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Depth-limited overturning wave shape affects water turbulence and sediment suspension.
Experiments have shown that wind affects shoaling and overturning wave shape, with
uncertain mechanism. Here, we study wind effects (given by the wind Reynolds
number) on solitary wave shoaling and overturning with the two-phase direct numerical
simulations model Basilisk run in two dimensions on steep bathymetry for fixed wave
Reynolds number and Bond number. For all wind, the propagating solitary wave sheds
a two-dimensional turbulent air wake and has nearly uniform speed with minimal wave
energy changes over the rapidly varying bathymetry. Wave-face slope is influenced
by wind, and shoaling wave shape changes are consistent with previous studies. As
overturning jet impacts, wind-dependent differences in overturn shape are quantified. The
non-dimensional breakpoint location and overturn area have similar wind dependence as
previous experience, whereas the overturn aspect ratio has opposite wind dependence.
During shoaling, the surface viscous stresses are negligible relative to pressure. Surface
tension effects are also small but grow rapidly near overturning. In a wave frame of
reference, surface pressure is low in the lee and contributes 2–5 % to the velocity
potential rate of change in the surface dynamic boundary condition, which, integrated
over time, changes the wave shape. Reasons why the overturn aspect ratio is different
than in experiment and why a stronger simulated wind is required are explored. The
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dramatic wind effects on overturning jet area, and thus to the available overturn
potential energy, make concrete the implications of wind-induced changes to wave
shape.

Key words: multiphase flow, surface gravity waves, wind-wave interactions

1. Introduction

As they approach shore, shoaling waves change shape, becoming steeper with narrower
peaks and more pitched forward (e.g. Elgar & Guza 1985). Once sufficiently steepened,
depth-limited wave breaking occurs with wave overturning, and subsequently the
overturn jet impacts the water surface in front of the wave. Depth-limited wave
breaking is often qualitatively categorized into spilling and plunging (e.g. Peregrine
1983), where spilling waves have very small overturns, and plunging waves have
larger overturns. Bathymetry along with offshore wave height and wavelength are
well understood (e.g. via the Iribarren number) to be important in setting spilling or
plunging wave breaking (e.g. Peregrine 1983). For example, larger planar beach slope
β leads to larger overturns (Grilli, Svendsen & Subramanya 1997; Mostert & Deike
2020; O’Dea, Brodie & Elgar 2021). Across laboratory and field observations, the
wave overturn shape is important in the resulting splash up and bubble entrainment
(Chanson & Jaw-Fang 1997; Yasuda et al. 1999; Blenkinsopp & Chaplin 2007),
water column turbulence (Ting & Kirby 1995, 1996; Aagaard, Hughes & Ruessink
2018), sediment suspension (e.g. Aagaard et al. 2018), and wave impact forces on
engineered structures (Bullock et al. 2007). Similarly in numerical simulations of
deep-water and depth-limited wave breaking, the geometry of wave overturning impacts
air entrainment, vorticity generation, and pathways of turbulent dissipation (e.g. Lubin
et al. 2006; Derakhti & Kirby 2014; Mostert, Popinet & Deike 2022). Thus understanding
the factors that affect the shape of overturning waves is important to a range of
processes.

In deep water, wind is well understood to lead to surface gravity wave growth and decay
(e.g. Miles 1957; Phillips 1957). However, wind can also change wave shape in both deep
(Leykin et al. 1995; Zdyrski & Feddersen 2020) and shallow (Zdyrski & Feddersen 2021)
water, as well as in shoaling waves (Feddersen & Veron 2005; Sous et al. 2021; Zdyrski &
Feddersen 2022). In laboratory studies, onshore wind results in wave breaking in deeper
water (farther offshore) (Douglass 1990; Sous et al. 2021), with the opposite for offshore
wind. Feddersen et al. (2023) studied the explicit wind dependence of overturn wave
shape at the Surf Ranch, a wave basin designed for surfing. A field-scale shoaling solitary
wave with height ≈2.25 m propagated at C = 6.7 m s−1 and overturned. The cross-wave
component of wind U, measured 16 m above the water surface, varied from onshore to
offshore with realistic −1.2 < U/C < 0.7. The non-dimensionalized breakpoint location
was inversely related to U/C, consistent with Douglass (1990). The non-dimensional
overturn area A/H2

b , where Hb is breaking wave height, and overturn aspect ratio (overturn
width divided by length) were also inversely related to U/C, with smaller area and
overturns for increasing onshore wind (positive U/C). For increasing offshore wind,
A/H2

b was approximately uniform. The non-dimensional overturn parameters varied by
a factor of two for the observed U/C, indicating that the wind has a significant effect on
overturn shape. However, the mechanism by which wind induces these geometric changes
is uncertain. For example, the pressure profiles induced by the wind on the different parts
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of the evolving wave, along with the general flow structure over and around the wave,
remain unknown.

Numerical modelling offers a promising avenue for investigating wind effects on
shoaling and overturning wave shape. For over two decades, volume-of-fluid (VOF)
based numerical models have enabled the study of various aspects of wave breaking
(e.g. Lin & Liu 1998; Chen et al. 1999; Guignard et al. 2001). More recent
advances in two-phase numerical modelling in both direct numerical simulations (DNS)
and large-eddy simulations (LES) has enabled significant advances in understanding
aspects of deep (Lubin et al. 2019; Mostert et al. 2022) and shallow (e.g. Lubin &
Glockner 2015; Mostert & Deike 2020; Boswell, Yan & Mostert 2023; Liu et al.
2023) water wave breaking. Similar advances have occurred in the study of wind
input of energy and momentum to deep-water waves with coupled (e.g. Hao &
Shen 2019) and VOF (Wu, Popinet & Deike 2022) models. Numerical studies using
two-dimensional (2-D) two-phase RANS solvers of wind-forced solitary (Xie 2014) and
progressive (Xie 2017) waves have seen a wind-induced shift in breakpoint location
analogous to laboratory experiments. Analogous wind effects were seen in 2-D LES
of deep-water wave breaking (Chen & Zou 2022). However, the effect of wind
on shoaling and overturning waves has not been studied in detail with numerical
models.

Here, we study the wind effects on solitary wave shoaling and overturning for a model
domain similar to that of Feddersen et al. (2023) using the two-phase numerical model
Basilisk run in two dimensions up until the moment when the overturning jet impacts. The
breaking processes that occur after jet impact have been and are actively being studied
with numerical models (e.g. Lin & Liu 1998; Mostert & Deike 2020; Boswell et al. 2023;
Liu et al. 2023; Chen, Raubenheimer & Elgar 2024). In § 2, the model set-up is described,
the key non-dimensional parameters (including wind Reynolds number Re∗) are defined,
and the relationship between modelled air velocity 〈Ū〉/C and Re∗ is discussed. In § 3.1,
the qualitative features of the shoaling solitary wave and air vorticity are examined for
strong onshore and offshore wind. The statistics of solitary wave shoaling under strong
onshore and offshore wind are described in § 3.2. Overturn wave shape is quantified by
geometrical parameters defined at the moment of jet impact (§ 3.3). The relationship of the
non-dimensional geometrical parameters (defined in § 3.4) to Re∗ is examined (§ 3.5). The
relative strength of viscous stresses and pressure at the air–water interface is examined
in § 3.6, and the terms of the surface dynamic boundary condition, including pressure
variations and surface tension, are analysed in § 3.7. We discuss the shoaling results
relative to previous studies, examine potential reasons for the differences between our
results here and those of field-scale experiments, and consider implications in § 4. Section
5 provides a summary.

2. Methods

We numerically simulate in two dimensions the shoaling and overturning of a solitary
wave with the two-phase incompressible Navier–Stokes equations using the open-source
Basilisk software package (Popinet 2003, 2009, 2018) for solving partial differential
equations on an adaptively refined grid. Basilisk has been used extensively to model wave
breaking (Deike, Popinet & Melville 2015; Deike, Melville & Popinet 2016; Mostert &
Deike 2020; Mostert et al. 2022) as well as wave interactions with wind (Wu & Deike
2021; Wu et al. 2022).
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2.1. Formulation and governing equations
The governing equations are the two-phase (water and air) Navier–Stokes equations in two
dimensions, given as

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ∇ · (2μD) + σκnδs,

∇ · u = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.1)

where u, σ, κ, D, g are the fluid velocity, surface tension, curvature of the interface,
deformation tensor and acceleration due to gravity, respectively. In component form, the
2-D fluid velocity is u = (u, w), where u and w are the horizontal and vertical velocities,
respectively. For each fluid, the water and air densities (ρw, ρa) and dynamic viscosities
(μw, μa) are uniform. A VOF advection scheme with a colour function f is used to capture
and advect the air–water interface in a momentum-conserving implementation. Hence for
two-phase mixtures, ρ and μ are represented by

ρ = f ρw + (1 − f )ρa,
μ = f μw + (1 − f )μa,

}
(2.2)

where f is interpreted as the liquid volume fraction ( f = 1 for water, f = 0 for air). The
water-to-air ratios for ρ and μ are important non-dimensional parameters and are here held
fixed at ρa/ρw = 0.001 and μa/μw = 0.018. The air–water interface requires continuity
of velocity and stress, including surface tension. Surface tension as the interfacial force
σκnδs is determined from the Dirac delta δs on the interface and the unit normal vector n.
This formulation is expressed in Popinet (2018), alongside the implementation of gravity
as an interfacial force. In (2.1), we substitute

ρg → (ρa − ρw)(g · x)nδs, (2.3)

which are equal, up to a difference in the pressure field. The reduced-gravity
implementation avoids the appearance of spurious velocities and unphysical energy
production near the air–water interface (Wroniszewski, Verschaeve & Pedersen 2014).

