
} ollmaL qfGlaciolog)" Vo!. 43, .,vo. 144, 1997 

A search in north Greenland for a new ice-core drill site 

D. DAHL-jENSEN,1 N. S. G UNDESTRUP,I K. K ELLER,I S.JJOHNSEN,I S. P. GOGINENI,2 GT. ALLEN,2 

T S. CHUAH/ H. MILLER,:l S. KIPFSTUHL/ E. D . \ VADDI:-lCTON 1 

1 Cniversi£v qf CojJen/wgen, . \ lels B ohr i nslillllejor Astrolzon~ J" P/~vsics and Ceoj}/~vsics. } uLiane JI,[aries T ej 30, 
DK-2100 COjJenhagen DE, Denmark 

2 The ClI il'frsilj' rif Kansas CenlerloT Research, Inc. , Radar ,)yslems and Remole Sensing Labora lo l~V, 2291 irvillg HiLL Road, 
Lawrence, A"ansas 66045-2969, US. A. 

3 A Lfred T ~egfl7er i nslilule, Colllm busslrasse, D-27568 Bremerhaven, Germany 
f Cniversity rifT 1 (/Siting/on , CeojJ/~)lsics Programs, B o\ 351650, SeallLe, 11 {/Slzingloll 98195, US. A. 

ABSTRACT A new deep ice-core drilling site has been identified in north Greenl and 
at 75. 12 N, 42.30° \V, 316 km north-north wes t (:\fNW) of the GRIP drill site on the sum­
mit of the ice sheet. The ice thickness here is 3085 m; the surface elevati on is 2919 m . The 
North GRIP (NGRIP) site is identified so tha t ice of Eemian age (115- 130 ka BP, calendar 
years before present ) is located as far above bedrock as poss ible and so rhr thickness of the 
Eemi an layer is as great as possible. An ice-fl ow model, similar to the onc used to d a te the 
GRIP ice co re, is used to simul ate the now a long the NNW-trending ice ridge. Surface and 
bedrock cl e \"a tions, surface acc umul a ti o n-ra te di stribu tion a nd radi o-echo sounding 
along the ridge hm'C been used as model input. The surface acc umul ation rate drops from 
0.23 m ice equi\ 'alent year 1 a t GRIP to 0.19 m ice equi\ 'a lcnt yea r 150 km from GRIP. 
O\'er the foll owing 300 km the acc umul a tion is rel ati vely consta nt, before it s ta rts de­
creasing agai n further north . Ice thicknesses up to 3250 m bring the tempera tu re of the 
basa l ice up to the pressure-melting point 100- 250 km from GRIP. The NGRIP site is 
loca ted 316 km from GRIP in a region where the bed rock is sm ooth and the accumul ati on 
rate is 0.1 9 111 ice equi \'a lent yea r I. The n'lodeled basa l ice he re has a lways been a felV 
degrees below the pressure-melting point. Internal radio-echo sounding horizons can be 
traced be tween the GRIP a nd NGRIP sites, a llowing us to d a te the ice down to 2300 m 
depth (52 ka BP). An ice-fl ow model predi cts that the Eemian-age ice wi ll be located in the 
depth range 2710- 2800 m, which is 285 m above the bedrock. This is 120 m furth er above 
the bed roc k, a nd the thi ckness o[the Eemi a n layer orice is 20 m thicker, tha n at the GRIP 
ice-core site. 

INTRODUCTION these two co res show different r ecords raises doubts about 
the integrity of the stratigr aphic records through the 
Eemian illterg la cia l. I n 1992- 93, two deep ice cores were comple ted in centra l 

Green land; the European GRIP ice core was located on 
the summit point of the ice sheet (72.60' N, 37.62 0 \ V, eleva­
tion 3232 m; J ohnsen a nd o thers, 1992) a nd the American 
Gl SP2 ice co re was drill ed 28 km west of the summit 
(72.60 N, 38.5 W, eb 'ation 3200 m; Taylor a nd others, 1993). 
These two deep ice cores provide paleoc lim a tc information 
covering the las t glacial p eriod 11.5 115 ka BP (calenda r 
yea rs before present) with g reater deta il than pre\'iously 
obta ined from any ice co re. The stable-iso tope records from 
the two ice cores agree in the top 90% of bo th co res, e\-e n 
for sm a ll -scale features (D ansgaard a nd others, 1993; 
Grootes a nd others, 1993; Taylor and others, 1993; Alley a nd 
others, 1995). Below depths of 2700 111, howe\ 'e r, spanning 
the Eemia n (Sangamonia n ) interglac ial peri od and the pre­
\'ious glacia l, there a rc sig nificant differences between the 
two reco rds. These differences a rc attributed to the di stur­
bance of the simple ice-l aye r stratigraphy by fl ow patterns 
unique to the basal zone of the ice shee t, such as folding 
(Alley a nd others, in press; Thorsteinsson a nd others, in 
press ). 

