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Abstract Relations between the Atiyah–Patodi–Singer rho invariant and signatures of links have been
known for a long time, but they were only partially investigated. In order to explore them further, we
develop a versatile cut-and-paste formula for the rho invariant, which allows us to manipulate manifolds
in a convenient way. With the help of this tool, we give a description of the multivariable signature of a
link L as the rho invariant of some closed three-manifold YL intrinsically associated with L. We study
then the rho invariant of the manifolds obtained by the Dehn surgery on L along integer and rational
framings. Inspired by the results of Casson and Gordon and Cimasoni and Florens, we give formulas
expressing this value as a sum of the multivariable signature of L and some easy-to-compute extra terms.
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1. Introduction

Given a closed, oriented manifold N of odd dimension, together with a representation
α : π1(N) → U(n) for some n ∈ N, we can consider the Atiyah–Patodi–Singer rho invari-
ant ρα(N). This is a real number defined as the difference between the eta invariant of
the twisted and the untwisted odd signature operator associated with any Riemannian
metric on N , and it turns out to be independent of the choice of the metric [1, 2]. The
rho invariant is thus defined as a spectral invariant, but it has the following fundamental
property that relates it to well-studied topological invariants: if N is the boundary of a
compact, oriented manifold M such that the representation α extends to π1(M), then it
can be computed as

ρα(N) = nσ(M) − σα(M), (1.1)
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The Atiyah–Patodi–Singer rho invariant and signatures of links 405

where σ(M) denotes the ordinary signature of M , and σα(M) is the twisted signature
associated with the chosen extension α : π1(M) → U(n).

In knot theory, rho invariants are used to give descriptions and generalizations of knot
and link signatures. One of the basic observations is that, if SK is the closed manifold
obtained by 0-framed surgery on K and α : π1(SK) → U(1) is the representation sending
the meridian of K to ω ∈ U(1), then

ρα(SK) = −σK(ω), (1.2)

where σK is the Levine–Tristram signature function of K. Atiyah–Patodi–Singer rho
invariants associated with higher-dimensional non-abelian representations were used in
the knot theory by Levine [22, 23] and Friedl [16, 17] as obstructions to knot and link
concordance. Multivariable signatures of links, defined by Cimasoni and Florens [9] using
generalized Seifert surfaces, were given a description as twisted signatures of four mani-
folds and also employed as concordance invariants [9, 12, 13]. However, a description of
them as Atiyah–Patodi–Singer rho invariants was not investigated thoroughly. One of the
goals of this paper is to fill this gap.

Given the difficulty in computing rho invariants directly, it can be very useful to study
their behaviour under modifications of the original manifold. One possible way to simplify
manifolds is what we will call cut-and-paste through the rest of the paper. If a closed
(2k + 1)-dimensional manifold is split by a codimension-one closed manifold Σ into a
union X1 ∪Σ X2, we can often find a manifold X0 with ∂X0 = −Σ such that X1 ∪Σ X0

and −X0 ∪Σ X2 are “simpler” than X1 ∪Σ X2. Schematically, we write this modification
as

X1 ∪Σ X2 � X1 ∪Σ X0 � −X0 ∪Σ X2.

It is then useful to compare the rho invariant of X1 ∪Σ X2 with the sum of the rho
invariants of the two other manifolds. Recall that, when Xi is any of the three manifolds
X0, X1, or X2, the subspace

V αXi
= ker(Hk(Σ; Cnα) → Hk(Xi; Cnα)).

is Lagrangian in Hk(Σ; Cnα) with respect to the symplectic form given essentially by the
twisted intersection form (we will omit α from the notation when we are considering
the trivial one-dimensional representation). In particular, we can compute their Maslov
triple index τ(V αX0

, V αX1
, V αX2

), which is an integer-valued function defined on triples of
Lagrangian subspaces (see Definition 3.1). We prove the following cut-and-paste formula
for the Atiyah–Patodi–Singer rho invariant.

Theorem 3.9. LetX1, X2 andX0 be compact, oriented manifolds of dimension 2k + 1
with ∂X1 = −∂X0 = −∂X2 =: Σ, and let α : π1(X1 ∪∂ X2) → U(n) be a representation
that extends to π1(X0). Then, for every choice of such an extension, we have

ρα(X1 ∪Σ X2) = ρα(X1 ∪Σ X0) + ρα(−X0 ∪Σ X2) + C,

where

C = τ(V αX0
, V αX1

, V αX2
) − n τ(VX0 , VX1 , VX2),

with the first Maslov triple index performed on Hk(∂X1; Cnα), and the second on
Hk(∂X1; C).
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An analogous cut-and-paste formula for the untwisted eta invariant was proved by
Bunke [5, 2.5]. Formulas related to Theorem 3.9 were also discussed by Kirk and Lesch
in connection with their gluing formulas for eta invariants for manifolds with boundary
[21, Section 8.3]. In fact, our cut-and-paste formula can also be proved using their results
(see [28, Section 2.3.4]). Here, however, we give a simple proof which does not involve rho
invariants with manifolds with boundary, and it is based on Wall’s non-additivity for the
signature instead.

The second part of the paper is made up of applications of Theorem 3.9 in the context
of link theory, which help relate multivariable signatures to rho invariants. We consider
from now on only rho invariants of three-manifolds with one-dimensional representations
of the fundamental group. As such representations factor through the first homology in
a unique way, we can simply see them as representations of the first homology group.
We recall that a k-component link L = K1 ∪ · · · ∪Kk is said to be n-coloured if it is
considered together with a surjective map c : {1, . . . , k} → {1, . . . , n}, which partitions
it naturally into n sublinks L1, . . . , Ln. A component Ki is then said to have colour c(i).
Given an n-coloured link L in S3, the Cimasoni–Florens signature is a function

σL : Tn∗ → Z,

where Tn∗ := (S1 \ {1})n. If n = 1, σL coincides with the Levine–Tristram signature
function. Now, let XL be the exterior of L, i.e. the complement of an open tubular
neighbourhood of L in S3. Then, XL is a compact, oriented three manifolds with bound-
ary, whose first homology group is a free abelian group generated by the meridians of L.
Observe that Tn∗ has a natural bijection with the set of representationH1(XL; Zn) → U(1)
that send the meridians of components of the same colour s to a same value ωs ∈ S1 \ {1}
(we call these coloured representations): given an element ω = (ω1, . . . , ωn) ∈ Tn∗ , we
have an associated coloured representation α defined by sending the meridian of a com-
ponent Ki to to ωc(i). The following result, which can be seen as a generalization of
(1.2), expresses the multivariable signature of L as the rho invariant of a suitable closed
three-manifold YL which only depends on L. This manifold YL is built by gluing the
link exterior XL together with a three-manifold with boundary obtained by plumbing
punctured disks in a way that is prescribed by the linking numbers of L. For a precise
definition of YL, see Construction 4.17.

Proposition 4.18. Let L be an n-coloured link. Let ω ∈ Tn∗ , and let α : H1(XL; Z) →
U(1) be the associated coloured representation. Then, α can be extended to a represen-
tation of H1(YL; Z) and, for any choice of an extension, we have

ρα(YL) = −σL(ω).

The manifold YL has a very simple description in the case when L is colour-to-colour
algebraically split, i.e. when the total linking number lk(Ls, Lt) is 0 for every pair of dis-
tinct colours s, t. Under this assumption, we prove two formulas relating the rho invariants
of the closed manifolds obtained by the Dehn surgery on L with the multivariable signa-
ture of L. Given a link L = K1 ∪ · · · ∪Kk with a rational framing r = (r1, . . . , rk) ∈ Qk,
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let Λr be the rational matrix with coefficients

Λij =

{
lk(Ki,Kj), if i �= j,

ri, if i = j.