The two-phase incompressible Navier–Stokes equations are solved on an adaptive
Cartesian mesh using the Bell–Colella–Glaz projection method (Bell, Colella & Glaz
1989) with the VOF scheme described above, allowing for a sharp interface between
phases (Fuster & Popinet 2018; van Hooft et al. 2018; López-Herrera, Popinet &
Castrejón-Pita 2019). The bathymetry is represented with an additional volume fraction
field as an embedded boundary (Johansen & Colella 1998). Surface tension is implemented
using the continuum surface force approach due to Brackbill, Kothe & Zemach (1992).

2.1.1. Model domain and boundary conditions
The model domain (figure 1) is similar to that used in Boswell et al. (2023), with
modifications to be analogous to the bathymetry of the Surf Ranch (Feddersen et al.
2023). In the offshore region, the bathymetry is flat with depth h0, and the total cross-shore
(x) domain size is Lx = 60h0. The offshore flat bathymetry extends for x/h0 distance 30.
At x/h0 = 30, the bathymetry slopes upwards with slope β = 0.0693 over x/h0 distance
9.08 to a shallow depth hs/h0 = 0.371, which then extends an x/h0 distance of nearly
20. The bathymetric slope is a key non-dimensional parameter well understood to affect
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Figure 1. The simulation domain just after initialization as a function of non-dimensional horizontal x/h0
and vertical z/h0 coordinates. The brown region represents the bathymetry, the aqua blue is water, the air–sea
interface is indicated by the black curve, and air vorticity is given by the colour bar. The deeper flat water
at x/h0 < 30 has depth h0 such that the bed is located at z/h0 = −1. The shallow flat region has depth
hs/h0 = 0.371, and the bathymetric slope connecting these two regions has slope β = 0.0693. The solitary
wave initial condition parameters are a0/h0 = 0.6 and x0/h0 = 15. The height of the air domain is ha/h0 = 10.
This example is for onshore wind and Re∗ = 2400. The air inlet and outlet boundary conditions, together with
the slip upper boundary condition, are noted. The air vorticity is from the initial condition derived from the
air-only precursor simulation.

overturn shape (e.g. Grilli et al. 1997; Mostert & Deike 2020; O’Dea et al. 2021). Here,
β is held fixed to the Surf Ranch bathymetric slope projected in the direction of wave
propagation (Feddersen et al. 2023) in order to isolate the wind effects on overturning
shape. The bathymetry has a no-slip boundary condition for fluid velocity. At the ends of
the model domain at x = 0 and x/h0 = 60, vertical walls extend from the bathymetry to
the still-water depth at z/h0 = 0, with associated u = 0 and no-slip boundary conditions.
The air domain extends vertically from the water surface (mostly near z/h0 = 0) to
z/h0 = ha/h0 = 10, where a ‘ceiling’, with a free-slip boundary condition, is placed on the
domain (figure 1). In the range 0 < z/h0 < 10, at the left and right boundaries (x/h0 = 0
and x/h0 = 60, figure 1), open boundaries allow for air flow in and out of the domain. The
inlet and outlet locations vary depending on the wind direction. For onshore winds, the left
side is the inlet, and for offshore winds, the right side is the inlet. A Neumann condition is
placed on the dynamic pressure, ∂p/∂x = 0, on the inlet, and a Dirichlet dynamic pressure
condition p = 0 is placed on the outlet, both uniformly in the vertical.

2.1.2. Water solitary wave initial condition and wave-related non-dimensional
parameters

For simplicity, the solitary wave solution to the Green–Naghdi (GN) equations (Green,
Laws & Naghdi 1974; Le Métayer, Gavrilyuk & Hank 2010) is chosen as an initial
condition. The simulation free-surface initial condition η0 is

η0(x) = a0 sech2

(
x − x0

h0

(
3a0/h0

4(1 + a0/h0)

)1/2
)

, (2.4)

and the associated water velocity initial condition is

u(x) = C η(x)
h0 + η(x)

,

w(x, z) = C
z + h0

h0 + η(x)

(
∂η

∂x
(x)
)(

1 − η(x)
h0 + η(x)

)
,

⎫⎪⎪⎬⎪⎪⎭ (2.5)
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where C = √
(gh0)(1 + a0/h0) is the solitary wave propagation speed, and the vertical

velocity is derived from continuity. The GN equations are fully nonlinear and weakly
dispersive, and are essentially equivalent to the fully nonlinear weakly dispersive
Boussinesq equations of Wei et al. (1995). This solitary wave solution is similar to that
of the Korteweg–de Vries (KdV) equation (e.g. Ablowitz 2011), with a small change
making the soliton shape narrower. For all simulations, the non-dimensional solitary
wave amplitude is set similar to that generated at the Surf Ranch (Feddersen et al.
2023) at a0/h0 = 0.6, and the centre of the solitary wave is located at x0/h0 = 15
(figure 1), implying a non-dimensional propagation speed C̃ = C/

√
gh0 = 1.265. Once

the simulation starts, the solitary wave propagates in the +x direction with speed close to
C̃, and adjusts as the GN-based initial condition ((2.4)–(2.5)) is not an exact solution of the
two-phase Navier–Stokes equations. The adjustment leads to the solitary wave becoming
narrower and slightly taller as minor trailing transients are shed. For smaller a0/h0 = 0.3,
analogous adjustment to the GN-based initial condition was seen, albeit with opposite
sign, in Mostert & Deike (2020). The adjusted solitary wave is essentially identical across
all simulations with different wind speeds, allowing examination of the wind effect on
shoaling and overturning. The GN equations are still approximate (Wei et al. 1995), and
using a fully nonlinear potential flow soliton solution (Tanaka 1986) likely would have
reduced the adjustment to the initial condition. The solitary wave then shoals over the
rapidly varying bathymetry and eventually overturns in the shallow flat region (figure 1).

From the initial condition solitary wave parameters, a wave Reynolds number is defined
as (Mostert & Deike 2020; Boswell et al. 2023)

Rew =
√

gh3
0

νw
, (2.6)

where νw = μw/ρw is the kinematic viscosity of water, and the linear shallow-water
phase speed

√
gh0 and offshore depth h0 are used as velocity and length scales. Here,

as in previous studies (Mostert & Deike 2020; Boswell et al. 2023), we keep the wave
Reynolds number fixed at Rew = 4 × 104. The Bond number Bo is also an important
non-dimensional parameter tracking the importance of surface tension. For a solitary
wave, Bo is defined as (Mostert & Deike 2020)

Bo = (ρw − ρa)gh2
0

σ
, (2.7)

where h0 is chosen as the length scale because solitary wave width scales with the water
depth (2.4). Here, we have a fixed Bo = 4000 slightly larger than the Bo = 1000 used in
previous shoaling and breaking solitary wave studies (Mostert & Deike 2020; Boswell
et al. 2023). A non-dimensional time is defined as

t̃ =
(

g
h0

)1/2

t, (2.8)

with t̃ = 0 defined as the moment when the solitary wave begins propagating. Variables
with a tilde denote non-dimensional variables. Our model set-up is analogous to the
VOF model without atmosphere of Guignard et al. (2001), whose solutions for an initial
higher-order soliton (Tanaka 1986) of a0/h0 = 0.45 were similar to the potential flow
solutions from a highly accurate boundary element model (BEM) (Grilli et al. 1997).
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2.1.3. Air initial condition
All shoaling and overturning solitary wave simulations require an airflow initial condition.
This is defined by first running an air-phase-only precursor simulation (described in more
detail in Appendix A) analogous to Wu et al. (2022). The precursor simulation solves
for the airflow over a solitary wave in a reference frame of a constant solitary wave
speed, with no-slip boundary conditions at the wave surface matching the solitary wave
fluid velocity (see (2.5)). This choice of boundary conditions at the wave surface in the
precursor simulation ensures that at the beginning of the two-phase shoaling simulation,
the air-phase velocity field is consistent with the water velocity of the moving solitary
wave. To force the wind, the air-only simulation has an external, spatially and temporally
uniform pressure gradient applied, specified by a nominal friction velocity u∗:

∂p
∂x

= ρau∗ |u∗|
ha

. (2.9)

We characterize the airflow with a wind Reynolds number (Wu et al. 2022)

Re∗ = u∗ha

νa
, (2.10)

where νa is the kinematic viscosity of air, and ha/h0 = 10 is the thickness of the
undisturbed air layer. For offshore winds (air flow opposite to the solitary wave propagation
direction), u∗ is negative, as is the resulting Re∗. The velocity field in the air phase at the
conclusion of the precursor simulation is then used as the initial condition for the shoaling
wave problem, which solves the full two-phase system in a fixed reference frame. During
the two-phase simulations, the forcing pressure gradient discussed above is removed. As
the solitary wave fully overturns for all Re∗ by t̃ = 21, the wind does not have sufficient
time to decelerate meaningfully (Appendix B).