Even though most of the \ 'isible disturba nces seem to be 
located below the Eemi an ice in the GRIP co re, the fac t tha t 
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Ice co res do prm'ide the bes t opportunity to produce a 
high-resolution Eemian record, so wc should dr ill in a 
loca ti on where the Eemi an ice is as fa r abO\'e bedrock as 
possible on the Greenland ice shee t. 

An ice core drilled on the Green land ice shee t in a region 
where the surface acc umul a tion rate is lower than those at 
GRIP and G ISP2 would produce an ice core where the 
location of the older ice is furth er from bedrock. Too low ac­
cumul ati on ra tes, hOlVe\'er, would cause basa l temperatures 
to reach the m elting point during the glacial, and should be 
a\·oided. In this study the obser vations and modcl ing that 
hm'e led to the selecti on of a favorable dri ll site in north 
Gree nl and , th e North GRIP (NGRIP) site, mee ting the 
specific criteria described above, will be discussed. 

SURFACE, BEDROCK TOPOGRAPHY AND ACCU­
MULATION RATES IN NORTH GREENLAND 

The surface contour map of north Greenland based on Geo­
sat and ERS-I satell ite data, airborne rada r a ltime try and 
airborne laser altimetry (Ekholm a nd others, 1995; Ekholm, 
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1996) prO\'ides the most de ta il ed surface topography a\'a il­
able cO\"C ring north G reenl a nd. From the summit o f the ice 
shee t a north-northwest- (NN"'- ) trending ice ridge is seen 
to continue 550 km before it bifurcates (Fig. I). A second 
north east-trending ice ridge a lso leaves the summit. Res ults 
from the ERS-l sY lllheti r aperture rada r imager y (Fahne­
stock a nd othe rs, 1993) show a n ice stream extending from 
th e Summ it region to the no rth-northeast sec tion of the 
Greenl and ice sheet. The ice th a t has encountered ice­
stream fl ow is not suitable for the ice-core site, m ee ting the 
criteri a or th e studie , because the temperature nea r the bed 
is close to th e m elting point. The o ldes t ice ca n be melted 
away a nd m ay ha\"C been subj ec t to high shear stresses. 

F(r;. 1. ,IJajJ cif"or/h Greellland, showing slIIjace COli /OUrs, and 
the lom/ions cifGRJJ~ (;JSP2, . VGRIPand the ice stream sug­
gested ~) ' Fahnes/ock a/l d others ( /993). Loca/ions where shal-
10li' ice rores were drilled ill 1994 95 are marked 816- 8 30. 
TheJoll r /)([rallel lilles are the airborne radio -echo lilies lIleas­
II rNl ill /.9.95 k)l. '\A S;1 and { Tniversi{J' cif A-([lIsas ( t hllah and 
a/hers, /996). The /00 kill long thick line east of the . '<DRIP 
site is the /)([ rt of this /miji'le shown ill Figure Sa . alld the oth er 
50 kill long th ick Line over. VGR1P measured ill /996 is shown 
in Figllre 5b . 

From the surface contour m a p, th e preferred drill site is 
o n the K);\\'-tre nding ice ridge. The ice here orig ina ll y fell 
as snow on th e sUl"b ce not fa r fro m the drill sit e. Thi s simpli­
fi es the illlerpre ta ti on. At the ice ridge th e amount of shea r 
stress on the ice is reduced, which w ill help presen "C the stra­
tig raphic laye ring nea r the bedrock. A furth er res tri c tion of 
the acceptable a rea a ri ses from the c riteri on tha t the centra l 
part of the ice sheet has undergo ne the sma llest ice-thic kn ess 
cha nges under the past glacial. As the Eemi an inte rg lac ia l 
p eri od had a wa rmer clim ate tha n a t present , the size of 
the ice shee t m ay ha\'C been considerabl y sma ll e r (L etrc­
g uilly and o th ers, 1991a, b; Fabre a nd others, 1995), This will 
introduce la rge ice-thickn ess cha nges, es pecia ll y at sites ra r 
from the centra l pa rt of the ice shee t. 