As Λr is a symmetric matrix, we can compute its signature sign Λr. Let SL(r) be the
closed three-manifold obtained by the Dehn surgery on L along the rational framing r.
We say that a representation α : H1(XL; Z) → U(1) is compatible with r, if it extends
to H1(SL(r); Z). First, we focus on surgery along integral framings. In this context, a
fairly general formula was given by Cimasoni and Florens [9, Theorem 6.7], extending
to the multivariable setting a result of Casson and Gordon [7, Lemma 3.1] (see also [19,
Theorem 3.6]). These formulas only consider representations with a finite image and are
written in terms of the invariant σ(N, α) of Casson and Gordon (see § 2.3). Rewritten in
terms of the rho invariant, the result of Cimasoni and Florens reads as follows.

Theorem 4.21 (Cimasoni–Florens). Let L be a k-coloured k-component link. Let
q ∈ N a positive integer and let n1, . . . , nk ∈ {1, . . . , p− 1} be integers, each of which
is coprime with q. Let ω = (e2πin1/q, . . . , e2πink/q) ∈ Tn∗ , and let α : H1(XL; Z) → U(1)
be the associated coloured representation. Let g be a compatible integral framing on L.
Then, we have

ρα(SL(g)) = −σL(ω) +
∑
i<j

Λij + signΛg − 2
q2

k∑
i=1

(q − ni)njΛij .

Theorem 4.21 applies to the signature associated with the maximal colouring, where
all distinct link components have different colours, but a formula for any colouring can be
easily deduced from it. However, there are some restrictions on the values of ω that limit
its use. Under the assumption of L being colour-to-colour algebraically split, we prove
the following formula with no restrictions on the values of ω.

Theorem 4.24. Let L be an n-coloured link which is colour-to-colour algebraically
split. Let ω ∈ Tn∗ , and let α : H1(XL; Z) → U(1) be the associated coloured representation.
Let g be a compatible integral framing on L. Then, we have

ρα(SL(g)) = −σL(ω) + signΛg − 2
n∑
s=1

hsθs(1 − θs),

where, for each colour s, the values hs and θs are determined by

hs :=
∑

c(i)=c(j)=s

Λij , θs ∈ (0, 1) such that ωs = e2πiθs .

Theorem 4.24 is proved by first describing the multivariable signature as a rho invariant
using Proposition 4.18, and then applying the cut-and-paste formula (Theorem 3.9) to
modify YL into a disjoint union of SL(g) and lens spaces L(hs, 1), for which we can write
the rho invariant very explicitly. The proof is completed by a careful computation of the
Maslov triple index involved in the cut-and-paste formula.

https://doi.org/10.1017/S0013091522000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000153


408 Enrico Toffoli

Suppose now that a stronger assumption on the linking numbers is satisfied, namely
that every link component Ki has total linking number 0 with all sublinks Ls such that
s �= c(i). We say in this case that L is component-to-colour algebraically split. Then,
as it is easy to verify, there is a particular integer framing fL (the Seifert framing)
which is compatible with all coloured representations H1(XL; Z) → U(1). An immediate
consequence of Theorem 4.24 is the following.

Corollary 4.28. Let L be an n-coloured link which is component-to-colour alge-
braically split. Let ω ∈ Tn∗ , and let α : H1(XL; Z) → U(1) be the associated coloured
representation. Then, α extends to H1(SL(fL); Z) and we have

ρα(SL(fL)) = −σL(ω) + signΛfL
.

The analog to Corollary 4.28 for the onecoloured setting was used by Nagel and Powell
in studying concordance properties of the Levine–Tristram signature [25]. Besides being
a useful formula on its own, moreover, Corollary 4.28 is our starting point to prove a
result that takes into account (non-integral) rational framings. This is expressed by the
next and final result of this paper.

Theorem 4.31. Let L be an n-coloured, k-component link that is component-to-colour
algebraically split. Let ω ∈ Tn∗ , and let α : π1(XL) → U(1) be the associated coloured
representation. Let r be a compatible rational framing on L. Then, we have

ρα(SL(r)) = −σL(ω) + signΛr −
k∑
i=1

(ρ(L(pi, qi), ωc(i)) + sgn(pi/qi)),

where pi, qi are coprime integers such that ri − fi = pi/qi (here, fi is the i-th coefficient
of the Seifert framing).

As in the proof Theorem 4.24, lens spaces arise from the cut-and-paste construction.
In this case, we do not spell out the values of their rho invariant in the statement of the
theorem, as this would make the formula more cumbersome. Note, however, that these
values can always be easily computed (see Proposition 2.10).

Observe that onecoloured links are a special case of component-to-colour algebraically
split links. In particular, Theorem 4.31 gives a new formula relating rho invariants with
the Levine–Tristram signature.

Remark. Whenever not stated otherwise, all manifolds are assumed to be smooth.

Outline of the paper

In §2, we review the basics about twisted signatures and Atiyah–Patodi–Singer rho
invariants. We illustrate then a formula for the rho invariant of a three-dimensional lens
space. In §3, we review the Maslov triple index of Lagrangian subspaces and Wall’s non-
additivity theorem for the signature. We prove then our cut-and-paste formula (Theorem
3.9). In §4, we develop the applications in the knot theory. We first prove the basic for-
mula relating rho invariants and multivariable signatures (Proposition 4.18), and then
use it to show results about integer (Theorem 4.24) and rational (Theorem 4.31) Dehn
surgery.
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2. Twisted signatures and rho invariants

In § 2.1, we review the definition of twisted homology and twisted signatures and set
notation for these. In § 2.2, we recall the basics about Atiyah–Patodi–Singer eta and rho
invariants. In § 2.3, we underline the relation between these invariants and an invariant
of Casson and Gordon. In § 2.4, we give a reinterpretation of a well-known computation
for the rho invariant of three-dimensional lens spaces.

2.1. Twisted intersection forms and signatures

Let M be a connected, compact, oriented manifold of dimension 2k with a represen-
tation α : π1(M) → U(n) for some n ∈ N. Let π := π1(M). Let M̃ be the universal cover
of M , so that π acts on the left on C∗(M̃) by deck transformations, and on Cn through
the representation α (we write Cnα for the left Z[π]-module coming from this action). We
consider the twisted homology groups

Hi(M ; Cnα) := Hi((Cnα)t ⊗Z[π] C∗(M̃)),

Hi(M ; Cnξα) := Hi(HomZ[π](C∗(M̃),Cnα)),

where the t denotes the fact that we are turning the left Z[π]-module structure of Cn into
a right one by means of the involution g → g−1 in π. Relative homology and cohomology
groups are defined in a similar manner, as well as twisted homology groups with different
Z[π]-modules (see e.g [18, Definition A.2]).

Remark 2.1. If M = M1 � · · · �MN is a disjoint union of connected manifolds Mj ,
we will make the abuse of notation of writing α : π1(M) → U(n) to denote a collection of
representations αj : π1(Mj) → U(n). In this case, we define then

Hi(M ; Cnα) :=
N⊕
j=1

Hi(Mj ; Cnα).

We recall the following facts.

Fact 1. Given a subset N ⊆M , there is a well-defined cup product [18, Lemma A.11]

∪ : Hp(M,N ; Cnα) ×Hq(M,N ; Cnα) → Hp+q(M,N ; Cnα ⊗Z Cnα),

where α denotes the complex-conjugate representation of α.

Fact 2. As the representation α is Hermitian, the standard Hermitian product of Cn

gives rise to a well-defined map of Z[π]-modules Cnα ⊗Z Cnα → C (where C is the Z[π]-
module associated with the trivial one-dimensional representation). This induces a group
homomorphism

Hp+q(M,N ; Cnα ⊗Z Cnα) → Hp+q(M,N ; C).
Composing the above map with the cup product of Fact 1, and observing that
Hq(M, N ; Cnα) coincides with the complex-conjugate vector space Hq(M, N ; Cnα), we
get a bilinear map

∪C : Hp(M,N ; Cnα) ×Hq(M,N ; Cnα) → Hp+q(M,N ; C).

https://doi.org/10.1017/S0013091522000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000153


410 Enrico Toffoli

Fact 3. There are twisted Poincaré duality isomorphisms [18, Theorem A.15]

PD: Hp(M,∂M ; Cnα) ∼−→ H2k−p(M ; Cnα).

Fact 4. Since the representation α is unitary, the evaluation map in twisted homology
gives rise to an isomorphism [11, Lemma 2.7]

evC : Hq(M ; Cnα) ∼−→ HomC(Hq(M ; Cnα),C).