2.1.4. Recapitulation of non-dimensional parameters
The simulations are performed in non-dimensional variables and coordinates. Most of
the non-dimensional parameters are held fixed, and key fixed parameters are recapitulated
here. The air–water density ratio is ρa/ρw = 0.001. The air–water dynamic viscosity ratio
is μa/μw = 0.018. The initial solitary wave amplitude is a0/h0 = 0.6, corresponding to
wave Reynolds number Rew = 4 × 104. The beach slope is β = 0.0693. Note that for a
kinematic viscosity of water νw = 10−6 m2 s−1, the wave Reynolds number implies h0 =
0.055 m, solitary wave amplitude a0 = 0.033 m, and solitary wave speed C = 0.93 m s−1.
For the field scale solitary waves at the Surf Ranch (Feddersen et al. 2023), the equivalent
is Rew = 1.4 × 107. Here, Bo = 4000 is four times larger than that previously in shoaling
and breaking solitary wave studies (Mostert & Deike 2020; Boswell et al. 2023). We
note that the Bond number for the field scale solitary waves at the Surf Ranch is Bo =
3.6 × 105, almost a factor 100 times larger than used here. Thus the present simulations
are not at field scale with respect to viscous effects or surface tension effects, which
will be explored in § 4. The non-dimensionalwind friction velocity Re∗ (see (2.10)) is
hypothesized to be important in setting wind effects on overturning shape, and is varied
over Re∗ = {−1800, −1200, −600, 0, 600, 1200, 1800, 2400}.

2.1.5. Adaptive mesh refinement and convergence
Basilisk uses adaptive mesh refinement (AMR) to reduce computational cost. Refinement
is based on the error of the velocity, VOF field, and solid boundary approximation, using
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a wavelet estimation algorithm. The AMR approach used in Basilisk is described in
van Hooft et al. (2018). The Basilisk domain is an Lx/h0 × Lx/h0 square, with quadtree
subdivision, ensuring that all grid cells are square. A maximum of 14 levels of refinement
was chosen so that the effective minimum mesh size becomes 
x/h0 = (L0/h0)/214 =
3.7 × 10−3, corresponding to minimum dimensional mesh size 0.2 mm, for dimensional
depth h0 = 0.055 m. Although the domain is a square, the vertical domain of interest is
approximately 1/6 of the total vertical domain. The bathymetry is embedded as a bottom
boundary condition within the domain, and the domain below the bathymetry remains
essentially unresolved, reducing computational cost.

Previous studies with Basilisk of breaking solitary waves (Mostert & Deike 2020;
Boswell et al. 2023) found that for waves as large as those here, grid convergence was
ensured in pre- and post-wave breaking regimes for resolution at 
x/h0 = 6 × 10−3. The
present resolution 
x/h0 = 3.7 × 10−3 is thus more than sufficient for grid convergence,
ensuring that numerical dissipation does not affect the dynamics of the wave. Here, we
are interested only in the model solutions until the point that the overturning jet impacts
the water surface in front of it, i.e. pre-breaking. In terms of refinement, the pre-breaking
regime is much less demanding. As in figure 1, the scales of the 2-D wind turbulence are
not small. Therefore, with 14 levels of refinement, the pre-breaking solution is expected to
be converged.

2.1.6. Model output
Model output is stored every 
t̃ = 0.05 for t̃ < 18 and every 
t̃ = 0.01 for t̃ ≥ 18 to
ensure that the wave overturn is temporally well resolved in the model output. From
model output, fluid volume fraction f , velocity, vorticity and pressure are estimated on a
regular grid over the domain. In addition, the air–water interface η and interface velocities
are output at the AMR resolution. Pressure at the interface can be noisy due to the
surface tension term. Thus interface air pressure is estimated in the air, at a distance

 = 0.01 normal to the surface interface. This distance is approximately 2.7 times the
minimum grid resolution at 14 levels of refinement. In addition, we also output u and
w in the air on a diamond stencil centred on the location of pressure with stencil leg
distance 0.004 that allows second-order estimates of ∂u/∂x, ∂u/∂z, ∂w/∂x and ∂w/∂z
over separation 0.008. As the wave propagates and shoals, most of the time the air–water
interface η is single-valued with x/h0. Once the overturning jet forms, η is no longer
single-valued. For the times when it is single-valued, we define η(x, t) as the air–water
interface. Non-dimensional water and air kinetic (Kw, Ka) and potential (Pw, Pa) energies
are estimated as (e.g. Mostert et al. 2022)

Kw,a =
∫

Vw,a

ρ

2
|u|2 dV, Pw,a =

∫
Vw,a

ρgz dV, (2.11a,b)

where the integrals are over the water or air regions, respectively. The potential energy is
referenced relative to the potential energy at t = 0. The water and air energy (kinetic plus
potential) is thus

Ew,a(t) = Kw,a(t) + [Pw,a(t) − Pw,a(0)]. (2.12)

Non-dimensional water energy Ẽw is then given by

Ẽw = Ew

ρwgh3
0
. (2.13)
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Modelling wind-induced changes to overturning wave shape

2.2. Relationship between wind speed and wind Reynolds number Re∗

Before describing the evolution of the shoaling and overturning solitary wave under the
effect of varying wind, we examine the dependence of model air velocity (wind) on Re∗.
We will average the air velocity to have a single wind metric to compare with Re∗. The
first averaging operator is the model domain x-averaged wind velocity Ū(z/h0, t̃), defined
as

Ū(z/h0, t̃) = 1
Lx/h0

∫ Lx/h0

0
u(x/h0, z/h0, t̃) d(x/h0), (2.14)

where Lx/h0 = 60 is the length of the model domain (figure 1). As will be seen, the
earliest solitary wave overturning occurs at t̃ = 19.13. Thus we define the period for time
averaging over 1 < t̃ < 19, which represents the time period of solitary wave evolution
prior to overturning. During this time period, the wind was largely steady. The time- and
x-averaged air velocity 〈Ū〉, defined as

〈Ū〉(z/h0) = 1
18

∫ 19

1
Ū(z/h0, t̃) dt̃, (2.15)

is a function of only the vertical z/h0, and is evaluated only for z/h0 ≥ 1, which is always
air. We define the non-dimensional wind speed as 〈Ū〉/C. Statistics of the non-dimensional
wind are presented in Appendix B.

We compare Re∗ and 〈Ū〉/C at two vertical locations z/h0 = {2, 6} (figure 2). The
location z/h0 = 2 is representative of near-surface wind but is still at least two solitary
wave amplitudes a0/h above the air–water interface. The location z/h0 = 6 represents
the height of wind measurements in the field-scale experiments (Feddersen et al. 2023).
For z/h0 = 6, 〈Ū〉/C is largely linear with Re∗ (figure 2, circles), with 〈Ū〉/C = 3.8 for
Re∗ = 2400, and 〈Ū〉/C = −2.8 for Re∗ = −1800. The linear relationship indicates that
the stress is not due to turbulence and that Re∗ is a proxy for 〈Ū〉/C. At z/h0 = 2, 〈Ū〉/C
is slightly weaker than at z/h0 = 6 and has a weak quadratic trend (green diamonds
in figure 2), with 〈Ū〉/C = 3.5 for Re∗ = 2400, and 〈Ū〉/C = −2.5 for Re∗ = −1800.
At both z/h0, the model 〈Ū〉/C range is larger than in field-scale observations, where
significant wind effects on wave overturns occurred over −1.2 < U/C < 0.8. Based on
the 〈Ū〉/C and Re∗ relationship (figure 2), this corresponds to |Re∗| < 1200. Although
modelling results will be analysed using Re∗, we will keep this relationship in mind.

3. Results

3.1. Description of solitary wave transformation under wind
We now present qualitative features of the solitary wave shoaling for the strongest onshore
(Re∗ = 2400) and offshore (Re∗ = −1800) wind (figure 3) at two different times during
shoaling. For both Re∗ values, the modelled solitary wave speed is slightly faster than the
small a0/h0 analytic C̃ = 1.265. Onshore and offshore wind imply wind blowing in the +x
and −x directions, respectively. The conventions used are as follows. The front and back of
the solitary wave are in relation to the direction of +x solitary wave propagation. Upstream
and lee of the solitary wave are in relation to the airflow direction. At t̃ = 14.0, the Re∗ =
2400 solitary wave has propagated up the slope and has amplified from initial amplitude
a0/h0 = 0.6 to a peak ηpk/h0 = 0.71 at xpk/h0 = 33.2 (figure 3a). Wind is in the direction
of solitary wave propagation and is faster than the solitary wave speed, with 〈Ū〉/C ≈ 3.4
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Figure 2. Non-dimensional x- and time-averaged wind speed 〈Ū〉/C (see (2.15)) versus wind Reynolds
number Re∗ (see (2.10)) at heights z/h0 = 6 (blue circles) and z/h0 = 2 (green diamonds).

at z/h0 = 2 (figure 2). The shoaling solitary wave has also changed shape asymmetrically,
characteristic of shoaling solitary waves (e.g. Knowles & Yeh 2018; Mostert & Deike
2020; Zdyrski & Feddersen 2022). The asymmetric front-face minimum steepness (slope)
min(∂η/∂x) = −0.46 and the back-face maximum slope |∂η/∂x| = 0.32, both larger than
initial solitary wave maximum slope magnitude |∂η/∂x| = 0.25, indicate solitary wave
shoaling. Upstream of the solitary wave, the airflow is laminar, with the strongest negative
vorticity concentrated at the air–water interface. In the lee of the solitary wave, the airflow
has separated, and strong turbulence and turbulent ejections are present near the front face
of the wave, with positive and negative non-dimensional vorticity near 10. At t̃ = 14.00,
the Re∗ = −1800 solitary wave has propagated up the slope with maximum ηpk/h0 =
0.68 at xpk/h0 ≈ 33.0 (figure 3b), slightly slower than for the Re∗ = 2400 simulation.
The wind blows counter to the direction of solitary wave propagation, and at z/h0 = 2,
the non-dimensional wind speed is 〈Ū〉/C ≈ −2.4 (figure 2). Upstream, the airflow is
laminar, with strongest positive vorticity near the air–water interface. In the lee of the
solitary wave, the airflow separates, with a trail of quasi-regular vortices ejected off of the
back face of the wave that are smaller than that for the onshore wind case (figure 3a). The
offshore wind solitary wave has weaker front-face minimum slope min(∂η/∂x) = −0.37
and weaker maximum rear-face slope |∂η/∂x| = 0.31, relative to the onshore wind case.
These differences in solitary wave slope between Re∗ = 2400 and Re∗ = −1800 suggest
that the wind at t̃ = 14.0 is already having an effect on the solitary wave.