A minimum of bedrock topogra phic reli ef sho uld 
fu rther reduce th e ri sk of bottom laye r di sturbance. \ Ve used 
the bedrock topography ofLetrcg uill y a nd others (1991a, b ) 
together with more r ecent rada r l1lea~ UremelllS of the bed­
rock in the Summit region (Hoclge a nd o thers, 1990; J acobcl 
a nd H odge, 1995) a nd a long the NN\ V ice ridge (Chua h a nd 
o thers, 1996). In ge nera l the bedrock has undulati ons of up 
to 200 m al ong th e N~W-trending ice ridge (Fig. 2), wh ereas 
the reg ion 170- 430 km N:\iW ofth e summit has undul a tions 
sm a lle r than 100 m. 
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Fig. 2. (a) SlIIjace alld bedrock fOn tour:, and obserl'f(l radio ­
echo h~))els ( th ick black ml'lles) aLong the ice ridge Irending 
,\,\ ' /1 'froll1 GRIP ji'Olll which distal/ces are measured. The 
modeled IIl/eTr1allr~)'e1,!; ( gr(~) ') IWllf th e age.s ..f., 8.6: /-1.5. 36, 
..f...J, 52, 1/5 and /30 ka BP ( calmdalj ean ). ( b) SlIrface ac ­
flll11ulatioll rateJ ( m ice equi1'{[/ellt ) W tr ') used ill the flow 
model alollg the . V:V/I '-trellding ire ridge starling a/ GRIP 
( /hill black Cl/fl'e). T he acculllula /ion ra tes are based 011 the 
obserlled acmmll tation rates Jroll1 shallow ice cores ill the 
region ( C/allsfll and others, 1.988; Ohmllra alld Reeh. 19.9/; 
BoL;::.an alld Stroebel, /99..f.: Friedlllann and others. 1995: /if1'­
sonal (0ll1l11 1l11 iratioll .fi-olll S. KijJ[stu!JI, /996). The thick 
black Cll rl'f sho11's the aCCllll1ulalion rates recolIstmctedjimll 
the ll/JjJeT obser1w/ isochrolle (.J.033)'ears BP) in Figure 2([ . 
Th e good agreement betweeJlthe ilt'o fllrves sho11'.1 thaltlte ac ­
ClIII IIl/a/ioll rates have /ieF.1is/edfor severat tllOlIsallc(vealJ. 

The most crucia l pa ra meter, th e surface acc umul a ti o n 
ra te, is poorly known in north Greenl a nd . The a\ 'a il a ble 
d a ta haye been compil ed by Ohmura a nd Reeh (1991). Data 
from the Summit regio n (C lause n a nd others, 1988; Bolzan 
a nd Stroebcl, 1994; Fri edmann and othe rs, 1995) and from S. 
Kipr.~tuhl (persona l communicati on, 1996), ha\'c been used 
lO i I11prove our knowledge of the acc ul11u la tion rates a lo ng 
the NN\ \ '-lrending ice ridge (Fig. 2b ). The re is a dec rease in 
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acc umu la tio n ra tes just north o f t hc summit (G R IP sile); 

a fter thi s d rop th e acc umul a ti o n ra te stays relative ly co ns­
ta nt. Acc umula tion rates \'a r y sig nificantl y across the 

NNW-trending ice r idge, with a decreasing g r a dient of 

0.07 m ice equ i\ 'a lent yea r 1 p e r 100 km LOward th e north­

east. 

MODE LING OF INTERNAL LAYERS ALONG T HE 
NNW-TRENDING ICE RIDGE 

To calcul a te the dept h of laye r s o f equ al age (isochrones ) 

a long the NNW-trending ice ridge sta rting a t the G RIP 
drill site, we use a model simila r to that used to date the 

G RIP ice core. We calc ul ate t h e ice fl ow using a m odifi ed 

D ansgaa rd- J o hnsen (DJ ) m od e l (D ansgaa rd a nd o thers, 
1993) where the vertical st ra in r a te is assu med to b e consta nt 

from the surface S(x) to a he ight a bo\'c bedrock h(x). It 

then dec reases linea rly to 0 a t the bedrock B(x). The input 
to the model is a 150 ka accumul ati on-ra te hi sto ry ca l­

culated from the 61RO mcas ured in the GRIP ice core 

(D a hl:Jense n a nd others, 1993; J o hnsen and o thers, 1995b). 
The fl ow m od el is used along the NN\ V ice ridge, and the 

G R IP acc umulation history is u sed a long the I-idge scaled 

by the rati o o f the prese nt accumula tion ratcs a t the sitc to 

those at GRIP. Tra ns\'erse ho ri zonta l veloci ti es a r c ass umed 

to be zero a long the line. The ice-divide ridge h as a mea n 
slope of I x 10 :1 a long its 500 km lcngth north o f GRIP. 

The hori zo nta l \ 'elociti es pa ra lle l to the sloping ice r idge 

are believed to be related to the surface slope. Simp le calcu­
la tions show that O\'C r th e 150 k a conside red he re, t he hori­
zonta l ice m oyem ent along the ice ridge was no m ore than 

10 km, which d oes not a ffect t h e p roj ected locatio n of the 

isochrones sh own in Figures 2a a n d 3a. The ho ri zonta l ice 

m ovcment a long the ridge is thus ig nored. 

The isochro nes in Figure 2a h a\'e been m odcl ed so that 
the upper o nc is aged 'W33 yea r s BP (2045 BC ), th e nex t 

two a re aged 8596 years BP (6608 BC) a nd ]-1'.5 ka B P 

( the transition b etween t he g lac ia l period a nd t he onset 

o f the B011 i n g- A ll erod per io d ), then follow three layers at 

GRIP depths o f 2200, 232+ a nd 24·21 m, co r resp o nd ing to 
ages of 36,4-4 and 52 ka BP, w hich coincide w ith t hree \'C ry 

prominelll t ra nsitions in th e inters tacl ials Uo h nsen and 
o thers, in press ). The two deepes t mode lled isoch rones, at 

115 a nd 130 ka BP, a rc chosen because they represent the LOp 

a nd bottom of the Eemian ice, as see n in the G RIP ice core 
(D a nsgaard a nd others, 1993). 