Using the first three facts, we define the twisted intersection form as the sesquilinear
form

IαM : Hk(M ; Cnα) ×Hk(M ; Cnα) → C,

given by

IαM (a, b) = 〈PD−1(a) ∪C PD−1(b), [M ]〉
(compare e.g. with [18, Section 13]). As for the ordinary intersection pairing, the proper-
ties of the cup product make the form IαM Hermitian if k is even and skew-Hermitian if
k is odd. This leads to the following definition.

Definition 2.2. Let M be a compact oriented manifold of dimension 2k with a
representation α : π1(M) → U(n). The signature of M twisted by α is the integer

σα(M) :=

{
sign(IαM ), if k is even,
sign(i IαM ), if k is odd,

where sign denotes the signature of a Hermitian form.

Observe that the form IαM can be defined alternatively using the sequence of maps

Hk(M ; Cnα)
j∗−→ Hk(M,∂M ; Cnα) PD−1

−−−−→ Hk(M ; Cnα) evC−−→ Hom(Hk(M ; Cnα),C)

(see e.g. [12, Definition 2.7]), where evC is the map discussed in Fact 4. From this point of
view, we see that the radical of IαM coincides with the kernel of j∗, as the two other maps
in the composition are isomorphisms. As a consequence, IαM is non-degenerate whenever
M is closed.

2.2. Basics on the rho invariant

Let N be a closed, oriented, Riemannian manifold of dimension 2k + 1, with a represen-
tation α : π1(N) → U(n). Let Eα → N be the associated flat vector bundle, and consider
the subspace

Ωev(N,Eα) :=
k⊕
q=0

Ω2q(N,Eα)

of twisted differential forms of even degree (see [2, Section 2] for details). Let Dα
N be

the twisted odd signature operator, i.e. the first-order differential operator on Ωev(N, Eα)
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defined by
Dα
N φ := (−1)q+1ik(�d− d�)φ, for φ ∈ Ω2q(N,Eα).

The operatorDα
N can be extended to a self-adjoint elliptic operator with discrete spectrum

and, by the results of Atiyah, Patodi, and Singer [3, Theorem 4.5], its eta function

η(s) =
∑

λ∈Spec(Dα
N )

λ�=0

sgnλ |λ|−s

has a meromorphic extension which is holomorphic at s = 0, leading to the eta invariant

ηα(N) := η(0) ∈ R.

We say that a compact Riemannian manifold M has metric of product form near the
boundary, if there exists a neighbourhood of ∂M that is isometric to (−ε, 0] × ∂M with
the product metric. The main result about the eta invariant of the twisted signature
operator is the following [2, Theorem 2.2].

Theorem 2.3 (Atiyah–Patodi–Singer). Let M be an even-dimensional compact,
oriented manifold with ∂M = N , equipped with Riemannian metric of product form
near N , and let α : π1(M) → U(n) be a representation. Then

σα(M) = n

∫
M

L(p) − ηα(N),

where L(p) is the Hirzebruch L-polynomial in the Pontryagin forms of M .

Note that both summands on the right-hand term depend on the Riemannian metric
on N . We shall not dwell upon the geometrical significance of the integral of the L-
polynomial, as it is going to get simplified soon.

Remark 2.4. The restriction of α : π1(M) → U(n) to a representation of π1(N) is
made by composing α with the natural map π1(N) → π1(M). If N is not connected,
a map π1(N1) → π1(M) for each connected component Ni of N can be obtained by
choosing appropriate paths between base points. The restriction α : π1(N) → U(n) must
be interpreted as the collection of the representations π1(Ni) → U(n) for all connected
componentsNi. The invariant ηα(N) is defined in this case as the sum of the eta invariants
of the Ni’s.

For the eta invariant associated with the untwisted odd signature operator DN on
Ωev(N, C), we use the notation η(N) := η(DN ). Following Atiyah, Patodi, and Singer
[2], we are now going to define the rho invariant.

Definition 2.5. Let N be a closed, oriented manifold of odd dimension, and let
α : π1(N) → U(n) be a representation. The Atiyah–Patodi–Singer rho invariant of N
associated with α is the real number

ρα(N) := ηα(N) − n η(N),

where the eta invariants are computed for an arbitrary Riemannian metric on N .
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We shall see in a moment that the difference ηα(N) − n η(N) is independent of the
Riemannian metric, so that ρα(N) is well defined. Moreover, ρτ (N) is 0 for trivial
representations τ , and it satisfies

ρα(−N) = −ρα(N). (2.1)

The main theorem about the rho invariant is the following.

Theorem 2.6 (Atiyah–Patodi–Singer). (i) ρα(N) is independent of the Rie-
mannian metric on N .

(ii) If M is a compact, oriented manifold with ∂M = N and α extends to M, then

ρα(N) = nσ(M) − σα(M).

Proof. Both statements are easy consequences of Theorem 2.3. See [2, Theorem 2.4].
�

We state one more well-known result that will turn useful later on.

Proposition 2.7. Let Σ be a closed, oriented surface, and let ψ : π1(Σ × S1) → U(1)
be a representation. Then ρψ(Σ × S1) = 0.

Proof. See e.g. [12, Lemma 4.2]. �

2.3. Rho invariants and Casson–Gordon invariants

We will now review the definition of an invariant of Casson and Gordon and relate it to
the Atiyah–Patodi–Singer rho invariant. Let N be a closed, oriented three manifolds, and
let α : H1(N ; Z) → U(1) be a representation. Assume that the image of α is finite. Using
a bordism argument, Casson and Gordon observe that there exists a compact, oriented
four-manifold W such that the boundary of W is the disjoint union of r copies of N for
some r ∈ N (we will write ∂W = rN) with a representation α′ : H1(W ; Z) → U(1) that
restrict to α on each boundary component [8, p. 183]. They define then an invariant as

σ(N,α) :=
1
r
(σα′(W ) − σ(W )). (2.2)

By additivity of the signature and again some bordism theory, they show that the invari-
ant σ(N, α) is independent of the choice of W and of the extension α′ [8, p. 183–184] (see
also [12, Corollary 2.11] for a more detailed version of their proof). Using the Atiyah–
Patodi–Singer index theorem, their invariant can be immediately reinterpreted as an
Atiyah–Patodi–Singer rho invariant. We state this explicitly for further reference, albeit
it is surely known to the experts.

Proposition 2.8. Let N be a closed, oriented three-manifold, and let α : H1(N ; Z) →
U(1) be a representation with finite image. Then, we have

σ(N,α) = −ρα(N).
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Proof. Let W be a compact, oriented four-manifold with ∂W = rN , with a represen-
tation α′ : H1(W ; Z) → U(1) that restricts to α as discussed above, so that σ(N, α) is
described by (2.2). Using Theorem 2.6, on the other hand, we have

rρα(N) = ρα(rN) = σ(W ) − σα′(W ).

Comparing this with (2.2), we obtain the desired statement. �

2.4. The rho invariant of lens spaces

Given coprime integers p and q, the three-dimensional lens space L(p, q) can be built
as the union of two solid tori Y1, Y2 along any orientation-reversing diffeomorphism
f : ∂Y2 → ∂Y1 such that

f∗(μ2) = −qμ1 + pλ1,

where μ1, μ2 are the meridians, respectively, of Y1, Y2, and λ1 is a longitude of Y1. This
construction is well defined for both positive and negative values of p and q. For positive
p it coincides, up to some explicit orientation-preserving diffeomorphism, with the classi-
cal definition of L(p, q) as a quotient of S3 (compare with [15, Lemma 91.3]). In general,
there are orientation-preserving diffeomorphisms

L(−p, q) ∼= L(p,−q) ∼= −L(p, q).

In particular, for both positive and negative p, we have an identification of π1(L(p, q))
with Z/p, and under this identification, the element [1] ∈ Z/p corresponds to the generator
of π1(Y1).