Later, at t̃ = 18.30, the differences between the Re∗ = 2400 and Re∗ = −1800 solitary
waves are even starker. At t̃ = 18.30, the Re∗ = 2400 solitary wave peak is located at
xpk/h0 ≈ 39.2 and has transformed substantially (figure 3c). The overturning jet has just
formed as the front-face slope goes beyond vertical, with maximum η/h0 = 0.74 and
infinite maximum steepness. The back face, with maximum |∂η/∂x| = 0.3, is even more
gently sloped than the back face at t̃ = 14.0. The airflow is laminar upstream of the solitary
wave, and the airflow separates on the front face of the wave, with recirculating vortices.
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Figure 3. The solitary wave in water (aqua blue) shoaling over the bathymetry (brown), with overlaid air
vorticity as a function of horizontal x/h0 and vertical z/h0 coordinates for times (a,b) t̃ = 14 and (c,d) t̃ =
18.30, for (a,c) strong onshore wind Re∗ = 2400 and (b,d) strong offshore wind Re∗ = −1800. The air–water
interface is indicated by the black curve.

At t̃ = 18.30, the Re∗ = −1800 solitary wave is quite different from the Re∗ = 2400
solitary wave. The solitary wave peak is located at xpk/h0 = 39.0, with maximum height
ηpk/h0 = 0.74, and although the front face has steepened significantly, with maximum
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steepness |∂η/∂x| = 2.15, the overturning jet has not yet formed (figure 3d). The back-face
maximum slope is much weaker at |∂η/∂x| = 0.3. The upstream airflow is laminar, but the
airflow separation near the crest is more intense than at t̃ = 14.0 as the wave is steeper and
lee vortices continue to be shed. The differences in the shoaling solitary waves for onshore
and offshore wind both during shoaling (t̃ = 14.0) and the stronger differences at or near
overturning at (t̃ = 18.30) demonstrate wind effects on solitary wave shoaling.

3.2. Statistics of solitary wave shoaling under wind
We next examine statistics of soliton shoaling under wind. As before, ηpk/h0 is the peak
of the air–water interface associated with the solitary wave, with horizontal location
xpk/h0. As the solitary wave surface is fully refined, both have uncertainty 3.7 × 10−3,
far smaller than the horizontal and vertical scales of the solitary wave. The minimum
slope on the front face of the solitary wave is defined as min(∂η/∂x). We also examine
thenon-dimensional water energy Ẽw (see (2.13)). These parameters are estimated from
t̃ = 11 to t̃ = 17.9, corresponding to the time when shoaling on the slope commences, to
just prior to when the Re∗ = 2400 slope goes vertical.

For all cases, xpk/h0 is largely a linear function of t̃ (figure 4a), indicating largely
constant propagation speed as the solitary wave shoals over the rapidly varying
bathymetry. The lack of significant solitary wave deceleration is similar to other model
simulations over rapidly varying bathymetry (Guyenne & Grilli 2006) and observations at
the Surf Ranch (Feddersen et al. 2023). For both Re∗ values, a least squares fit between
time and xpk/h0 yields skill exceeding r2 > 0.99. For Re∗ = 2400, the fit solitary wave
speed is C̃ = 1.33. For Re∗ = −1800, the fit solitary wave speed C̃ = 1.32 is slightly
slower, indicating that wind has only a small effect on propagation speed. Both fit speeds
are slightly larger than the theoretical solitary wave speed C̃ = 1.265. Deviations from the
linear fit indicate a weak slowing 
C̃ ≈ 0.05 for t̃ < 15, and a similar weak acceleration
for t̃ > 15, consistent with previous modelling of shoaling solitary waves (Grilli et al.
1994). Prior to shoaling, the GN-based solitary wave initial condition with a0/h = 0.6
has adjusted to a narrower and slightly taller shape while also shedding minor trailing
transients. During adjustment, water energy is conserved, indicating that it is not wind
driven. The result is a larger value solitary wave height (ηpk/h0 ≈ 0.68) for both Re∗

(figure 4b) as shoaling starts, which is qualitatively consistent with the fit C̃ being larger
than expected from theory. This adjustment to the initial condition is consistent for all
Re∗. As the solitary wave shoals up the steep slope, ηpk/h0 slowly grows, and even
close to overturning, ηpk/h0 is still < 0.77. Overall, the solitary wave amplitude shoaling
(ηpk/a0) is slightly slower than Green’s law (h/h0)

−1/4, similar to BEM simulations on
a similar slope (Grilli et al. 1994), and consistent with the large-slope and significant
nonlinearity regime of Knowles & Yeh (2018). The Re∗ = 2400 solitary wave does have
larger ηpk/h0 during much of the shoaling, but as the solitary wave steepens significantly
near t̃ = 17.9, ηpk/h0 reduces slightly as overturning nears. Similar features can be seen in
the simulations of Grilli et al. (1997).

The wave energy Ẽw changes marginally during shoaling (11 < t̃ < 17.9) between
Re∗ = 2400 and Re∗ = −1800 (figure 4c). At t̃ = 11, Ẽw is slightly (2 %) larger (Ẽw =
0.554) for Re∗ = 2400 relative to Re∗ = −1800 (Ẽw = 0.542). For Re∗ = −1800, Ẽw
decays weakly to Ẽw = 0.532 at t̃ = 17.9, reflecting both the offshore wind slowly
extracting energy from the solitary wave, and small viscous dissipation at the wave
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Figure 4. Statistics of solitary wave shoaling under wind versus non-dimensional time t̃ for Re∗ = 2400
and −1800: (a) horizontal location of peak water elevation xpk/h0; (b) maximum water elevation ηpk/h0;
(c) non-dimensional water energy Ẽw (see (2.12)); and (d) minimum air–sea interface slope min(∂η/∂x). The
time period shown (11 < t̃ < 17.9) corresponds to solitary wave shoaling on the slope until just prior to the
slope going vertical for Re∗ = 2400.

Reynolds number Rew = 4 × 104. For Re∗ = 2400, the wave energy Ẽw is essentially
constant during shoaling, with Ẽw = 0.553 at t̃ = 17.9, as small onshore wind energy
input and weak viscous dissipation largely balance. Over this short duration of shoaling,
for these extremal Re∗, energy transfer between wind and the solitary wave is weak, which
is even more true for the other Re∗value.

Unlike ηpk/h0 and Ẽw, the minimum slope min(∂η/∂x) evolves significantly during
shoaling, with strong differences between Re∗ = 2400 and Re∗ = −1800 (figure 4d). At
t̃ = 11, min(∂η/∂x) ≈ −0.36 for both Re∗, with slightly more negative min(∂η/∂x) for
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Re∗ = 2400. As discussed in § 3.1, by t̃ = 14, the differences in min(∂η/∂x) between
the two Re∗ have grown substantially, with min(∂η/∂x) = −0.46 for Re∗ = 2400, and
min(∂η/∂x) = −0.37 for Re∗ = −1800. For both Re∗, min(∂η/∂x) continues to evolve
rapidly, with large differences between Re∗ values for t̃ > 15. For example, by t̃ = 17.0,
Re∗ = 2400 has min(∂η/∂x) = −0.98, whereas Re∗ = −1800 has min(∂η/∂x) = −0.73,
which is smaller in magnitude. Shortly thereafter, at t̃ = 17.9, min(∂η/∂x) = −1.61 and
−1.13 for Re∗ = 2400 and 1800, respectively, indicating the rapid evolution. These strong
differences in min(∂η/∂x) for the two Re∗ indicate wind effects during shoaling.

3.3. The moment of overturning jet impact
We examine the moment in time when the overturning jet impacts the water surface in
front of it for three different wind speeds (figure 5). We note that the plunging jet is almost
entirely resolved at the smallest AMR non-dimensional mesh size (3.7 × 10−3), thus the
plunging jet with non-dimensional cross-jet width ≈0.05 is well resolved. The time of
impact is defined as the earliest time at which the vertical separation between the lowest
part of the overturning jet and the water surface below it is 
z/h0 ≤ 0.015, or 2.5 % of the
initial solitary wave amplitude a0/h0 = 0.6. This is also approximately 4× the minimum
model non-dimensional resolution 3.7 × 10−3. With this time of impact definition, the jet
is just about to impact but has not quite yet. The breakpoint location xbp/h0 is defined as
the horizontal location of smallest 
z/h0. At the time resolution of model output 
t̃ =
0.01, occasionally the impact time is chosen when the jet has just made contact with the
surface below, and then xbp/h0 is defined as the smallest location to cross z/h0 = 0. This
breakpoint location definition is analogous to that used in Feddersen et al. (2023).

