second, we highlight that regardless of which identifying assumption researchers use, blocking
on variables related to the outcome and compliance improves precision. More specifically, block-

Figure 3. Standard error of estimators using DGP described in Figure 1 with increasing levels of compliance.
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randomization reduces the standard error of the IV estimator considerably. In sites where covari-
ates explain a substantial amount of the variation in the outcome (i.e., Detroit, Raleigh), blocking
results in a nearly 30% reduction in the IV standard error. Even in experimental sites where the
covariates are less explanatory (i.e., Bridgeport), blocking still results in a 5% reduction. Similarly,
block-randomization improves precision for the PSW estimator over complete randomization,
although gains are less noticeable than for IV.

6. Practical guidance and discussion
There are many practical considerations for designing and analyzing experiments with noncompli-
ance. This article has introduced a framework, including a set of identifying assumptions and
design considerations that aim to improve precision of estimators for the CACE, particularly
when noncompliance is significant to severe and IV estimation may exhibit high variance. In par-
ticular, we suggest researchers implement a block-randomized design, regardless of estimation strat-
egy. We then provide an alternative identifying assumption, PI, in service of discussing and
developing more precise estimators for the CACE. In particular, we combine the ex-ante blocking
design with PI into block-principal ignorability, and introduce a simple block-difference-in-means

Figure 4. Plot of the point estimates and 95% confidence intervals across experimental sites.

Table 2. Percentage reduction in estimated standard error relative to IV estimator under complete randomization

City IV (Block) PSW PSW (Block) Blocked DIM

Bridgeport 4.8% 46.0% 46.3% 35.4%
Columbus 18.3% 63.1% 64.0% 61.1%
Detroit 29.2% 52.8% 58.3% 58.5%
Minneapolis 26.1% 64.2% 66.6% 64.9%
Raleigh 29.9% 41.1% 51.6% 51.2%
St. Paul 21.0% 53.0% 57.2% 53.2%
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estimator with desirable properties. We summarize our suggestions for designing and analyzing
experiments in Figure 5.

Based on the discussion in this article, we first emphasize that researchers should, where pos-
sible and regardless of identifying assumptions and estimation strategy, use a block-randomized
design, blocking on variables related to both outcome and compliance when the CACE is the
quantity of interest. Researchers could also consider a placebo-controlled design which improves
precision, particularly when compliance is less than 50% (Gerber and Green, 2012). This can
reduce the cost of the experiment for some designs (Broockman et al., 2017). In our simulations,
the gains to blocking with placebo-controlled trials are less noticeable than for other approaches.

A natural question is what to include in the blocking design. The PI assumption indicates
researchers should block on variables that explain compliance, as identification requires that com-
pliance be rendered ignorable. Standard practice suggests they should consider variables predict-
ive of the outcome of interest for greatest precision gains. We strongly suggest researchers do
both, and evaluate the set using the tools described below. When previous data exists on compli-
ance or outcomes, researchers can use theory or statistical variable selection methods to inform
the blocking design. When existing data are unavailable, theory must drive variable selection. We
emphasize that when block-randomization is not an option, researchers should still use theory to
justify PI, and they should measure these variables related to compliance and the outcome with,
or append them to, their experimental data for use in adjustment.

In addition to the blocking design discussed above, we introduced the principal ignorability
assumption. To identify the CACE, researchers must rely on additional substantive assumptions
not guaranteed by randomization. Researchers can invoke either the exclusion restriction or the
PI assumption, both of which are untestable. Researchers should carefully consider which of these
alternative approaches is most appropriate for their experiment. The exclusion restriction is jus-
tifiable when control units cannot access treatment but should be approached cautiously

Figure 5. Data, design, and analysis considerations for estimating the complier average causal effect in experiments with
non-compliance.
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otherwise. Additionally, when compliance rates are high, the IV estimator does not suffer from
significant loss to precision and may be most appropriate, as shown in Figure 3.

However, when compliance rates are low, or the exclusion restriction is implausible, research-
ers may wish to invoke PI—an alternative, but not interchangeable assumption. While there is no
statistical criterion that can guarantee PI holds, researchers can bolster the PI assumption by: (1)
evaluating the fit of the principal scores (Stuart and Jo, 2015), (2) evaluating balance of pre-
treatment covariates between compliers and weighted noncompliers (Ding and Lu, 2017; Feller
et al., 2017) or balance in coarsened blocks, and (3) conducting sensitivity analyses (Appendix
A-2.2 and Ding and Lu, 2017). Additionally, even when violated to some degree, principal ignor-
ability may still be preferable as the blocked-PSW, PSW, and the blocked-DIM estimators may
outperform IV in terms of MSE when compliance is very low, as seen in Section 4.1. Where
both assumptions are plausible, researchers can use both methods for a robustness check.

We primarily focus on one-way noncompliance, however PI can be extended to two-way non-
compliance to address additional compliance types. See Feller et al. (2017) for a discussion of the
complications with estimation of principal scores under two-way noncompliance, when com-
pliers are no longer directly observable in the control group. Finally, we note that, as with IV,
the block-DIM and the PSW estimators can easily incorporate additional covariates for regression
adjustment with estimation via regression or weighted regression, respectively.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2023.38.
To obtain replication material for this article, https://doi.org/10.7910/DVN/RZHOI1
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