Rho invariants of three-dimensional lens spaces can be computed explicitly. As every
representation α : Z/p→ U(n) can be written as a direct sum of one-dimensional repre-
sentations, we shall focus on one-dimensional representations. Moreover, we shall exclude
the case p = 0, as L(0, 1) is diffeomorphic to S2 × S1 and its rho invariant is 0 for any
choice of α. We observe in this case that the representations α : Z/p→ U(1) are in a
natural bijection with the set of |p|th roots of unity: to each such root ω, we associate the
representation αω sending 1 to ω.

Notation 2.9. Given a |p|th root of unity ω, we write

ρ(L(p, q), ω) := ραω
(L(p, q)).

Formulas for the rho invariants of lens spaces were given since the original paper
of Atiyah, Patodi and Singer [2, Proposition 2.12]. Introducing the periodic sawtooth
function ((·)) : R → (− 1

2 ,
1
2 ) defined by

((x)) :=

⎧⎨⎩x− �x
 − 1
2
, if x ∈ R \ Z,

0, if x ∈ Z.
,

we give the following description.
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Proposition 2.10. Let p, q be two coprime integers with p �= 0, and let ζ = e2πi/p.
Then, for k ∈ {0, 1, . . . , |p| − 1}, we have

ρ(L(p, q), ζkq) = −4
k−1∑
j=1

((qj
p

))
− 2
((qk
p

))
.

Proof. We first suppose p, q > 0. Set z := e2πin/p, with n = gcd(p, k), and set r :=
k/n. Then, we have ζkq = zrq. The representation sending 1 to ωq has as its image the
set of mth roots of unity, with m such that p = mn. In this setting, Casson and Gordon
[8, pp.187–188] proved that

σ(L(p, q), αω) = 4
(
areaΔ

(
nr,

rq

m

)
− intΔ

(
nr,

rq

m

))
, (2.3)

where Δ(x, y) is the triangle with vertices (0, 0), (x, 0) and (x, y) and the number
int(Δ(x, y)) is given by counting:

• +1 for every point of Z2 that lies in the interior of Δ(x, y);

• +1/2 for every point of Z2 that lies in the interior of its edges;

• +1/4 for every point of Z2 \ {(0, 0)} that coincides with one of the vertices.

Using Proposition 2.8 and the definition of r, we rewrite (2.3) as

ρ(L(p, q), ζkq) = 4(intΔ(k,
kq

p
) − areaΔ(k,

kq

p
)). (2.4)

We will now express the right-hand term of (2.4) in a more explicit way. First of all, it is

clear that 4 area Δ(k,
kq

p
) =

2q
p
k2. Moreover, we can count the lattice points inside the

triangle by following vertical lines {(x, y) |x = j}, for j = 1, . . . , k, and then summing
over j. We obtain

4intΔ
(
k,
kq

p

)
= 4

k−1∑
j=1

(1
2

+
⌊jq
p

⌋)
+ 4
(1

4
+

1
2

⌊kq
p

⌋)

= 2k − 1 + 4
k−1∑
j=1

⌊jq
p

⌋
+ 2
⌊kq
p

⌋
.

Taking the difference, we obtain thus

ρ(L(p, q), ζkq) = −2q
p
k2 + 2k − 1 + 4

k−1∑
j=1

⌊jq
p

⌋
+ 2
⌊kq
p

⌋
. (2.5)

Expanding the expression in the statement, it is now immediate to see that it coincides
with (2.5). As the sawtooth function ((·)) is odd, we see that both sides of the identity
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change sign when either p or q is changed of sign. As a consequence, the result keeps
holding for non-positive choices of p and q. �

Corollary 2.11. Let n be any integer, and let ω ∈ U(1) be an |n|th root of unity.
Then, we have

ρ(L(n, 1), ω) = 2nθ(1 − θ) − sgn(n),

where θ ∈ [0, 1) is such that ω = e2πiθ.

Proof. For n = 0, we have ρ(L(n, 1), ω) = 0 for all ω ∈ U(1) because L(0, 1) = S2 ×
S1, so that the result is trivially satisfied in this case. For n > 0, there has to be a
k ∈ {0, 1, · · ·n− 1} such that θ = k/n, with k ∈ {0, 1, · · ·n− 1}. From (2.5), we easily
see that

ρ(L(n, 1), ω) = −2k2

n
+ 2k − 1 = 2nθ(1 − θ) − 1,

and the desired formula is satisfied in this case. For negative n, we obtain now from the
last equation that

ρ(L(n, 1), ω) = −ρ(L(−n, 1), ω) = 2nθ(1 − θ) + 1,

which leads to the general formula of the statement. �

Remark 2.12. Proposition 2.10 can be used to write rho invariants of lens spaces as
a difference of Dedekind–Rademacher sums. See [28, Theorem 3.3.27].

3. The cut-and-paste formula

In § 3.1, we recall the definition of the Maslov triple index of three Lagrangian subspaces
in a complex symplectic space. In § 3.3, we review a (non-)additivity theorem of Wall
for signatures of manifolds under some fairly general notion of gluing. In Section 3.4, we
prove the cut-and-paste formula for the Atiyah–Patodi–Singer rho invariants (Theorem
3.9), which is the main result of this section.

3.1. Complex symplectic spaces and the Maslov triple index

A complex symplectic space is a pair (H, ω) such that H is a finite-dimensional complex
vector space, and ω : H ×H → C is a non-degenerate skew-Hermitian form, called the
symplectic form. We shall often omit ω from the notation and simply call H a complex
symplectic space. We recall that a subspace L ⊆ H is Lagrangian if it coincides with its
orthogonal complement with respect to the symplectic form ω. Let Lag(H) denote the
set of all Lagrangian subspaces of H. We are now going to define a function

τ : Lag(H) × Lag(H) × Lag(H) → Z.

Given three Lagrangian subspaces L1, L2, L3 ∈ Lag(H), it is immediate to verify that
the sesquilinear form

ψL1L2L3 : (L1 + L2) ∩ L3 × (L1 + L2) ∩ L3 → C

(a1 + a2, b1 + b2) �→ ω(a1, b2)
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(with a1, b1 ∈ L1 and a2, b2 ∈ L2) is well defined and Hermitian. In particular, we can
give the following definition.

Definition 3.1. The Maslov triple index of (L1, L2, L3) is the integer

τ(L1, L2, L3) := signψL1L2L3 .

The Maslov triple index satisfies several elementary properties, among which are the
following two.

Proposition 3.2.

(i) Let L1, L2, L3 ∈ Lag(H), and let α be a permutation of the set {1, 2, 3}. Then

τ(Lα(1), Lα(2), Lα(3)) = sgn(α) τ(L1, L2, L3).

In particular, the Maslov triple index vanishes whenever two of the Lagrangians
coincide.

(ii) Let L1, L2, L3, L4 ∈ Lag(H). Then, τ satisfies the cocycle equation

τ(L1, L2, L3) − τ(L1, L2, L4) + τ(L1, L3, L4) − τ(L2, L3, L4) = 0.

Proof. See e.g. [6, Section 8] for proofs in the real symplectic setting. These can be
transferred verbatim to the complex symplectic one. �

Example 3.3. Suppose that (H, ω) is a complex symplectic space of dimension 2. Let
(μ, λ) be an ordered basis in which ω is represented by the matrix

(
0 −1
1 0

)
, i.e. such that

ω(μ, μ) = ω(λ, λ) = 0, ω(μ, λ) = −1

we shall call such pair a symplectic basis. Then, it is easy to verify that a one-dimensional
subspace is Lagrangian if and only if it is the span of some vector aμ+ bλ with a, b ∈ R.
We set in this case the notation

τ(v1, v2, v3) := τ(SpanC{v1},SpanC{v2},SpanC{v3}).

Using the definition of the Maslov triple index, we easily compute that

τ(μ, λ, aμ+ bλ) = −sgn(ab).

3.2. Complex symplectic spaces and twisted homology

In the applications, complex symplectic spaces will arise from the following setting.
Let Σ be a 2k-dimensional closed, oriented manifold, and let α : π1(Σ) → U(n) be a
representation. As we have seen, the twisted intersection form on H := Hk(Σ; Cnα) is
Hermitian if k is even, and it is skew-Hermitian if k is odd. Moreover, it is non-degenerate
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because Σ is closed. We can thus always consider the non-degenerate, skew-Hermitian
form

ω :=

{
IαΣ, if k is odd,
i IαΣ, if k is even,

which makes the pair (H, ω) a complex symplectic space. We introduce the following
notation.