From Figure 2a it ca n be seen that the up p e r m odeled 

isochrones fo llow the surface with depths influe nced by the 
changing surface accumul ation r a tes as shown in Fig ure 2b. 

The deep e r isochrolles a rc seen to fo llow the bed rock elc\'a­
tions, but they a rc influenced b y surface acc umu lation rates 

a nd ice thickness as show n in Fig ure 3a. 

Figure 3a shows the depth s o f the isochrones a nd the ice 

thickness a lon g the ridge. The d epth of the 14.5 ka BP iso­
chrone is seen to dec rease from 1750 m at GRIP to 1650 m 

100 km no rth o f GRIP, because there is a d rop in the surface 

accumu la ti o n ra te from 0.23 to 0.19 m ice equivalent year I . 

From 100 to 350 km the depth of th e mode led isochrone is 

approxim a tely constant. T h e e1c\'ati on above b edrock of 
the isochrones defining th e to p a nd bottom of th e Eemian 
layer and the thickness of the layer a re show n as g ray eu n 'es 
in Fig ure 4a a nd b. The decreas ing surface accumulat ion 
rate increases both the heig h t a nd the thickness of the 
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Fig. 3. (a) Ice de/Jths along the . \:",,(11 " ridg,eJrom GRIP The 
de/Jtlts if the modeled (grqv) al/d observed ( thick black) 
internallqVeTs also shown in Figure 2a are inrluded. i n order 
to flplain the dllJS between the observed and modeler! la.,vers 
(shaded areas), a refined model simlllation cif the internal 
laYTs has bem included as thin black ClIrves. ( b) The 
modeled ma.\imum basaltflll/JeratllTes (grqv) reached during 
the last /50 ka along the ice ridge, com/)(tred l1'ltlt the p ressll re ­
melting temj;eratures ( black). II 'hen the basaltem/JeTatuTes 
have reached the melting point during the glacial. basal nzell ­
ing has occurred. (c) Estimater! amount if total basal melt 
during the last 150 ka; the curve is seen to match the dips. 

Eemi an layer ovcr the first 100 k m , after which it stays 

nea rly unchanged o\,er the following 400 km. 

INTERNAL RADIO-ECHO SOU NDING REFLECTORS 

A way to improvc o ur knowledge o n the expected locatio n of 

ice in the ice sh ce t is to track inte rn a l layers observed from 
radio-echo sound ing image ry ove r the Greenl a nd ice sheet. 

Several sets of ra dio-echo da ta h ave bee n collec ted from 

n orth Gree nla n d (G udma ndse n , 1975; H empel a nd T hys­

sen , 1993; J acob cl and H odge, 1995; C huah and o thers, 
1996), a nd a ll clea rl y show inte rna l laye ring. The illlern a l 
layers a re recognized as interna l r cOecti ng surfaces of the 
sam e age (i. e. isochrones ). The cause or the refl ec ti o ns has 

been disc ussed by severa l resea rchers (H am m er, 1980; 
M oore, 1988; H empcl and Thysse n, 1993; FLuita a nd M ac, 
1994), who concl ude th at cha nges in ice conduct iv it y a re 
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Modelled Eemian layer 

300 400 500 

Fig. 4. The modeled locatioll rij the Eemian lc~ver is shown by 
( a) the distance above bedrock rij ice aged 115- 30 ka BR and 
(b) the thickness rijthis lc~yer along the ice ridgefrom CRIP 
trending j : vr I: T he gray wrl'es enclosing light shading rep ­
resentthe basic model results, while the black curves enclosing 
dark shading show the rifined model results. In (a) the low­
est -(ying intemalmdio-ec/to sounding riflector is included as 
a thick black Clll"l'e in the region close to the HCRIP site, 
316km.from CRIP T he 115ka to/) boundal} rij the Eemian 
lc~)ler traces this riflector well, which gives liS corijidence in the 
model jJrediflions. 

responsible for the di elec tric contrast producing these IT ­

fl ec ti ons and that acidic fa ll out from \·olra nic eruptions 
a nd changes in impuri ty concentra tions, that accompany 
the sudden clima tic transitions, a re the most likely source 
of these changes. In most of the radio-echo records, some 
general structures can be identifi ed tha t can be traced O\"(' r 
la rge di stances. 

