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UNIFORM PARTITION AND THE BEST LEAST-SQUARES
PIECEWISE POLYNOMIAL APPROXIMATION

FRANgOIS DUBEAU

It is shown that the best least-squares piecewise n degree polynomial approx-
imation of xn+1 over [a, 6] is obtained for a uniform partition. Moreover the
approximation is continuous for n odd and discontinuous, with equal stepsizes at
the nodes, for n even.

The problem considered here has been introduced by Stone [12] for n — 1. In this
paper Stone has considered the least-squares continuous piecewise linear approximation
ofafunction /(•) over [a, 6]. For a quadratic function f(x) = px2+qx+r, or essentially
for / (x) = x2 , his result states that the optimal solution is obtained for the uniform
partition and the global solution is given by the solution of a least-squares problem
on each subinterval. For a general function /(•) he has proposed an iterative method
for solving the necessary optimality conditions. The problem for n = 1 has also been
considered by Ream [10], Bellman [2], Gluss [6], Cantoni [3], Tomeck [13] and others.
It is also related to the polygonal approximation of data for computer vision, graphics
and image processing (see [7], [8] and [9]).

Let

Y[ = {A = {x<}£0 | a = x0 < . . . < xi < . . . < xN = b}
N

be the set of all partitions A of [a, b] into exactly N intervals. Let Vn[xi-i, x<] be
the set of all polynomials of degree at most n denned over [XJ_I, XJ] and let

N

The object of this note is to show that the minimum of
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subject to A £ IIjv and p = (pi(-), . . . , PN(')) £ ~PN> ' S obtained for the uniform par-
tition A* = {x*{ = a + i(b — a)/N}iL0 . Moreover the optimal p*()'s form a continuous
approximation for n odd or a discontinuous approximation with equal stepsizes at the
nodes for n even. The optimal p* = (pi(-), • • •, pJv(O) *s called the best least-squares
piecewise n degree polynomial approximation of xn+1 over [a, b].

The necessary conditions for the optimality of p and A are:

(A)

/ ' (xn + 1 -Pi(x)) q{x)dx = 0 for all g() G 7>"[*i_i, *;] and i = 1, . . . . N;

(B)
[ < + 1 -Pi(xi)]2 ~ [x?+1 -Pi+1(xi)]2 = 0 for all i = 1, . . . , N - 1.

Before considering (A) and (B), let us recall some properties of the Legendre poly-
nomials 7?/(-) (I = 0, ..., k) defined on [—1, 1]. They form an orthogonal basis of
Vk[— 1, 1] with respect to the usual scalar product

(p{), 5(0) = f P(05(0#-

To obtain an orthogonal basis for Vk[xi-i, Xi] we consider the transformation

where 2J(«) = ( ' " *£l}~{* " *\

and the polynomials T/,i(0 = ^t ° ^i(0 (̂  = 0i • • •, A)- It follows that the polynomials
""*, »(0 (̂  = 0, . . . , fc) form an orthogonal basis of Vk[xi-i, Xi] with respect to the usual
scalar product

(K0. 9(0) = ['' P(*)9(x)dx.

The main properties of the polynomials ??/(•) and Tt,i(-) are summarised in the table
on the next page (see [4] or [11, pp.126-127]).

Using the orthogonal basis {Ti,i(-) 11 = 0, . . . , n + 1} for 'Pn+I[x;_i, as,-], we can
n+l

write xn+1 = £) «/,iT/|t-(a5) where

«*,«=/" xn+intli(x)dx/ ['' nl
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1.
2.

3.

4.

5.

wt(-l) = (-1)' and wt(l) = 1

f1 £k~ U)d£ 2k+l<-k'-f

/^i 5r*(0^(^)^ = ° for k ¥= I

"•/,<()

w/,t(*.--i) = (-1)1 and TT^^Z;) = 1

f-i Jb w (^-^_x)*+1(Jfe!)3

J»,-_l 7r«,i^a;Ja"c (2fc+l)!
r*i 2 / \ j (*i-*t-l)

*^xi —1 *>*^ ' 2 f c + l

/-'!.! Tfc,i(=)^,i(")^ = 0 for & ^ /

TABLE. Basic properties of 7?/(-) and ir/,i(-)-

for I = 0, . . . , n + 1. In particular, using (3), we have

" (2n + 2)!

For a given partition A = {xi}^0 > *^e solution of (A) is

1=0

and

It follows that

(an+iii7rn+lii(s))2<iz

(2n + 3) [(2n + 2)!]2

N
and

But, from an inequah'ty for weighted means (see [5] or [1]), we have

1 N ( 1 N N2«+3

( )

with a strict inequah'ty if the (ZJ — Xi_i) are not all equal. Then
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Hence F( A , p J is minimised for the uniform partition and the ;>,•(•)'s are the best

least-squares n degree polynomal approximation of xn+1 o over [z i - i , at»].

Finally, for the uniform partition A* we have

and

Then

(i) the approximation is continuous for n odd, and also z™+1 — Pi(z») =

(ii) the approximation is discontinuous for n even with equal stepsizes at the

nodes:

and also
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