Notation 3.4. Given a compact, connected (2k + 1)-dimensional manifold X with a
representation α : π1(X) → U(n), we set

V αX = ker(Hk(∂X; Cnα) → Hk(X; Cnα)).

A well-known argument based on Poincaré duality shows that V αX is a Lagrangian
subspace of Hk(∂X; Cnα) with respect to ω (compare with [14, Lemma 2.14] and [28,
Proposition 1.4.6]). We can thus give the following definition.

Definition 3.5. Let X be compact, connected manifold of dimension 2k + 1, and
let α : π1(X) → U(n) be a representation. We refer to V αX as the canonical Lagrangian
associated with X and α.

3.3. Wall’s non-additivity of the signature

We shall now review a result of Wall. We start with some notation that will be useful
throughout the paper.

Notation 3.6. Given two topological spaces X, Y with a common subspace A, we set

X ∪A Y := (X � Y ) /∼,

where ∼ is the relation that identifies every element in A ⊆ X with its copy in A ⊆ Y .
We say that X ∪A Y is obtained by gluing X and Y along A. If X and Y are manifolds
with ∂X = ∂Y , we also write X ∪∂ Y to denote the gluing along their common boundary.

Suppose that M is a compact, oriented manifold of even dimension that is split as

M = M1 ∪X0 M2

along a properly embedded submanifold X0 of codimension 1, which is allowed to
have boundary Σ. Let X1 := ∂M1 \ int(X0) and X2 := ∂M2 \ int(X0). As unoriented
manifolds, we have then ∂X0 = ∂X1 = ∂X2 = Σ and

∂M1 = X1 ∪Σ X0, ∂M2 = X0 ∪Σ X2, ∂M = X1 ∪Σ X2. (3.1)
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We pick on X1 the orientation coming from being a codimension 0 submanifold of
∂M1, and we give Σ the orientation coming from being the boundary of X1. Suppose now
that α : π1(M) → U(n) is a representation. In our setting, Σ is (up to orientation) the
common boundary of X0, X1 and X2, so that the canonical Lagrangians V αX0

, V αX1
and

V αX2
all live in the same space Hk(Σ; Cnα). In particular, it makes sense to compute their

Maslov triple index. In fact, the following result holds.

Theorem 3.7 (Wall’s non-additivity). Let M be a closed, oriented, even-
dimensional manifold, and let α : π1(M) → U(n) be a representation. Then, if M
decomposes as M = M1 ∪X0 M2 as above, we have

σα(M) = σα(M1) + σα(M2) − τ(V αX0
, V αX1

, V αX2
).

Remark 3.8. Theorem 3.7 was originally proved by Wall for the untwisted signature
[30] (see also the paper of Py [27, (3.2)] for a more detailed proof), and it can be easily
checked that the result extends to twisted signatures. See [12–14] for further references
and uses of the twisted version of the theorem.

3.4. The cut-and-paste formula for the rho invariant

Suppose to have a closed, oriented (2k + 1)-dimensional manifold that is split by a
codimension-one closed manifold Σ, yielding a decomposition X1 ∪Σ X2. Let X0 be a
compact, oriented manifold with ∂X0 = −Σ. Then, we can replace X1 ∪Σ X2 with the
disjoint union of X1 ∪Σ X0 and −X0 ∪Σ X2. We will call this manipulation cut-and-paste.
Schematically, we have

X1 ∪Σ X2 � X1 ∪Σ X0 � −X0 ∪Σ X2,

and pictorially we can represent the operation as in the next figure.
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Suppose now that α : π1(X1 ∪Σ X2) → U(n) is a representation. In particular, α is
defined on π1(X1) and on π1(Σ). In order to have rho invariants of X1 ∪Σ X0 and
−X0 ∪Σ X2 to be compared to ρα(X1 ∪Σ X2), we need to extend α to the fundamental
groups of these manifolds. This is possible if and only if we can construct an exten-
sion of α from π1(Σ) to π1(X0): then, using Seifert–Van Kampen’s theorem, this will be
patched with α : π1(X1) → U(n) to produce representations π1(X1 ∪Σ X0) → U(n) and
π1(−X0 ∪Σ X2) → U(n). For simplicity, we will use the same notation α for all of these
representations. Then, we want to compute the correction term C in the formula

ρα(X1 ∪Σ X2) = ρα(X1 ∪Σ X0) + ρα(−X0 ∪Σ X2) + C. (3.2)

Now, if X1 ∪Σ X0 and −X0 ∪Σ X2 bound manifolds W1 and W2 such that the represen-
tation extends, then Wall’s theorem, together with the Atiyah–Patodi–Singer signature
theorem, tells us how to compute the correction term. Namely, in that case, we have

C = τ(V αX0
, V αX1

, V αX2
) − n τ(VX0 , VX1 , VX2). (3.3)

The content of the main result of this section is that the correction term C of (3.2) is
always given by (3.3), no matter whether the manifolds W1 and W2 exist. This should
be compared with an analogous result for the untwisted eta invariant [5, 2.5].

Theorem 3.9. LetX1, X2 andX0 be compact, oriented manifolds of dimension 2k + 1
with ∂X1 = −∂X0 = −∂X2 =: Σ, and let α : π1(X1 ∪∂ X2) → U(n) be a representation
that extends to π1(X0). Then, for every choice of such an extension, we have

ρα(X1 ∪Σ X2) = ρα(X1 ∪Σ X0) + ρα(−X0 ∪Σ X2) + C,

where

C = τ(V αX0
, V αX1

, V αX2
) − n τ(VX0 , VX1 , VX2),

with the first Maslov triple index performed on Hk(∂X1; Cnα), and the second on
Hk(∂X1; C).

Proof. Consider the oriented manifolds

M1 := [0, 1] × (X1 ∪Σ X0), M2 := [0, 1] × (−X0 ∪Σ X2).

We glue then M1 with M2 along {1} ×X0, obtaining a topological oriented manifold M
to which α extends.
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The boundary of M can be described topologically as

∂M = (−(X1 ∪Σ X0) � −(−X0 ∪Σ X2)) � (X1 ∪Σ X2), (3.4)

and we can equip M with a smooth structure such that (3.4) is satisfied in the smooth
sense [29, 15.10.3]. Thanks to Theorem 2.6 (ii), we have then

ρα(∂M) = nσ(M) − σα(M). (3.5)

By (3.4), the left-hand term is given by

ρα(∂M) = −ρα(X1 ∪Σ X0) − ρα(−X0 ∪Σ X2) + ρα(X1 ∪Σ X2). (3.6)

By Wall’s non-additivity (Theorem 3.7), we can compute the twisted and untwisted
signature of M as

σ(M) = σ(M1) + σ(M2) − τ(VX0 , VX1 , VX2),

σα(M) = σα(M1) + σα(M2) − τ(V αX0
, V αX1

, V αX2
).

The manifolds M1 and M2 are of the form [0, 1] ×X, with X a closed manifold. In
particular, they admit an orientation-reversing self-diffeomorphism defined by

[0, 1] ×X → [0, 1] ×X

(t, x) �→ (1 − t, x).

As orientation-reversing diffeomorphisms have the effect of changing sign to the signa-
ture, this shows that the ordinary signatures of M1 and M2 vanish. Since the above
diffeomorphism is trivial on the fundamental group, the same argument can be applied
to the twisted signatures, which therefore also vanish. The computation of σ(M) and
σα(M) is hence reduced to

σ(M) = −τ(VX0 , VX1 , VX2), σα(M) = −τ(V αX0
, V αX1

, V αX2
). (3.7)

Substituting (3.6) and (3.7) into (3.5), we get the desired formula. �

Remark 3.10. An alternative approach to proving Theorem 3.9 would be by using
gluing formulas for rho invariants for manifolds with boundary, as defined by Kirk and
Lesch [20, 21] (the discussion in [21, Section 8.3] might be hinting in this direction).
This approach allows to prove the cut-and-paste formula at the level of eta invariants,
leading to a slightly stronger result, albeit at the cost of more sophisticated tools to be
introduced. See [28, Section 2.3.4] for details about this point of view.