For Re∗ = 2400, the moment of jet impact occurs at t̃ = 19.13 making contact at
xbp/h0 = 40.85 (figure 5a). The overturn has the classical parametric cubic shape
(Longuet-Higgins 1982) seen in both models and observations of wave overturning. The
Re∗ = 2400 overturning jet is relatively thin, and the overturn orientation is relatively
inclined. For Re∗ = 0, overturning jet impact occurs at t̃ = 19.96 at xbp/h0 = 42.05
(figure 5b), farther onshore and later than for Re∗ = 2400. Relative to Re∗ = 2400, the
Re∗ = 0 maximum height of the wave is slightly reduced, the overturning jet is thicker,
and the overturn is longer and oriented more horizontally. Although in the fixed reference
frame the air velocity is essentially zero at z/h0 ≥ 2 (figure 2), as the solitary wave moves
with speed near C̃, the relative air velocity is substantial, and vortices are shed behind
the overturning solitary wave. For Re∗ = −1800, the overturning jet impact occurs even
later, at t̃ = 20.22, and is located at xbp/h0 = 42.25 (figure 5c). Relative to Re∗ = 0,
the Re∗ = −1800 case has an even thicker overturn jet and a longer overturn, which is
oriented even more horizontally. The farther offshore overturning jet impact with onshore
wind (Re∗ = 2400) relative to offshore wind (Re∗ = −1800) is consistent with laboratory
(Douglass 1990) and field-scale (Feddersen et al. 2023) experiments.

We note in passing that a vortex street is visible in the lee of the overturning wave in
figure 5(c). This is the wake of a small droplet torn from the crest of the wave during the
initial stage of overturning. Such droplets occasionally appear in the simulations that we
present, but they are rare and have negligible mass and momentum, therefore do not affect
the dynamics of the evolving breaker. Such droplets do not have great physical significance
in this 2-D setting. For field-scale overturning waves, which DNS models cannot yet
capture in three dimensions, plentiful spray droplets appear during the overturn but their
effects on the geometry and dynamics of the overturning breaker are as yet unknown.
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Figure 5. Overturning solitary wave (aqua blue) at the moment of overturning jet impact on the water surface,
with the bathymetry (brown) and overlaid air vorticity as a function of horizontal x/h0 and vertical z/h0
coordinates: (a) onshore wind, Re∗ = 2400 and t̃ = 19.13; (b) no wind, Re∗ = 0 and t̃ = 19.96; and (c) offshore
wind, Re∗ = −1800 and t̃ = 20.22. The air–water interface is indicated by the black curve.

3.4. Definition of geometrical parameters of wave overturning
Here, we define geometrical parameters of the overturning wave at the moment of
jet impact for the Re∗ = 2400 case (figure 6), following the methodology used in the
experimental study of wave overturning (Feddersen et al. 2023). We note that the shapes of
the overturning wave (figure 6) including the jet are similar to those seen in fully nonlinear
potential flow simulations (Grilli et al. 1997) and in laboratory experiments of overturning
solitary waves (Li & Raichlen 2003), indicating that wave overturning is well resolved.
The first geometrical parameter is the breakpoint location xbp/h0 (magenta diamond in
figure 6). The breaking wave height Hb/h0 is defined as the maximum elevation of the
air–water interface (yellow diamond in figure 6), as no trough is present in front of the
solitary wave, i.e. z/h0 = 0 (figures 3 and 5). The overturn boundary enclosing the air
within the overturn (red curve in figure 6) has area Ao/h2

0 (figure 6). The region of the
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Figure 6. Overturning solitary wave (aqua blue) at the moment of overturning jet impact on the water
surface, with overlaid air vorticity as a function of horizontal x/h0 and vertical z/h0 coordinates for the
Re∗ = 2400 case, and definitions for the geometrical properties of the overturning wave. The air–water interface
is represented by the black curve. The magenta diamond indicates the non-dimensional breakpoint location
xbp/h0, and the yellow diamond indicates the non-dimensional breaking wave height Hb/h0. The red curve
indicates the enclosed overturn region, with area Ao/h2

0, and the grey region indicates the overturning jet area
AJ/h2

0. The dashed red lines schematize the length L and width W of the overturn. The overturn orientation
relative to the horizontal (θo) is indicated.

overturning jet is defined as the upper region of water where the air–water interface is
multi-valued in x/h0, with area AJ/h2

0 (grey region in figure 6). Note that the overturning
jet area was not measured in previous studies. As done previously for overturn area (O’Dea
et al. 2021; Feddersen et al. 2023), both overturn area and jet area are normalized by Hb/h0
so that analysis is performed on Ao/H2

b and AJ/H2
b . The overturn boundary has shape

similar to the functional form (Longuet-Higgins 1982) used previously to fit laboratory
and field measured wave overturns (e.g. Blenkinsopp & Chaplin 2008; O’Dea et al. 2021;
Feddersen et al. 2023). Overturn length L and width W (figure 6) are estimated by rotating
the overturn boundary by the overturn angle θo (figure 6) to the horizontal, and fitting to
the functional form (Longuet-Higgins 1982):

z′

W
= ±3

√
3

4

√
x′

L

(
x′

L
− 1

)
, (3.1)

where the x′ and z′ coordinates are oriented along and across the overturn, and L and W are
the overturn length and width (figure 7). Consistent with results from laboratory and field
(Blenkinsopp & Chaplin 2008; O’Dea et al. 2021; Feddersen et al. 2023), the modelled
overturn boundary is well fitted to the functional form (3.1) for all Re∗.

3.5. Geometrical parameters dependence on wind
Across all Re∗, xbp/h0 varies from 40.9 to 42.2, with smaller xbp/h0 (farther offshore) for
increasing Re∗ as in figure 5. To highlight wind effects, we define a demeaned breakpoint
location as


xbp

h0
= 〈xbp〉

h0
− xbp

h0
, (3.2)

where 〈 〉 is an average over the eight simulations at different Re∗. Thus positive 
xbp/h0
is farther offshore, consistent with previous experiment work (Douglass 1990; Feddersen
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Figure 7. Geometrical parameters of the overturning wave as a function of wind Reynolds number Re∗:
(a) demeaned non-dimensional breakpoint location 
xbp/h0 (see (3.2)); (b) wave height at breaking Hb/h0; (c)
non-dimensional wave overturn area Ao/H2

b ; (d) overturn aspect ratio W/L; (e) non-dimensional wave jet area
AJ/H2

b ; ( f ) overturn angle θo.

et al. 2023). From no wind (Re∗ = 0) to onshore wind (positive Re∗), 
xbp/h0 increases
rapidly from −0.2 to 0.9, with the largest increase at larger Re∗ (figure 7a). From no
wind to offshore wind (negative Re∗), 
xbp/h0 decreases more slowly with Re∗ than for
onshore wind, reaching 
xbp/h0 = −0.4 at Re∗ = −1800 (figure 7a). This breakpoint
dependence on the wind is qualitatively consistent with experimental results (Douglass
1990; Feddersen et al. 2023). Normalizing the field-scale results of Feddersen et al. (2023)
by h0, as we do here, yields observed field-scale 
xbp/h0 variation ±0.8 consistent with
modelled 
xbp/h0 variation. However, the field-scale variation occurs from substantially
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weaker wind variations than seen in the modelling, as will be discussed. We next examine
the effect of wind on the breaking wave height Hb/h0. For no wind (Re∗ = 0) Hb/h0 =
0.64, and for onshore wind Hb/h0 increases to Hb/h0 = 0.674 for Re∗ = 2400 (figure 7b).
From no wind to offshore wind, Hb/h0 decreases slightly to Hb/h0 = 0.627. Note that
this range of Hb/h0 is a reduction relative to the largest values of ηpk/h0 during shoaling
(figure 4b), similar to potential flow simulations of overturning solitary waves (Grilli et al.
1997).

We now examine wind effects on non-dimensional overturn area Ao/H2
b (figure 7c).

From no wind (Re∗ = 0) to onshore wind, Ao/H2
b decreases from Ao/H2

b = 0.352 at
Re∗ = 0 to Ao/H2

b = 0.301 at Re∗ = 2400. From no wind to offshore wind, Ao/H2
b is

relatively constant before decreasing slightly to Ao/H2
b = 0.344 at Re∗ = −1800. This

relationship with Ao/H2
b and Re∗ is qualitatively consistent with field-scale experiments

(Feddersen et al. 2023). However, the experimental Ao/H2
b varied between 0.2 and 0.4,

a larger variation than seen in the model, for weaker wind or Re∗ variation. Next, we
examine the overturn aspect ratio W/L (figure 7d). For no wind W/L = 0.300, which
increases for onshore wind to W/L = 0.381 at Re∗ = 2400. For offshore wind, W/L is
largely constant, varying from 0.296 to 0.305. This pattern of increasing W/L with positive
Re∗ is inconsistent with the experimental results of Feddersen et al. (2023), who found that
W/L decreased with increasing onshore wind. Furthermore, the experimental results had
larger W/L range, varying from 0.3 to 0.5, larger than the 0.3 to 0.38 modelled variation
in W/L.

We next examine the wind effect on the non-dimensional jet area AJ/H2
b (figure 7e). For

no wind AJ/H2
b = 0.219, which decreases rapidly with onshore wind to AJ/H2

b = 0.132 for
Re∗ = 2400. For offshore wind, AJ/H2

b is largely constant with Re∗, varying from 0.229 to
0.219. Overturn jet area has not been examined previously experimentally or numerically.
Finally, we examine the overturn angle θo (figure 7f ). For Re∗ = 0, the overturn angle is
θo = 29◦, and this increases with onshore wind to θo = 39◦ for Re∗ = 2400, consistent
with the orientations of the overturn seen in figures 5(a,b). For offshore wind, θo varies
only weakly with negative Re∗. This range of θo is smaller than θo ≈ 42◦ ± 8◦ at the Surf
Ranch (Feddersen et al. 2023). It is also on the low end of 30◦ < θo < 60◦ reported in surf
zone overturning waves (O’Dea et al. 2021).