Figure Sa a nd b show exa mples of t he radio-ech o sound­
ing profil es co ll ec ted in 199.5 and 1996 by NASA and K a nsas 
U ni\"(' rsiry (C hua h and others, 1996) a long the fli ght-lines 
shown in Figure l. The profil e in Fig ure Sa is a long a line 
.50 km east of the NN\ V ridge from 74.62 N, 40.54.0 

\ V to 
75.83 ~, 42. 19 W, which is approx im ately 2004·00 km 
from GRIP. The p ro file in Figure 5 b is a 50 km long line 
a long the N~W ridge from 7+.88 N, 41.90 W to 75.30 N, 
+2.+8 \\' th at passes just 2 km east o f the NGRIP site. 

The depth interval 100- 700 m h as been blocked in data 
processing to obtain the max imum possible resoluti on of the 
deep-l ying refl ec to rs. The sha llowest refl ector identifi ed 
occurs at a depth of 700 m on most of the images a nd can 
he recogni zed in the GRIP ice co re as a \·o lcanic hori zon 
4033 years BP (Cl a usen and others, in press). Another \·e ry 
prominent refl ec to r is found at a depth of 1300 m a nd is 
bel ie\"('d to be a strong volcanic ho ri zon 8596 years BP A 
gap is obser\"('d beginning at a depth of 1600 m. The trans­
ition be twee n the morc prominent internal refl ec tors a nd 
the gap coincides with the onse t o f the Bolling- All en'ld 
14.5 ka BP (H ammer, 1980; Hempel a nd Thysse n, 1993). The 
gap with weak or no refl ectors thus co incides with ice from 
the co ld Last Gl ac ia l Maximum. Three laye rs can be identi­
fi ed clearly 700- 1100 m abO\·e bed rock. These have been dis­
cussed in Gudma ndsen (1975) a ndJacobel a nd H odge (1995) 
and can be tracked in mo t of th e radio-echo da ta from 
North Greenl and (Ri h0jgaard, 1989). Gudmandsen (1975) 

Line east of NGRIP 

o 

/"' - -------... 
Internal Layers 

Line through NGRIP 

Fig. 5. ( a) £1 100 km sl'(tion rij the radio -edlO imagfl} (01 -

feeted ill 1995 witlt tlte /50,\[H;: C JRDs sptem (C/walt 
and others, 1996) alollg a prqfile .50 kill msl rij the. \SII ' 
ridge ( Iollg thick line ill Fig. I). Here the ([CCllll7lllatioll rate 
is reduced to (J.J8m ice equivalent ]ear " ([nd IGlge oscilla ­
tion.1 qj. the illternal Iq)'ers are observed because the basal 
tem/Jeratures a/J/JI"oaclied the melting/Joillt during the glacial 
/Je riod. ( b) A .50 km prqji"le collec/ed in 1996 with the same 
.I)lstem . Tlte jJrrifile /)(lsse.l2 kill east rijtlte . VGRIPsite ( short 
thick line ill Fig. I). T he reflectors can be da ted b.vtracing them 
to lhe dated (;R IP ice LWf'. III this wq)', the internal reflectors 
da tf' the ice in liar/it Greenlalld at lite de/)ths wheTe the 
ill t eJ"/lallr~) 'e/J are obsenwl. 

and H em pel and Thysse n (1993) sugges t th a t the refl ec to rs 
a re sha rp transitions assoc iated with the interstad ials. The 
radi o-echo sounding re fl ecto rs can be traced back to the 
GRIP site, where the iee core has bee n d a ted . In Figure 5 b 
some \"('ry weak refl ecto rs a re obsen ·ed 300- 500 m from th e 
bedrock. These ca ll be see ll onl y on the radio-echo profil es 
from 1996, so they cannOl be tracked back to the GRIP site. 

COMPARISON OF OBSERVED AND MODELED 
INTERNAL LAYERS 

In Fig urc Sa the oscill a ti ons of the elevations of the three 
deep-I yi ng refl ecto rs 700- 1000 m above bedrock a re un­
ex pec ted . These oscill at ions arc not genera ted by bed rock 
undul a ti ons, as the bed is quite smoolh he re a nd no surface 
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undulations support the interna l oscillati ons. In addition, 
the oscillati ons a re less pronounced in sha llower layers. 
The oscilla ti ons could be caused by \'a ri ati ons o f the surface 
acc umulati on rates or by \'a ria ti ons of the dynamic veloc ity 
fi elds a long the ridge. 

Variations of the surface accumulati on ra tes could be 
caused by mO\'ement in the cast- west direction of the 
NNW-going ice ridge back in time. The flow model 
desc ribed ea rli er is used to m odel the now a long the line 
shown in Figure 5a, 50 km eas t of the ~N\ V ice ridge. The 
surface accumulati on rate is known to be 0.18 m ice equiva­
lent year I in this region, a nd the model results revea l that 
the accumulation rate must \"a ry between 0.1"1 a nd 0.19 m 
ice equivalent year I along thc line in order to generate 
osc illations of the observed m ag nitude 700 800 m abO\'e 
bedrock. This seems unlikely as the surface contours and 
the accumul ati on pattern are so smooth in this region, and 
it would be diffi cult [or ice-ridge mO\'ements to produce thi s 
pallern. 