4. Signatures of links and rho invariants

In § 4.1, we introduce rationally framed links and set up some notation and easy results. In
§ 4.2, we introduce the multivariable signatures of Cimasoni and Florens and recall a four-
dimensional description for them. In § 4.3, we prove Proposition 4.18, which reinterprets
the multivariable signature of a coloured link as the rho invariants of some closed three-
manifold associated with the link. In § 4.4, we prove Theorem 4.24, which is a formula
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relating the multivariable signature of a link with the rho invariant of the three manifolds
obtained by integer surgery on the link. In § 4.5, we prove Theorem 4.31, which under
some additional hypotheses does the same for rational surgery.

Remark 4.1. In this section, given a manifold X, we will only deal with one-
dimensional unitary representations of π1(X). As U(1) is an abelian group, every repre-
sentation α′ : π1(X) → U(1) factors through the abelianization ab: π1(X) → H1(X; Z),
and we can thus focus on representations α : H1(X; Z) → U(1). We will normally write ρα
and Hα to denote rho invariants and twisted homology associated with the representation
α′ = α ◦ ab.

Remark 4.2. A straightforward computation in twisted homology leads to the fol-
lowing well-known fact: for the two-dimensional torus T 2, we have H∗(T 2; Cnα) = 0 for
all non-trivial representation α : H1(T ; Z) → U(1). In this section, we will always use
Theorem 3.9 in the situation where Σ is a disjoint union of two-dimensional tori and
where the restriction of α to the first homology of these is non-trivial. As a consequence,
the Maslov triple index in twisted homology will always be 0.

4.1. Links and framings

Let L = K1 ∪ · · · ∪Kk be an oriented link in S3 (from now on, just a link). By removing
from S3 the interior of a closed tubular neighbourhood N(L), we get its link exterior

XL := S3 \ int(N(L)).

The link exterior XL is a compact, oriented three-manifold, whose boundary is a union
of tori: to each link component Ki ⊆ L, there corresponds a boundary component Ti =
−∂(N(Ki)) (this is the orientation coming from being part of the boundary of XL, and
it is the one we shall always consider). The link component Ki determines the following
two elements:

• the meridian of Ki is the only element μi ∈ H1(Ti; Z) whose image in H1(N(Ki); Z)
is 0 and such that lk(μi, Ki) = 1;

• the standard longitude of Ki is the only element λsi ∈ H1(Ti; Z) whose image in
H1(N(Ki); Z) is homologous to Ki and such that lk(λsi , Ki) = 0.

For a knot K, we shall often just use the notation T , μ and λ for the boundary torus,
the meridian and the standard longitude. Observe that the algebraic intersection of these
two elements is given by

μi · λsi = −1. (4.1)

We shall often consider the images of the above elements into homology with rational or
complex coefficients without changing their names.

Definition 4.3. A rational framing on a link L = K1 ∪ · · · ∪Kk is a k-tuple of rational
numbers r = (r1, . . . , rk). The pair (L, r) is called a rationally framed link. If all ri’s are
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integers, we say that r is an integer framing. The framed longitudes of a rationally framed
link (L, r) are the elements

λi := λsi + riμi ∈ H1(Ti; Q).

Without changing notation for them, we shall now consider the images of the meridians
and framed longitudes in the homology of the link complement XL. It is an elementary
well-known fact that H1(XL; Z) is a free Z-module generated by the meridians, and that
each standard longitude satisfies

λsi =
∑
j �=i

lk(Ki,Kj)μj ∈ H1(XL; Z). (4.2)

Next, we define the following matrix associated with a rationally framed link.

Definition 4.4. The framed linking matrix of a framed k-component link (L, r) is the
symmetric matrix Λr = (Λij)i,j ∈ Qk×k defined by

Λij =

{
lk(Ki,Kj), if i �= j,

ri, if i = j.

Example 4.5. The Seifert framing on a link L = K1 ∪ · · · ∪Kk is the integer framing
(f1, · · · , fk) defined by

fi := −
∑
j �=i

lk(Ki,Kj).

In particular, the coefficients of its framed linking matrix satisfy

Λii = −
∑
j �=i

Λij .

The framed longitudes λi = λsi + fiμi associated with the Seifert framing correspond to
the intersections of a Seifert surface with the boundary tori Ti.

From (4.2), together with the definition of the framed longitudes and of the framed
linking matrix, it follows now immediately that the framed longitudes in the rational
homology of XL are equal to

λi =
k∑
j=1

Λij μj ∈ H1(XL; Q). (4.3)

For the computations involving the Maslov triple index, a good understanding of the
complex symplectic space H1(∂XL; C) is required. The next result summarizes some easy
facts that we will need later.
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Lemma 4.6. Let (L, r) be a k-component rationally framed link. Then:

(i) the collection {μ1, . . . μk, λ1, . . . λk} forms a basis for H1(∂XL; C) which satisfies{
μi · μj = λi · λj = 0,
μi · λj = −δij

for all i, j;

(ii) the canonical Lagrangian VXL
can be described explicitly as

VXL
= SpanC{v1, . . . , vk}, where vi = λi −

k∑
s=1

Λisμs;

(iii) the subspaces M := SpanC{μ1, . . . , μk} and Lr = SpanC{λ1, . . . , λk} are Lagran-
gians, and their triple Maslov index with the canonical Lagrangian is given by

τ(M,Lr, VXL
) = signΛr.

Proof. (i) is an immediate consequence of the definition of the framed meridians
together with (4.1). (ii) is an immediate consequence of (4.3). The fact that M and Lr
are Lagrangians is obvious from (i). In order to prove (iii), we compute the Maslov triple
index using the definition. As M and Lr are transverse, we have (M + Lr) ∩ VXL

= VXL
,

and every generator vi can be written in a unique, obvious way as the sum of an element
in M and one in Lr. By Definition 3.1, then, τ(M, Lr, VXL

) is the signature of the
Hermitian form ψ : VXL

× VXL
→ C defined on the basis elements of VXL

by

ψ(vi, vj) =

(
−

k∑
s=1

Λisμs

)
· vj = −

k∑
s=1

Λis(μs · λj) = Λij .

It follows that τ(M, Lr, VXL
) = sign Λr, as it was desired. �

Given a rationally framed link (L, r), we can consider the closed manifold SL(r)
obtained by the Dehn surgery along the framing. This is done in the following way:
for each link component Ki, we choose coprime integers (pi, qi) such that pi/qi = ri,
and glue a solid torus Yi to XL along the boundary component Ti in such a way that
the meridian of the solid torus is identified with the element piμi + qiλ

s
i ∈ H1(Ti; Z). In

particular, H1(SL(r); Z) can be described as a quotient of H1(XL; Z).

Definition 4.7. Given a link L with a representation α : H1(XL; Z) → U(1), we say
that a rational framing r on L is compatible with α if α factors through H1(SL(r); Z).

Remark 4.8. From the definition of surgery, it is clear that a rational framing r =
(r1, . . . , rk) with ri = pi/qi as above is compatible with α if and only if α(piμi + qiλ

s
i ) = 1

for all i. Using (4.2), we see that in terms of the coefficients of the framed linking matrix
we have

r is compatible with α ⇐⇒
k∏
j=1

α(μj)qiΛij = 1 ∀i.

Note that, in general, given a representation α, there might be no rational framing that
is compatible with it.
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4.2. Coloured links and signatures

A n-colouring on a link L, for n ∈ N, is a partition of its components into n non-empty
sublinks. Given a k-component link L = K1 ∪ · · · ∪Kk, we identify the colouring with a
surjective function c : {1, . . . , k} → {1, . . . , n}. The latter is the set of colours, and for
every 1 ≤ s ≤ n, we define

Ls :=
⋃

c(j)=s

Kj

to be the sublink of colour s. The pair (L, c) is called an n-coloured link. We shall
systematically omit c (which has to be considered as fixed) and simply call L an n-coloured
link.

