

Powder Diffraction PDJ Journal of Materials Characterization

Volume 39 / Number 02 / June 2024

Powder Diffraction

Journal of Materials Characterization

Journal of the International Centre for Diffraction Data https://www.cambridge.org/core/journals/powder-diffraction Volume 39, Issues 1-4

eISSN: 1945-7413; ISSN: 0885-7156

Editor-in-Chief

Camden Hubbard, Applied Diffraction Services, USA

Managing Editor

Nicole Ernst Boris, International Centre for Diffraction Data, USA

Editors for New Diffraction Data

Stacy Gates-Rector, International Centre for Diffraction Data, USA Soorya Kabekkodu, International Centre for Diffraction Data, USA

Associate Editor for New Diffraction Data

Frank Rotella, Argonne National Laboratory (Retired), USA

Editors

Xiaolong Chen, Institute of Physics, Chinese Academy of Sciences, China José Miguel Delgado, Universidad de Los Andes, Venezuela Norberto Masciocchi, Università dell'Insubria, Italy

Editors for Crystallography Education

James Kaduk, Poly Crystallography Inc., USA Brian H. Toby, Argonne National Laboratory, USA

International Reports Editor

Winnie Wong-Ng, National Institute of Standards and Technology, USA

Calendar of Meetings and Workshops Editor

Gang Wang, Chinese Academy of Sciences, China

Advisory Board

Evgeny Antipov, Moscow State University, Russian Federation
Xiaolong Chen, Chinese Academy of Sciences, China
Jose Miguel Delgado, University de Los Andes, Venezuela
Steve Hillier, The James Hutton Institute, UK
Takashi Ida, Nagoya Institute of Technology, Japan
Matteo Leoni, University of Trento, Italy
Vanessa Peterson, Australian Nuclear Science and Technology Organisation, Australia
Mark Rodriguez, Sandia National Labs, USA
T.N. Guru Row, Indian Institute of Science, India
Allison Keene, Cambridge University Press, USA

Information about editors and editorial board members correct as of 1st January 2022. For the latest information please see https://www.cambridge.org/core/journals/powder-diffraction/information/editorial-board

Aims & Scope

ICDD's quarterly, and special topical issue, international journal, *Powder Diffraction*, focuses on materials characterization employing X-ray powder diffraction and related techniques. With feature articles covering a wide range of applications, from mineral analysis to epitactic growth of thin films to advances in application software and hardware, this journal offers a wide range of practical applications. ICDD, in collaboration with the Denver X-ray Conference Organizing Committee, has increased services for the subscribers of Powder Diffraction and authors of Advances in X-ray Analysis. Beginning in 2006, ICDD offered a copy of the previous year's edition of AXA to Powder Diffraction institutional subscribers who receive both print and on-line versions. This effectively doubles the number of articles annually available to Powder Diffraction subscribers and significantly increases the circulation for the authors in Advances in X-ray Analysis.

Subject coverage includes:

- Techniques and procedures in X-ray powder diffractometry
- Advances in instrumentation
- Study of materials including organic materials, minerals, metals and thin film superconductors
- Publication of powder data on new materials

International Centre for Diffraction Data

The International Centre for Diffraction Data (ICDD®) is a non-profit scientific organization dedicated to collecting, editing, publishing, and distributing powder diffraction data for the identification of materials. The membership of the ICDD consists of worldwide representation from academe, government, and industry.

© International Centre for Diffraction Data

Published by Cambridge University Press.

CODEN: PODIE2 ISSN: 0885-7156

TECHNICAL ARTICLE

Claudia Aparicio,	Simple preparation of specimens for X-ray powder diffraction analysis of radioactive	41
Vít Rosnecký and	materials: an illustrative example on irradiated granite	
Patricie Halodová	doi:10.1017/S088571562400006X	

CRYSTALLOGRAPHY EDUCATION ARTICLE

Soorya N. Kabekkodu,	PDF-5+: a comprehensive Powder Diffraction File TM for materials characterization	47
Anja Dosen and	doi:10.1017/S0885715624000150	
Thomas N. Blanton		

PROCEEDINGS PAPERS

Mark A. Rodriguez, Tomas F. Babuska, John Curry, James J. M. Griego, Mike T. Dugger, Steven R. Larson and Alex Mings	Characterization of MoS ₂ films via simultaneous grazing incidence X-ray diffraction and grazing incidence X-ray fluorescence (GIXRD/GIXRF) doi:10.1017/S0885715624000319	60
Jun-Sang Park, Ryan M. Horn, Haiyan Chen, Kelsey C.	Energy-dispersive diffraction tomography of shark vertebral centra doi:10.1017/S0885715624000307	69

NEW DIFFRACTION DATA

James, Michelle S. Passerotti, Lisa J. Natanson and Stuart R.

Stock

James A. Kaduk, Megan M. Rost, Anja Dosen and Thomas N. Blanton	Crystal structure of indacaterol hydrogen maleate (C $_{24}$ H $_{29}$ N $_2$ O $_3$)(HC $_4$ H $_2$ O $_4$) doi:10.1017/S0885715624000071	76
James A. Kaduk, Anja Dosen and Thomas N. Blanton	Proposed crystal structure of carbadox, $C_{11}H_{10}N_4O_4$ doi:10.1017/S0885715624000083	82
Colin W. Scherry, Nicholas C. Boaz, James A. Kaduk, Anja Dosen and Thomas N. Blanton	Crystal structure of ractopamine hydrochloride, $C_{18}H_{24}NO_3Cl$ doi:10.1017/S0885715624000095	94
James A. Kaduk, A. Dosen and Thomas N. Blanton	Crystal structure of nicarbazin, $(C_{13}H_{10}N_4O_5)(C_6H_8N_2O)$ doi:10.1017/S0885715624000125	105

INTERNATIONAL REPORT

Winnie Wong-Ng, Eric Cockayne, Austin	NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change (October 31–	111
McDannald, Yu-Sheng Chen,	November 1, 2023)	
Craig Brown, Tomče Runčevski and Igor Levin	doi:10.1017/S0885715624000162	

CALENDARS OF MEETINGS, SHORT COURSES AND WORKSHOPS

Gang Wang	Calendar of Forthcoming Meetings (Occurring after 1 July 2024) doi:10.1017/S0885715624000137	115
Gang Wang	Calendar of Short Courses and Workshops (Occurring after 1 July 2024) doi:10.1017/S0885715624000149	117

On the Cover: The cover figure for this issue of *Powder Diffraction* was prepared using figures from the manuscript "Characterization of MoS₂ Films Via Simultaneous Grazing Incidence X-Ray Diffraction and Grazing Incidence X-ray Fluorescence (GIXRD/GIXRF)" by M.A. Rodrigues, *et al* of Sandia National Laboratories.

The GIXRD data provides information on the film density and grain orientation (texture) as shown on the left side. The GIXRF yields the chemical composition, shown on the right. The authors showed that combining the two sets of results enabled isolation and decoupling the film density, composition and microstructure. Such extensive combined characterization data can be used to enhance the PVD deposited MoS₂ thin films used as solid lubricants for extreme operating environments.