To explore the possibility of va riati ons in the \'elocity 
field a long the ridge, we have ca lculated a 150 ka history 
basal temperature using a thermodynamic ice-flow model 
(Dahl-Jensen a nd others, 1993; J ohnsen and o thers, 1995a ) 
dri\'en by the surface tempera ture and acc umul ati on-rate 
hi stories generated from the GRIP stable-i so tope record 
Uo hnsen a nd o thers, 1995a ). Since the present surface accu­
mul ation rate decreases towards the north, the acc umula­
tion-rate history fi'om GRIP is scaled at each site by (he 
prese lll acc umulation rate be twee n that site a nd GRIP. 
The present surface tempera ture is nearly constant in this 
considered region of north Greenl and, so the GRIP surface 
temperature hi story ca n be used O\ 'e r tiw entire [lowline. 
The modeled basa l tempera ture increases as the surface ac­
cumul ation rates dcerease, because less co ld snow mO\'es 
down into the ice shee t. \\' here the present surface acc umu­
lati on rate is less than 0.1 8 m ice equi\'alent yea r- \ the basa l 
ice reaches the pressure-melting pOilll during the g lacial for 
an ice thi ckness of 3000 m. Increasing ice thickncss 
increases the basal temperature by approxim a tely 2 C per 
100 m. The wa rmest basal temperalUres a re reached during 
the glacia l a nd a rc roughl y 2.5 C warmer tha n the present 
basa l temperatures. The radio-echo sounding profile shown 
in Figure 5a is in a region wh ere the present surface acc u­
mul ation ra te is 0.18 m ice equi\'alent yea r I a nd the ice 
thickness is fa irly consta nt. Basal melting thus could have 
occurred during the glac ia l. 

\\Then the basa l ice is close to the pressure-melting point, 
both bottom sliding and basal melting can occur. Both pro­
cesses drag the intern a l layers downward. Basal sliding 
a llows laye r thinning right d own to the bedrock, a nd basal 
melting moves the layers ri ght down to the bedl·oek. \Ve can 
match the obse rved osc ill a ting internal laye rs by varying 
h(:r), the height abo\'e which the \"Crti cal strain rate is 
ass umed to be constant in the DJ model, between +00 and 
2000 m a nd a llowing 10- 70 % of the hori zonta l \"eloc ity to 
be basal sliding and simul ating sliding and non-sliding con­
ditions. )Jon-sliding is believed to ha\'C occ urred where the 
illlernallaye rs a re located furthes t from bedrock, while slid­
ing is bel ie\"ed to ha\'C dragged the layers downwards in the 
remal n I ng regions. 

Sliding does not appear to have taken place everywhere 
along the profil e in Figure 5a. When the ice is close to the 
pressure-melting point , sm a ll spatial varia tions in geo­
therm al heat [lux could create the spatiall y \ 'ariable sliding 
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pa ttern. Geotherm a l [lux would b e ex pec ted to \ 'ary with 
bedrock geology. 

We conclude tha t the second expla nati on of the interna l 
oscillations, as being a res ul( of \ 'ar ying \'clocity field s, is 
preferred. The first explanatio n is rejected because we 
wo uld hm"C to assume unreasona bly la rge \'ariati ons in the 
surface accumul a tion rate. Also the illlernal osc ill ati ons 
generated by sliding/non-sliding conditions will increase 
w ith depth, while the oscill ati ons generated by variations 
o f the surface acc umul ation ra te will decrease when bed­
rock is approached . f or the selection of a drill site whose 
prime obj ective is to study th e deep-lying ice, it is \"Cry 
important to a\"oid the zones where basal tempera tures 
approach th e pressure-melting point. 

The observed internal laye rs a long the NNW-trending 
ice ridge a re included in fi gures 2a a nd 3a as thi ck blac k 
lines. The upper re[l ector at 700 m depth (4033 yea rs BP) 

can be used to de termine if reasonable arrllmul a ti on-rate 
va lues ha\"e been used in the calcul a ti ons, as thi s layer is 
nearly unaffeCled by the bedrock a nd possible \'a ri a ti ons of 
the veloc ity fields. The reconstruCled surface acc umu lation 
r a te from the upper internal layer is shown in Figure 2b as a 
thick black cun·e. This curve, which represents the accumu­
la tion during the las t 4000 years, is seen to agree reasonabl y 
with the acc umul a ti on-rate profil e used in the ca lculations. 
This confirms tha t the significant drop of the acc ul11ulation 
ra te 50 km north of GRIp, as repon ed by Bolzan a nd 
Stroebel (1994), who used 20 m deep sha ll ow ice co res con­
ta ining firn from 50 yea rs'accul11ul a tion, has persisted [or a 
long time. 