Notation 4.9. For n ∈ N, set Tn := (U(1))n and Tn∗ := (U(1) \ {1})n.
Using a generalization of the concept of Seifert surfaces (called C-complexes), Cimasoni

and Florens defined a multivariable version of the Levine–Tristram signature of a link [9].
Given an n-coloured link L, their multivariable signature is a function

σL : Tn∗ → Z,

which coincides for n = 1 with the Levine–Tristram signature function. We recall now
the following four-dimensional description of the multivariable signature. We first need a
definition.

Definition 4.10. A bounding surface for an n-coloured link L is a union F = F1 ∪
· · · ∪ Fn of properly embedded, locally flat, compact, oriented surfaces Fi ⊆ D4 with
∂Fi = Li ∈ ∂D4 = S3 and that only intersect each other transversally in double points.

A bounding surface for L can be obtained for example by pushing the interior of a
C-complex into the interior of D4 (see e.g. [10, Section 3] for details). Given a bounding
surface F = F1 ∪ · · · ∪ Fn ⊆ D4 for a link L, we can take a small tubular neighbourhood
N(Fi) of each surface Fi and define the exterior of F in D4 as the four-manifold with
boundary

WF := D4 \ (N(F1) ∪ · · · ∪N(Fn)).

It is easy to show that H1(WF ; Z) is freely generated by the meridians of the surfaces
F1, . . . , Fn (the meridian of Fi being the image in H1(WF ; Z) of any of the meridi-
ans of Li). The following description of the Cimasoni–Florens signature is known [12,
Proposition 3.5].

Proposition 4.11. Let L be a an n-coloured link in S3 and let F = F1 ∪ · · · ∪ Fn be
a bounding surface for L. Let ω = (ω1, . . . , ωn) ∈ Tn∗ , and let α : H1(WF ; Z) → U(1) be
the representation that sends the meridian of Fi to ωi. Then, we have

σL(ω) = σα(WF ).

We conclude this part with a couple of definitions.
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Definition 4.12. Let L = K1 ∪ · · · ∪Kk be an n-coloured link. The coloured Seifert
framing on L is the integer framing fL = (f1, . . . , fk) given by

fi := −
∑

j �=i s.t.
c(j)=c(i)

lk(Ki,Kj).

In other words, it is the framing obtained by providing each coloured sublink Li with its
Seifert framing (see e.g. 4.5).

Observe that the coloured Seifert framing on L needs not coincide with the Seifert
framing of the underlying link. In fact, its framed longitudes correspond to the intersection
of ∂XL with a C-complex. From the definition of the coloured Seifert framing, it is
immediate to see that the coefficients of the associated framed linking matrix satisfy

∀ 1 ≤ i ≤ k :
∑
j s.t.

c(j)=c(i)

Λij = 0. (4.4)

Definition 4.13. Given an n-coloured link L, a representation α : H1(XL; Z) → U(1)
is said to be coloured if it sends meridians of the same colour to the same value, i.e. if

c(i) = c(j) =⇒ α(μi) = α(μj).

Given an element ω = (ω1, . . . , ωn) ∈ Tn, the coloured representation α defined by
α(μi) := ωc(i) is said to be the representation associated to ω.

It is immediate to see that the above association gives a natural bijection between
elements ω = (ω1, . . . , ωn) ∈ Tn and coloured representations α : H1(XL; Z) → U(1).

4.3. Multivariable signatures as rho invariants

As the untwisted signature of WF is 0 (see for example [12, Proposition 3.3]),
Proposition 4.11 is equivalent to the formula

σL(ω) = σα(WF ) − σ(WF ).

In particular, by the Atiyah–Patodi–Singer theorem, we have

σL(ω) = −ρα(∂WF ). (4.5)

We will give now a more explicit description of ∂WF , and see how to replace it with a
manifold which is independent of the choice of F .

We start by recalling the following construction, which is a special case of plumbing.
Let Γ be a graph whose set of vertices is {1, . . . , n} and such that:

• each vertex i is decorated by a compact, oriented surface Σi (or, equivalently, by
pair of natural numbers [gi, ri] corresponding to the genus and number of boundary
components of Σi);

• each edge is decorated by a number ε = ±1.
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In the following, we shall refer to a graph with the decorations described above as
a plumbing graph. We construct then an oriented three-manifold PΓ by the following
process.

(1) For each edge with endpoints i and j, remove a small open disk from Σi and one
from Σj . Let Σ′

1, . . . , Σ′
j be the resulting surfaces.

(2) For each edge with endpoints i and j and decoration ε = ±1, glue the three-
manifolds Σ′

i × S1 and Σ′
j × S1 along the boundary components coming from the

two corresponding removed disks, according to the diffeomorphism ϕ : S1 × S1 →
S1 × S1 given by ϕ(x, y) = (yε, xε).

(3) Set

PΓ :=
( n⊔
i=1

Σ′
i × S1

)
/∼,

where ∼ is the equivalence relation given by the above gluings.

This construction coincides with that of [12, Section 4]. With respect to the general
plumbing construction [26], it corresponds to the special case of all Euler numbers equal
to 0, and our definition of plumbing graph also reflects this specialization. The boundary of
PΓ is a disjoint union of r =

∑
i ri tori. These tori maintain a preferred product structure,

and we can describe the boundary of PΓ as

∂PΓ =
n⊔
i=1

∂Σi × S1. (4.6)

As in [12], we give the following definition.

Definition 4.14. Given a plumbing graph Γ, the total weight of a pair of vertices
{s, t}, denoted by pΓ(s, t), is the integer obtained as the sum of the ±1-decorations of
all the edges with endpoints s and t. If all total weights of Γ are 0, the plumbing graph
Γ is called balanced.

Example 4.15. Let F = F1 ∪ · · · ∪ Fn ⊆ D4 be a bounding surface for L. The
boundary of WF then is given up to orientation-preserving diffeomorphism as

∂WF = XL ∪∂ (−PΓF
), (4.7)

where ΓF is a graph whose vertices {1, . . . , n} are decorated by the surfaces Fi’s, and
whose edges correspond to the intersection points between them, with the sign of the
intersection as decoration (see [12, Example 4.12]). Observe that the total weights of ΓF
are given by

pΓF
(s, t) = Fs · Ft = lk(Ls, Lt).

The boundary of −PΓF
, which can be described as in (4.6), is identified in the gluing (4.7)

with ∂XL as follows. The boundary piece −∂Fs × S1 is identified with the boundary tori
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of colour s in ∂XL, in such a way that:

(1) the classes of the S1-factors are glued to the meridians;

(2) the classes of the boundary components of Fs are glued to the framed longitudes
associated with the coloured Seifert framing.

As we have seen in (4.5), the multivariable signature of L can be expressed up to sign as
the rho invariant of ∂WF . In turn, as it appears from Example 4.15, ∂WF can be described
as the union of XL with some plumbed three-manifold which depends on the choice of
a bounding surface for L. In the next construction, we will build a plumbing graph ΓL
associated with L. The associated closed three-manifold YL, obtained by gluing PΓL

with
XL, will play the role of ∂WF with the advantage of being unequivocally determined by
the link L.

Notation 4.16. Given a link L in S3, let |L| ∈ N be its number of components.

Construction 4.17. Given an n-coloured link L, we construct the associated
plumbing graph ΓL in the following way:

• the set of vertices is {1, . . . n}, and the vertex i is decorated by a genus-0 surface
with |Li| boundary components;

• between each pair of distinct vertices i, j there are exactly |lk(Li, Lj)| edges, and
they are all decorated by ε = sign(lk(Li, Lj)).

In other words, we are plumbing spheres with the appropriate number of punctures along
the smallest graph Γ whose total weights satisfy the condition pΓ(i, j) = lk(Li, Lj). Then,
we form a closed three-manifold YL as

YL := XL ∪∂ (−PΓL
).

The identification along the boundary is defined in the exact same way as the one arising
in Example 4.15, i.e. identifying the classes corresponding to the S1-factors of −∂PΓL

with the meridians of L of the appropriate colour, and the classes corresponding to the
boundary components of the punctured sphere with the longitudes associated with the
coloured Seifert framing.