3.6. Relative strength of pressure and shear stress
Airflow can affect the water-based solitary wave via two mechanisms on the air–water
interface. The first mechanism is through an airflow-induced pressure, and the second
mechanism is either normal or shear viscous stresses. Here, we will examine the relative
strength of pressure and viscous stresses on the air–water interface at a shoaling time just
prior to when η goes multi-valued. Henceforth, we will use non-dimensional variables
indicated with (̃ ). As discussed in § 2.1.6, air pressure and velocity gradients are output
and estimated at a small non-dimensional distance 
 = 0.01 normal to the air–water
interface. This prevents biases in pressure estimation due to noise in air–water interface
curvature estimates. From the velocity gradients, the non-dimensional viscous stress tensor
S̃ is (in index notation)

S̃ij = μ̃a

(
∂ ũi

∂ x̃j
+ ∂ ũj

∂ x̃i

)
, (3.3)
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where the non-dimensional air dynamic viscosity is μ̃a = Re−1
w μa/μw = 4.53 × 10−7.

The normal (ñ) and parallel (s̃) unit vectors to the air–water interface are also estimated.
At the air–water interface η, the viscous normal stress is f̃n = ñ · S̃ · ñ and the viscous
shear stress is f̃s = s̃ · S̃ · ñ. To isolate the pressure disturbance associated with the solitary
wave, the air–water interface non-dimensional pressure differential 
p̃ is estimated as
the pressure p̃ minus an upstream pressure located at 
x̃ = ±6, depending on the wind
direction.

We examine the end of the shoaling period at t̃ = 18.0, where the Re∗ = 2400 air–water
interface η̃ is close to being multi-valued. For both Re∗ = 2400 and Re∗ = −1800, the
η̃(
x̃) profiles have classic sawtooth shapes with steep front face and a milder-sloped
back face (figures 8a,b), with steeper front face for Re∗ = 2400 (e.g. figure 4d). For Re∗ =
2400, the windward side of the solitary wave (−3 < 
x̃ < −1) has mildly elevated p̃ ≈
0.2 × 10−3 (figure 8c), and on the leeward side (in front of the wave), a deep low pressure
with minimum p̃ = −3.7 × 10−3 occurs over 0 < 
x̃ < 4. This low pressure is associated
with the strongly separated flow that occurs many 
x̃ in front of the wave (figures 3a,b). In
contrast, the Re∗ = −1800 simulation has much higher p̃ ≈ 1.5 × 10−3 on the windward
wave face, and a deeper low pressure with minimum p̃ = −6.3 × 10−3 in the lee of the
wave (figure 8d). For Re∗ = −1800, the lee low-pressure width (≈ 2
x̃ wide) is half as
wide as that for Re∗ = 2400 due to the differences in flow separation and attachment.
On the air–sea interface, the magnitude of the viscous stresses relative to pressure are
generally small (figures 8e, f ). For Re∗ = 2400 and −1800, both normal and shear stresses
have magnitude < 5 × 10−5, approximately a factor of 100 times smaller than that of p̃.
The normal stresses are a factor 2–3× larger than the shear stresses for both Re∗ = 2400
and Re∗ = −1800. The Re∗ = −1800 viscous stresses are larger than those of Re∗ = 2400
due to the stronger shear between the wind blowing counter to the +
x̃ directed solitary
wave velocities.

This demonstrates that the pressure forces must be those that are influencing changes in
wave shoaling and overturning. This result at t̃ = 18.0 is consistent at other wave shoaling
times 11 < t̃ < 18 where pressure variability exceeds viscous stresses by 100 times. These
results are consistent with DNS of wind-wave growth that found pressure approximately 10
times larger than viscous stresses, in Wu et al. (2022). They also found that pressure forces
grew with wave slope particularly for smaller wave age, but that viscous forces did not
grow. During shoaling, the soliton is steeper (figure 4d) than for any regime of Wu et al.
(2022). Moreover, Wu et al. (2022) investigated a lower Re∗, for which viscous forces are
likely to be stronger relative to inertial effects than for the strongest Re∗ presented here.
These observations may explain why our ratio of pressure to viscous forces is so strong
relative to Wu et al. (2022).

3.7. The surface dynamic boundary condition
With the viscous stresses negligible, we next examine the role of p̃ on the air–water
interface η̃ using the irrotational flow surface dynamic boundary condition boosted into
a moving horizontal reference frame 
x̃ with constant best-fit speed C̃ (figure 4a) for the
Re∗ = 2400 and Re∗ = −1800 cases. In the 
x̃ reference frame moving with constant
speed C̃, the non-dimensional dynamic boundary condition is transformed to

∂φ̃

∂ t̃
− C̃ũ + 1

2
[ũ2 + w̃2] + η̃ + 
p̃ = T̃, (3.4)
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where φ̃ is the non-dimensional velocity potential, all terms are evaluated at z̃ = η̃, 
p̃
is the pressure jump at the surface, and T̃ represents the non-dimensional surface tension
term, for which the curvature κ from (2.1) can be written in terms of the (single-valued)
interface η̃:

T̃ = Bo−1 ∂2η̃/∂(
x̃)2

(1 + (∂η̃/∂(
x̃))2)3/2 . (3.5)

The change in the solitary wave in the moving reference frame is represented by ∂φ̃/∂ t̃,
and for an unchanging solitary wave propagating at C̃, ∂φ̃/∂ t̃ = 0. Thus for 
p̃ = 0 and
no surface tension, the residual

R̃ = −C̃ũ + 1
2 [ũ2 + w̃2] + η̃ (3.6)
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is zero for an unchanging solitary wave. Non-zero R̃ can therefore be interpreted as the
signature of the wave’s unsteady evolution, i.e. of its evolving asymmetry and nonlinear
steepening. The terms −C̃ũ, (1/2)[ũ2 + w̃2] and T̃ are also evaluated on the air–water
interface. The terms of (3.4) are analysed during the latter part of the shoaling phase
(14 ≤ t̃ ≤ 18) when significant differences in the minimum slope on the front of the wave
face occur (figure 4d) and when η̃ is still single-valued.

During shoaling (t̃ = 14.0 to t̃ = 18.0), both Re∗ = 2400 and Re∗ = −1800 solitary
waves evolve from a more symmetrical wave to an asymmetrical sawtooth-type pattern
(figures 9a,b) as maximum η̃ ≈ 0.7 throughout (as in figure 4a). Although subtle
differences between the Re∗ = 2400 and Re∗ = −1800 solitary waves are evident at
t̃ = 14.0, by t̃ = 18.0, the Re∗ = 2400 solitary wave front face is clearly significantly
steeper than for Re∗ = −1800, consistent with figure 4(d). For both Re∗ values, the peak is
−C̃ũ ≈ −1 at t̃ = 14.0, which grows in time and becomes more asymmetric (solid lines in
figures 9c,d), with Re∗ = 2400 having more growth and asymmetry at t̃ = 18.0. For both
Re∗ at t̃ = 14.0, the nonlinear term (1/2)[ũ2 + w̃2] is largely symmetric, with maxima
0.36 and 0.27 for Re∗ = 2400 and Re∗ = −1800, respectively (dashed lines in figures
9c,d), indicating wind-induced difference in shoaling at this time. This also indicates that
the weakly nonlinear assumption is starting to be questionable, consistent with results
from fully versus weakly nonlinear Boussinesq wave models (e.g. Wei et al. 1995). With
increasing time, (1/2)[ũ2 + w̃2] increases dramatically to values 0.88 and 0.63 at t̃ = 18.0,
and also becomes asymmetric, indicating strong nonlinearity at this time, particularly for
Re∗ = 2400.

Although the η̃, −C̃ũ and (1/2)[ũ2 + w̃2] terms are O(1) (figures 9a–d), the residual
term R̃ that sums these terms is an order of magnitude smaller (figures 9g,h). At t̃ = 14.0,
R has a minimum ≈ −0.06 that is slightly more negative and broader for Re∗ = 2400.
Although over time R̃ grows broadly in 
x̃, for t̃ ≥ 16.0, R̃ growth is concentrated at
the solitary wave’s front face (0 ≤ 
x̃ ≤ 0.7), which attains minimum values −0.26 and
−0.18 for Re∗ = 2400 and Re∗ = −1800, respectively. This focused large R̃ leads to rapid
φ̃ changes leading to overturning.

We have already seen that the magnitude of the pressure term at t̃ = 18.0 is 
p̃ ≈
5 × 10−3 (figures 8c,d). Over times 14.0 ≤ t̃ ≤ 18.0, 
p̃ for Re∗ = 2400 is negative in
the lee of the solitary wave (0 < 
x̃ < 2) and grows with time (figure 9g). In the lee
region but away from the concentrated R̃ (1 < 
x̃ < 2), 
p̃ can be 10 % or more of
R̃ with the same sign, thus enhancing R̃. From 14.0 ≤ t̃ ≤ 18.0, 
p̃ for Re∗ = −1800
is also negative in the solitary wave lee (−1.5 ≤ 
x̃ ≤ 0) and grows with time. In this
region, 
p̃ can also be 10 % of R̃, but on the rear face of the soliton. Closer to the
time of overturning in the narrow region 0 ≤ 
x̃ ≤ 0.7 where R̃ is concentrated, 
p̃ is
small (1–2 %) relative to R̃. However, the significant 
p̃ (≈ 10 % of R) in the lee outside
of the concentrated region will, during shoaling, induce slowly growing wind-induced
differences in wave shape that manifest themselves forward in time until the overturning jet
impacts.

As our Bo = 4000 is not at field scale, we also examine the surface tension term T̃
(figures 9i, j). For t̃ ≤ 16.0, the T̃ term is concentrated near 
x̃ = 0 and is an order of
magnitude smaller than 
p̃. However, T̃ grows rapidly at the later stages of shoaling, and
by t̃ = 18.0, is ≈ 10−3 at 
x̃ ≈ 0 – still small overall relative to 
p̃ in the lee, but of
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the same magnitude as 
p̃ at 
x̃ ≈ 0 for Re∗ = 2400 (figures 9i, j). Thus surface tension
effects are generally small but not negligible relative to pressure. Relative to the residual
R̃, because T̃ is concentrated where R̃ is concentrated, the surface tension term is orders
of magnitude smaller than R̃ for t̃ ≤ 18.0. As the overturning jet forms and falls, surface
tension effects will become even more important.