The age of the l11 0deled isochrones shown in Fig ures 2a 
a nd 3a (thick gray curves ) has been chosen so they have the 
same age as the obsen 'ed radi o-echo sounding re[l ectors 
be tween the GRIP a nd the NGRIP drill sites. The rellectors 
a rc seen to compa re well with the modeled isochrones 
except at 100- 270 km from GRIP a long the NN\ "-trending 
ice ridge. Here a ll the refl eCto l's dip simultaneously up to 

several hundred m eters. The surface acc umulati on rate is 
0.19 m ice equiva lent yea r I here, but the ice thickness can 
be seen to increase to 3250 m 175 km from GRIP where the 
g reatest dip is found. This ice-thickness increase will res ult 
in basal temper a tures reaching the pressure-melting poilll 
during the glacia l period. Figure 3 b compares the maxi­
mum basa l temperatures, which a rc reached during the 
g lacial, with the ice-thick ness-rela ted pressure-melting 
point. In regions where basa l temperatures reach the melt­
ing point the a mOUl1l of ice that has been melted during the 
las t glacial is shown in Figure 3c. Basal melt occ urs in 
regions where the re[l ectors a re seen to dip, and the amoulll 
o f predicted basa l ice melted shown in Figure 3c has the 
same shape as the dips (shaded a rcas in Figure 3a). The 
internal layers m ay be dragged down here due to cha nges 
of the veloc ity fie ld s caused by basa l l11elting conditions, as 
discussed ea rli e r, fo r the line lying 50 km to the cast (Fig. 
5a). 

A refin edmodeling of the obsl:rved radio-echo refl ectors 
has been attempted by adjusting the dynamic \'eloc ity fi elds 
to sliding and no n-sliding conditions a long the line, as dis­
cussed ea rli er. The refined model edlayers arc shown as thin 
bl ack curves in Fig ure 3a. They a rc seen to match the osc il­
la tions of the interna l laye rs a t a ll depths except 150 
200 km, where the layers dip most. Arounclthe NGRIP site, 
316 km fr0111 GRIP, the refin ed model layers ca n be com­
p ared with the deep refl ectors (d epths 2500- 2750 111 ) from 
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Figure 5 b. The refin ed m odel dates th ese re fl ec tors to 80-
100 ka BP. The top and bo ttom of th e modell ed Eemian 
layers a rc shown as thin blac k CUITes in Fig ure 3a. Th e 
a mplitude o f the sma ll' oscillations of th e thin black curves 
is seen to agree well with t ha t from the obserH'd dee p refl ec­
to rs, which g iws confidence in the predi cted locati on of th e 
Eemian layer in the .\"GRIP ice co re. 

DISCUSSION 

\\'e a rc searching for an ice-core site in Greenland lI·here a 
reduced acc umul ation rate ra ises a nd thickens the Eemian 
ice layer while a\'o iding basal m elting. The regio n upstream 
of th e site should ha\'e fl a t bedrock to reduce oscill a ti ons of 
th e interna l layers. The sit e should be on an ice ridge to 
ens ure minimum horizonta l \ 'clocity a nd in the center part 
of th e ice sheet to reduce poss ible ice-thickn ess cha nges back 
in time. 

Calculations \\-ith a thermo mechanica l flow mode l indi­
cate that when th e surfacc accu mul ati on ra te drops below 
O.ISm ice equi\'alent year \ the pressure-melting point is 
reac hed [o r a n ice thickn ess similar to th a t fo und a t GR IP 
(3027 111 ). The ice thickness a lso a fTects the basa l temper­
a ture, so a n increase of 100111 res ults in a 2 D C wa rming of 
the basal ice. 

Ta ken together. it is clea r tha t wc restri ct favorable cor­
ing sit es to a \Try small region. A poor se lection could res ult 
in a sit e where th e ice from the Eemian pe ri od has been 
dragged down to the bedrock a nd the o ldes t ice is melted 
away instea d of being e!c\·a ted. 

The modeled pred iction o f the height a nd thickness o[ 
the Eemian layer (11 5- 130 ka BP) a long th e :\I:\IW-trending 
ice ridge sta rting at GRIP is shown in Fig ure +a and b as 
g ray CLln·es. The major e le \'a ti o n a nd increase of thickn ess 
happens during the first 50 km because th e surface acc umu­
la tion ra te decreases from 0.23 to 0.19m ice equi\'alcnt 
year I. From 50 to -l·00 km there a rc sma ll cha nges in th e 
locati on of the Eemian layer. There is a regio n 50 250 kill 
frolll GRIP where the obsen'ed re fle cto rs dip up to 200 m 
when compared to their modeled pos itions. In thi s region 
th e ice thi ckness increases to 3250 Ill , causing the basa l 
tempera ture to approac h the pressure-melting point. 
Be tween 275 a nd 390 km no rth of GRIP th e ice thickness 
dec reases a nd the modeled and obse r\ 'ed intc rn a l layc rs 
agree again. Further north th e accu mul ati on ratc drops, so 
basa l icc again ca n be expccted 10 reach th e press ure-melting 
puint. A refin ed modeling o r the position or the Eem ia n 
layer (bl ack c urves in Fig ure +a a nd b) a ll ows us to match 
th e ubse n Td refl ectors except be tween 150 a nd 200 km, 
where th e dip is g reates t. The Ecmian laye r is first seen to 
ri se at 275 km distance from GRIP north of the region 
where hasa l melting proba bl y has occ urred. The dee pest 
obsen Td radio-echo so u nd i n g ren ector is i nc I uded as a 
lhi ck bl ac k c unT in Fig ure +a because it demonst rates the 
reli abilit y o r th e refined m odeling or the position of the 
Eemian layer around ?\GRIP. 