4. Discussion of wind effects on the solitary wave

4.1. Wave shoaling
We now discuss the wind effects on wave shoaling statistics (figure 4) in the context of
previous studies. Zdyrski & Feddersen (2022) derived a variable coefficient KdV-Burgers
equation for soliton shoaling over mildly sloping bathymetry with Jeffreys style wind
forcing (Jeffreys 1925) where the air–water interface pressure is proportional to ∂η/∂x.
This equation applies asymptotically only well before wave overturning. Although their
slope was 3–7 times gentler than that here, for offshore to onshore wind, their wind-forced
solitary waves had qualitatively similar shoaling to those here, particularly the steepness
of the front of the wave (figure 4d). This similarity occurs even though the air–water
interface pressure distribution has only a loose qualitative resemblance to the Jeffreys style
wind forcing. The effect of wind on the solitary wave during shoaling is also qualitatively
similar to the laboratory experiments with periodic waves and wind with U/C varying
from 0 to 6 (Feddersen & Veron 2005). At a fixed location, the time evolution of the
shoaling wave revealed a larger maximum elevation and a temporally narrower wave than
for no wind. Similar features were seen in the solutions of Zdyrski & Feddersen (2022) for
onshore and offshore wind. Here, we examine the temporal evolution of η/h0 at a location
x/h0 = 37.5 that is still on the bathymetric slope but that has shallowed significantly
(figure 10). At this virtual wave gauge, the solitary wave has shoaled significantly. At this
location, the Re∗ = 2400 solitary wave reaches a maximum η/h0 = 0.76 at t̃ = 17.15 and
decays rapidly (blue curve in figure 10). The Re∗ = −1800 solitary wave initially increases
similarly to that for Re∗ = 2400 until η/h0 = 0.4 (orange dashed line in figure 10).
The subsequent maximum η/h0 = 0.73 is smaller and shifted slightly later in time. The
subsequent temporal decay is also shifted later such that the temporal width of the solitary
wave is wider for Re∗ = −1800. This is qualitatively similar to the laboratory experiments
(Feddersen & Veron 2005) and that of the relatively simple vKdV–Burgers equation
(Zdyrski & Feddersen 2022), even accounting for differences in wind forcing, bathymetry,
and periodic versus solitary waves.

4.2. Wave overturning
The integrated wind-induced surface pressure effect on the shoaling solitary wave then
leads to differences in the breakpoint location and the overturn geometrical parameters
(figures 6 and 7). The geometrical parameters in the present numerical simulations have
similarities and differences to the field-scale experiment of Feddersen et al. (2023). The
breakpoint location 
x/h0 and overturn area Ao/H2

b (figures 7a,c) have similar functional
dependence on wind to the field-scale observations. However, the aspect ratio W/L
(figure 7d) does not. Furthermore, variation in overturn geometrical parameters requires
a stronger wind in the present simulations than in the field-scale observations. Here, we
explore potential causes for these differences.
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Figure 10. Air–water interface height η/h0 versus t̃ at location x/h0 = 37.5 for Re∗ = 2400 and
Re∗ = −1800.

4.2.1. Wave Reynolds number and Bond number effects
The Rew = 4 × 104 and Bo = 4000 values in this study are much smaller than the
field-scale values (Rew = 1.4 × 107 and Bo = 3.6 × 105) of Feddersen et al. (2023) as
both Rew and Bo are defined in terms of the offshore depth h0. The wave energy decreases
marginally but noticeably for all Re∗ (figure 4c). As expected, for strongest offshore wind
(Re∗ = −1800), the wave energy decrease is most noticeable, decreasing 2 % from t̃ = 11
to t̃ = 18. Even the strongest onshore wind case Re∗ = 2400 shows wave energy loss.
This indicates that the pressure work of the wind on the solitary wave is relatively weak.
BEM-based potential-flow models simulate well with near-perfect energy conservation
laboratory solitary waves that propagate long distances without significant dissipation
(Grilli et al. 1994). Such BEM models are in the Rew → ∞ regime. Here, Rew is finite,
and the weak energy decrease across all Re∗ is likely due to viscous dissipation at the
bottom and air–water interface boundary layers. The boundary layers have thicknesses
proportional to Re−1/2

w (Batchelor 1967), which result in an exponential wave height
decrease with decay constant also proportional to Re−1/2

w (Keulegan 1948). The present
Rew being much smaller than field values results in more dissipation in the shoaling wave
prior to breaking. This may then indirectly require a stronger 〈U〉/C than in the field in
order to generate the same geometrical overturn parameters.

Any Bo effects are strongest at overturning when interface curvature is largest. For
deep-water breaking Stokes waves, Mostert et al. (2022) observed that Bo did not affect
the nonlinear steepening processes, but directly modulated the geometrical overturn
parameters. That study did identify a sufficiently large Bo (defined according to the
deep-water breaker wavelength, hence different from the definition here) for which surface
tension effects ceased to affect the overturn. That the surface tension contribution reaches
the same order as pressure contribution in the surface dynamic boundary condition
(figures 9i, j), implies that surface tension effects are not negligible during overturning,
and therefore could have some effect on the overturn geometry, potentially explaining the
different aspect ratio relationship to wind between the present simulations and the field
experiment. Quantifying potential Rew and Bo effects is left for future work.

4.2.2. Two-dimensional versus three-dimensional turbulence
The 2-D simulations are convenient with lower computational cost. They provide a
good indication of energetic dissipation during wave breaking, as discussed by Iafrati
(2009), Deike et al. (2015) and Mostert et al. (2022) in the context of deep-water
breakers. However, here we are concerned with the wind-induced effects on steepening
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and overturning solitary waves, which depends on the structure of the airflow over the
air–water interface. An obvious 2-D effect in the present simulations is the formation
of relatively large, wake vortices for both onshore and offshore wind (figures 3 and 5).
This air turbulence is constrained to be 2-D and therefore is characterized by an inverse
energy cascade transferring energy from smaller to larger scales. This is in contrast to
the three-dimensional (3-D) turbulent airflow in the field-scale experiment of Feddersen
et al. (2023), featuring a direct cascade where larger eddies rapidly break up to smaller
scales. The airflow separation, wake and reattachment to the solitary wave during wave
shoaling would be different between 2-D and 3-D turbulence, and certainly result in
different pressure forcing at the air–water interface. More concretely, for strong onshore
wind (Re∗ = 2400, figures 3a,c), the airflow wake has scales of the solitary wave height,
and flow reattachment occurs many x/h0 in front of the wave. This results in a wake low
pressure that is much broader than for offshore wind (figures 9g,h). If the turbulent were
3-D, then flow reattachment would likely occur closer to the wave, with the wake low
pressure region thus being narrower, and particularly for onshore wind, affecting more the
wave face. As overturning begins, the wake structure would also be different. With the
associated different air–water interface pressure, the resulting overturn geometry would
likely be different. This may explain the qualitatively different W/L dependence on wind
between simulations (figure 6d) and field experiment as well as simulations requiring a
stronger 〈Ū〉/C.

4.2.3. Two-dimensional versus three-dimensional wave overturning
The present simulations and the field study of Feddersen et al. (2023) have underlying
geometrical differences in wave overturning. In our simulations, the wave overturn is 2-D
(e.g. figure 5), which can be interpreted as an overturn with infinitely long crest, the
entirety of which is simultaneously overturning. However, the solitary wave at the Surf
Ranch (Feddersen et al. 2023) approaches shore obliquely and overturns progressively
(figure 11) such that wave overturning is 3-D, with significant along-crest variation.
The wave transitions along the crest from an offshore region where η is single-valued,
through the process of overturning, ending in a region where the overturn void collapses
and only foam is present (figure 11). Most depth-limited wave breaking in the ocean
is 3-D. The geometrical differences between 2-D and 3-D overturning likely result in
different pressure distributions during overturning. For a 2-D overturn, the moment of
impact leads to a dramatic increase in air pressure ( p̃ = 0.08), trapped by the water of
the overturn (figure 12). This p̃ magnitude is 20–40 times larger than that during shoaling
(figure 9). In contrast, a progressive 3-D overturn (as in Feddersen et al. 2023) always
has an overturn volume open to one spanwise side, inducing a spanwise airflow out of the
overturn. This would lead to a pressure drop within the overturn, which is not captured
in our 2-D simulations. The resulting air–water pressure distribution would be different
during the overturning. This may explain the differences seen between the 3-D overturning
(Feddersen et al. 2023) and the simulated 2-D overturning, particularly in the aspect ratio
W/L.

Finally, we note that the rounded shape of the tip of the plunging jet in figure 12
is consistent with a range of prior studies. High-resolution DNS of 2-D solitary waves
showed a plunging solitary wave with a round tip (e.g. figure 6 of Mostert & Deike 2020).
A similar feature is seen in in the fully nonlinear potential flow simulations (e.g. figure 4
of Grilli et al. 1997). Such rounded jet tips were observed in laboratory experiments of
overturning solitary waves (Li & Raichlen 2003). The rounded jet tip is consistent with
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(a) (b)

Figure 11. Photos of progressively shoaling and overturning solitary waves at the Surf Ranch. (a) Aerial photo
of the obliquely incident solitary wave, with arrow indicating a view into the overturn. (b) Photo looking into
the progressively overturning solitary wave. Note that the two photos are of different waves. Progressively
overturning waves are the norm in the ocean. Photo credits: (a) Rob Grenzeback, (b) Pat Stacey.
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Figure 12. For Re∗ = −1800 at t̃ = 20.22, an overturning solitary wave (aqua blue) at the moment of
overturning jet impact on the water surface, with overlaid air pressure as a function of horizontal x/h0 and
vertical z/h0 coordinates. The air–water interface is indicated by the black curve. Note the very high pressure
within the nearly enclosed overturn.

experimental deep-water plunging waves (Erinin et al. 2023a,b). A rounded jet tip is also
evident in the image in figure 11(b).

4.3. Implications and the overturning jet
The implications of the wind effects on overturned shoaling and overturning waves were
discussed in Feddersen et al. (2023). Essentially, onshore and offshore wind for the
otherwise identical wave fields will induce changes to wave overturning shape generating
different cross-shore wave dissipation patterns, turbulence injection and sediment
suspension. Such effects are not accounted for in modern coastal engineering wave models.
Such wind-induced effects may then eventually affect near-shore morphological evolution.
Potential wind effects on turbulence injection can be seen concretely in the modelled
overturning jet area AJ/H2

b (figure 7e), whose wind effects have not been examined
previously. Spanning the strongest offshore to onshore wind, AJ/H2

b varies by a factor
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of two, the strongest variation in all the parameters. This AJ/H2
b variation also equates to

a large variation in potential energy available in the overturn. This will lead to stronger
turbulence injection and increased sediment suspension near the breakpoint for offshore
wind relative to onshore wind. Such wind effects are commonly understood in the surfing
community.

5. Summary

Here, wind effects (given by the wind Reynolds number Re∗) on solitary wave shoaling and
overturning were studied with the two-phase DNS model Basilisk run in two dimensions.
The fixed bathymetry was similar to that of the Surf Ranch. Wave Reynolds and Bond
numbers (Rew = 4 × 104, Bo = 4000) were fixed, at values orders of magnitude smaller
than experiment. A precursor wind-only simulation (Appendix A) provides wind initial
conditions. During the subsequent two-phase simulations, wind forcing is removed, but
the wind does not have sufficient time to decelerate meaningfully (Appendix B). The
propagating solitary wave sheds a 2-D turbulent air wake either in front of the wave for
onshore wind or on the back of the wave for offshore wind. The onshore and offshore wind
cases have different wake structures. The propagating solitary wave has nearly uniform
speed with minimal wind-induced energy changes over the rapidly varying bathymetry
for all Re∗. The solitary wave face slope is clearly influenced by the wind, with steeper
slope for stronger onshore wind. Changes to modelled shoaling solitary wave shape are
qualitatively consistent with previous laboratory studies and reduced-order models. At the
moment of overturning jet impact, wind-dependent differences in overturn wave shape are
evident, and these shapes are quantified by geometrical parameters. The non-dimensional
breakpoint location and overturn area have functional dependence on wind similar to
those in experiment. However, modelled wind speeds that are a factor 2–3 stronger than
observed are required. The overturn aspect ratio had opposite functional dependence on
wind compared to that in previous experiment. The overturning jet area, not having been
studied previously, depends strongly on wind. Airflow can affect the water-based solitary
wave through two mechanisms on the air–water interface: pressure or viscous stresses.
Throughout the shoaling processes, normal and shear viscous stresses are negligible
relative to pressure on the air–water interface. Surface tension effects are negligible
early in shoaling, but as the wave steepens, these effects grow rapidly, such that near
overturning, surface tension effects are no longer negligible and likely become important
in overturning. In a propagating solitary wave frame of reference, pressure is low in the
lee and contributes 2–5 % to the velocity potential rate of change in the surface dynamic
boundary condition. Integrated over the time of shoaling, this leads to changes in the wave
shape. Although at far smaller Rew and Bo, wind-induced changes to modelled shoaling
and overturning wave shape are largely consistent with wind effects seen in previous
laboratory (Feddersen & Veron 2005) and field-scale (Feddersen et al. 2023) studies. Three
potential reasons why the modelled overturn aspect ratio differs from experiment and why
a stronger modelled wind is required are explored. The first involves potential scale effects
resulting from our Rew and Bo being much smaller than field scale. The second reason
is that the airflow is 2-D rather than 3-D, resulting in different flow separation, wake
structure and reattachment than experiment. The third reason is an underlying difference
in the modelled 2-D geometry of wave breaking relative to the 3-D geometry at the Surf
Ranch. This study with a 2-D model configuration is the first computational study to
examine in detail the effect of wind on shoaling and overturning wave shape. The dramatic
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wind effects on the non-dimensional overturning jet area, and thus to the potential energy
available in the overturn, make concrete the implications of wind-induced changes to wave
shape. However, new questions have also been raised, and addressing them will necessitate
3-D simulations at far greater computational cost.
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Appendix A. Precursor simulations to obtain wind air initial condition

An air-only simulation over a moving solitary wave solid boundary is performed as a
precursor to each coupled simulation, providing air initial conditions to the coupled model.
The precursor simulation is done under a Galilean transformation in the reference frame
of the solitary wave, and is physically equivalent to allowing an unchanging solitary wave
to propagate in an arbitrarily long channel of constant depth in the presence of wind.
At the solitary wave surface, a no-slip velocity boundary condition given by (2.5) and
translated through a Galilean transformation into the solitary wave’s frame of reference
moving at C̃ in the +x direction is applied. In the solitary wave reference frame, airflow
at the air–water interface must be in the −x direction to match the solitary wave surface
velocity boundary conditions (see (2.5)). An external, spatially and temporally uniform
pressure gradient is used to force the wind given by (2.9). The precursor simulation is
run until equilibrium. The equilibrium airflow is relatively insensitive to the choice of
initial condition, which affects only the time to equilibrate. Here, the initial condition
for air vertical velocity is w = 0. The initial condition for horizontal velocity is uniform
in x, and u is set to a logarithmic profile transformed into the solitary wave reference
frame with an inner-layer velocity profile that goes to u = −C at the boundary. This
u initial condition does not match the no-slip boundary condition on the solitary wave
(see (2.5)). However, any generated transients are advected away, eventually leaving an
equilibrated state for use as initial condition in the coupled air–water simulations. Identical
to the coupled simulation, a Neumann pressure condition ∂p/∂x = 0 is placed on the
inlet, and a Dirichlet pressure condition p = 0 is placed on the outlet, both uniformly
in the vertical. In the moving reference frame, the airflow in the precursor stage may
not be unidirectional, particularly for strong onshore winds, as the near-surface airflow
will be in the −x direction, and higher in the air column it will be in the +x direction,
thus neither boundary is fully an inlet or outlet. However, since the airflow is forced
and the solitary wave is sufficiently far from either boundary, specific choices for lateral
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Figure 13. (a) Non-dimensional mean wind speed 〈Ū〉/C profiles as functions of z/h0 for three Re∗,
with horizontal bars indicating both time and horizontal standard deviation. (b) Time series of x-averaged
non-dimensional wind speed Ū/C as functions of non-dimensional time t̃ = t(g/h0)

1/2 for three Re∗, with
z/h0 = 1. The legend in (b) also applies to (a).

boundary conditions do not significantly affect the wind profile. For all Re∗, the precursor
simulations were performed for a non-dimensional runtime (
t̃) of 1000, with a maximum
of 11 levels of grid refinement, resulting in 
x/h0 = 0.0293, which is sufficient, due to the
relatively large scale of the solitary wave and the lack of need to resolve very small-scale
dynamics such as the overturn. A non-dimensional runtime of 800 was sufficient for
obtaining an equilibrated initial condition for the largest Re∗ magnitude.

Appendix B. Wind statistics during the shoaling stage

Here, we provide statistics of the wind velocity during the shoaling stage. The x-averaged
non-dimensional wind speed is given by Ū(z, t)/C (see (2.14)) and the time-average
of Ū/C is 〈Ū〉(z)/C (see (2.15)). The standard deviation σU represents both time and
horizontal variability, and is given by

σU(z/h0) =
[

1
18

∫ 19

1

{
1

Lx/h0

∫ Lx/h0

0
[u(x/h0, z/h0, t̃) − 〈Ū〉(z/h0)]2 d(x/h0)

}
dt̃

]1/2

.

(B1)

For Re∗ = 0, 〈Ū〉/C is essentially zero for all z/h0, with slight wind variation σU/C at
z/h0 = 1 (diamonds and horizontal bars in figure 13a). For onshore or offshore wind
(Re∗ /= 0), 〈Ū〉/C magnitude mostly increases in the vertical, with weak wind variation
for z/h0 ≥ 6, but with significant σU/C near z/h0 = 1 due to the flow separation off the
solitary wave (figures 3 and 5). In the reference frame of the moving solitary wave, the
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wind variability is much weaker. We also examine the time dependence of the x-averaged
wind velocity Ū/C at the vertical location of z/h0 = 1 over 1 ≤ t̃ ≤ 20 (figure 13b). For
Re∗ = 0, Ū/C is essentially zero for all t̃. For onshore wind (Re∗ = 2400), Ū/C increases
weakly from Ū/C = 3.67 at t̃ = 1 to Ū/C = 3.85 at t̃ = 19 as the soliton wake becomes
more established. For offshore wind (Re∗ = −1800), the wind slows approximately 10 %
over the simulation, with Ū/C = −2.25 at t̃ = 1 to Ū/C = −2.05 at t̃ = 19. Overall, these
10 % variations in Ū/C indicate that with the forcing turned off, the wind is largely steady
over the time of shoaling and commencement of overturning.
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