The age- d epth profile for the NGRI P site, modeled by 
th e refin ed m odel, is shown in Fig ure 6b. Here the stable­
iso tope profile, bIHO, measured a nd dated on th e GRIP ice 
co re (Fig. 6a ), has been tra nsfe rred to th e NGRIP site. The 
radi o-echo layers discussed in the pre\'ious sec tions are a lso 
shown. Thc tra nsition from H o locene to g lac ia l ice is pre­
dicted to be found at a depth of 14·60 Ill. For ice yo unger th a n 
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Fig. 6. Simulalioll s qflhe ellJetled lime-scale 01 ,\ DRIP u'ilh 
Ihe r1111ed model. The {PO I)rofile measured onlhe GRIP ice 
core is 1)Iolled 011 Ihe . , DR IP lillle-scale. The ., -GRIP 
"e/imale curve" ( Fig. Cb ) is (olllj)({red 10 Ihe CRIP ''dill/ale 
Cll1"1'e" ( Fig. 6a ). The illlerllal mdio -echo refleclors l/tal /1(/1 '1' 

bel'li lraced belweell l/te (:R IP and Ihe. \ DRIP sill' (N.5, 36, 
-1-1- and 52 ka RP ) ellsure Ihal Ihe IJredicled delJlh age prqfile 
ai ,' DRIP is con-ecl down la 2300 11/ delJlh. The delJlh illler­
l'({1 u.'here Ihe rleel) refleclors ([Te obsl'rlled all Ihe radio -erllO 
imappl'jrolll 19W; ( Fig. 5b ) demollslmles Ihalllte ice is si ill 
iro'md al dejJlll.ljllsl abOl'e Ihe Eellliall ice al. ' DRIP 

+0 ka, layer thicknesses at ""GRIP are thinner than at 

GRIP; th e situati o n is IT\T rSed for o lein ice. 

CONCLUSIONS 

Wc suggest th a t a dri ll site sho uld be loca ted 275 375 km 
from GRIP a long the i'\.\" \\'-trending ice ridgc. Thc .\!GRI P 
ice co re is now being drilled in thc region 75.120 ' :\1, 
+2.350 \\' (316 km from GRIP a long the \!?\ \'--tre nding 
ice r idge ) wherc the sUlface e1 e\'a ti o n is 2919m, ice thi ck­
ness is 3085 m a nd the surface ace ulllul ation ra tc is 
0.190 ± 0.005111 icc eq uinlle nt year I. The bedrock is 
smooth in thi s reg io n ( Fig. 5b). 

The deepest laye r that ca n be traced to GRIP is fo und 
700111 abO\T th e bedrock at th e :\IGRIP sit e. a nd has a n 
age 01'.52 ka. Beca use our Ill ode led ages ror a ll t he traceable 
layers agree lI'ell with th e elates a t GR IP, 11'(' can confidentl y 
Llse the nOli' Illode l to da te th e dee per re fl ectors (Figs 5 b a nd 
3a ) a t 500 300111 a bO\T bedrock to SO 100 ka, res pec ti\ ·c ly. 

Using these laye rs dated by th e GRIP curc, 11'(' ha\T pro­
duced a depth- age scale ra r th e NGRIP core th a t is well 
constra ined by d a ta to 52 ka, a nd confidentl y dated to 
100 ka by fl ow ll1oc\eling (Fig. 6). The layers confirm th a t 
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the ice 300 m abo\'e the bed has not been significantl y 
disturbed, 

The ice from the Eemian period 115- 135 ka BP should be 
found at depths 0[2750- 2850 m at ~GRIP The sequence is 
20 m (25% ) th icker than the Eemian sequence a t GRIP 
The onset of the E emian period (135 ka BP) should be round 
235 m above bedrock at :\'GRIP; thi s is 120 m higher abo\'e 
the bed than the Eemian ice at GRIP Therefore, we expect 
the NGRIP site to olTer a sign ificantl y better opportunity to 
recover an undi sturbed Eemian sequence than the Summit 
region (GRIP a nd GISP2), and possibly the best opportu­
nity anywhere in th e Greenland ice sheet. The NGRIP dril­
ling commenced in 1996, and reached a depth of 354m, 
\ Vhen then bedrock is reached, we will know l 
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