Using some of the ideas of [12] together with the cut-and-paste formula of § 2, we will
now show that the multivariable signature can be written as the rho invariant of YL.

Proposition 4.18. Let L be an n-coloured link. Let ω ∈ Tn∗ , and let α : H1(XL; Z) →
U(1) be the associated coloured representation. Then, α can be extended to a represen-
tation of H1(YL; Z) and, for any choice of an extension, we have

ρα(YL) = −σL(ω).
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Proof. Let F = F1 ∪ · · · ∪ Fn ⊆ D4 be a bounding surface for L. Then, as α is a
coloured representation, it extends to a representation H1(WF ; Z) → U(1) that, for all
colour s, sends the meridian of Fs to ωs ∈ U(1). By (4.5), we have hence

ρα(∂WF ) = −σL(ω). (4.8)

As we have seen in Example 4.15, we have ∂WF = XL ∪∂ (−PΓF
), where ΓF is a plumbing

graph determined by F . We perform now cut-and-paste by replacing PΓF
with PΓL

.
Schematically, this is

XL ∪∂ (−PΓF
) � XL ∪∂ (−PΓL

) � PΓL
∪∂ (−PΓF

). (4.9)

The manifold PΓL
∪∂ (−PΓF

) can be seen as the plumbing along the graph Γ whose
vertices {1, . . . , n} are decorated by the closed surfaces Σs ∪∂ (−Fs) and whose set of
edges is the union of all edges of ΓL and ΓF , with the decorations of the edges of ΓF
changed of sign. In particular, (4.9) can be rewritten as

∂WF � YL � PΓ. (4.10)

Observe that, by construction, for each pair of vertices {s, t} we have

pΓL
(s, t) = pΓF

(s, t), (4.11)

so that
pΓ(s, t) = pΓL

(s, t) − pΓF
(s, t) = 0

i.e. Γ is balanced.
We will now prove that the representation α can be extended to H1(YL; Z). In the

gluings, the boundary of XL is identified with the boundaries of PΓF
and PΓL

, leading
to natural maps

ϕ : H1(∂XL; Z) → H1(PΓF
; Z), ψ : H1(∂XL; Z) → H1(PΓL

; Z) (4.12)

induced by the inclusions. Standard Mayer–Vietoris computations, together with the
equality (4.11), show that kerϕ and kerψ coincide, as both are generated by the following
elements (compare with [12, Lemma 4.7]):

(i) the differences μi − μj with c(i) = c(j);

(ii) for each colour s, the element∑
c(i)=s

λi −
∑
t�=s

lk(Ls, Lt)μjt ,

where μjt is any meridian of colour t.

As α extends toH1(WF ; Z), it is also defined onH1(∂WF ; Z) = H1(PΓF
; Z). In particular,

α has to be trivial on kerϕ (this can be verified using the explicit description of the
generators). From the fact that kerϕ = kerψ, we see then that α also admits an extension
to H1(PΓL

; Z), because U(1) is divisible.
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Pick any extension α : H1(PΓL
; Z) → U(1) of α. We can now apply the cut-and-paste

formula of Theorem 3.9 to (4.10), obtaining

ρα(∂WF ) = ρα(YL) + ρα(PΓ) − τ(VPΓL
, VXL

, VPΓF
) (4.13)

(the Maslov triple index in twisted homology is 0 because all ωi’s are non-trivial by
assumption; see Remark 4.2). As we have seen, the plumbing graph Γ is balanced. As
a consequence, we have ρα(PΓ) = 0 by a computation of Conway, Nagel and the author
[12, Proposition 4.10]. The Lagrangians VPΓF

and VPΓL
are identified under the gluing to

VPΓF
= kerϕ⊗ C, VPΓ = kerψ ⊗ C,

where ϕ and ψ are the maps defined in (4.12). From the fact that kerϕ = kerψ it follows
then that VPΓF

= VPΓ , and hence we have τ(VXL
, VPΓF

, VPΓL
) = 0. The equality (4.13)

gets thus rewritten as
ρα(∂WF ) = ρα(YL).

Substituting this into (4.8), the proof is complete. �

We introduce now the following definitions.

Definition 4.19. Let L = K1 ∪ · · · ∪Kk be an n-coloured link. Then

(i) if lk(Ls, Lt) = 0 for all pairs (s, t) of distinct colours, we say that L is colour-to-
colour algebraically split ;

(ii) if every link component Ki satisfies lk(Ki, Ls) = 0 for all s �= c(i), we say that L
is component-to-colour algebraically split.

Of course, being component-to-colour algebraically split is a stronger condition than
being colour-to-colour algebraically split. Any onecoloured link is component-to-colour
algebraically split, and so is any link with vanishing linking numbers, no matter what
colouring it is assigned.

Remark 4.20. If L is colour-to-colour algebraically split, then YL has a very simple
description. In fact, in this case, ΓL is a graph with no edges, and thus the associated
plumbed three-manifold is

PΓL
=

n⊔
s=1

Σs × S1,

where Σs is a sphere with |Ls| punctures. As a consequence of Proposition 4.18, the
multivariable signature is hence (up to sign) just the rho invariant of the closed three-
manifold obtained by gluing these products Σs × S1 to the link exterior XL. This holds,
in particular, if L is onecoloured, so that we can always express the Levine–Tristram
signature of L as

σL(ω) = −ρα(XL ∪∂ (−Σ × S1)),
where Σ is a punctured sphere. In the case of a knot, this gives the well-known description
of the Levine–Tristram signature as the rho invariant of the manifold obtained by 0-
framed surgery. In the next two sections, we will study the relationship between rho
invariants and the Dehn surgery in higher generality.
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4.4. Integral surgery

We will now study the value of the rho invariant of manifolds obtained by integral
surgery on a link L. We start by recalling the following result of Cimasoni and Florens
[9, Theorem 6.7].

Theorem 4.21 (Cimasoni–Florens). Let L be a k-coloured k-component link. Let
q ∈ N a positive integer and let n1, . . . , nk ∈ {1, . . . , p− 1} be integers, each of which is
coprime with q. Let ω = (e2πin1/q, . . . , e2πink/q) ∈ (S1 \ {1})n, and let α : H1(XL; Z) →
U(1) be the associated coloured representation. Let g be a compatible integral framing
on L. Then, we have

ρα(SL(g)) = −σL(ω) +
∑
i<j

Λij + signΛg − 2
q2

k∑
i=1

(q − ni)njΛij .

Remark 4.22. The result of Cimasoni and Florens was originally written in terms of
the Casson–Gordon invariant of § 2.3. We have translated it into a result about the rho
invariant by using Proposition 2.8.

Remark 4.23. Observe that formulas about any colouring of L can be extracted
from Theorem 4.21, as the signature function associated with any colouring can be easily
deduced from the one associated with the maximal colouring [9, Proposition 2.5]. For the
onecolouring, this gives back a result of Casson and Gordon [7, Lemma 3.1] about the
Levine–Tristram signature.

We would like to remove the restrictions on the values of ω in the statement of Theorem
4.21. In order to be able to do so, we need to assume some conditions about the linking
numbers between components of different colours.

The main result of this section is the following, which holds in the case of colour-to-
colour algebraically split links.

Theorem 4.24. Let L be an n-coloured link which is colour-to-colour algebraically
split. Let ω ∈ Tn∗ , and let α : H1(XL; Z) → U(1) be the associated coloured representation.
Let g be a compatible integral framing on L. Then, we have

ρα(SL(g)) = −σL(ω) + signΛg − 2
n∑
s=1

hsθs(1 − θs),

where, for each colour s, θs ∈ (0, 1) is such that ωs = e2πiθs , and hs is the sum of all the
coefficients of the framed linking matrix of the sublink Ls.

Proof. Set P := PΓL
. Let k be the number of components of L. We perform the

cut-and-paste illustrated schematically by

XL ∪∂ Y � XL ∪∂ (−P ) � P ∪∂ Y, (4.14)

where Y = Y1 � · · · � Yk is a disjoint union of k solid tori, glued along the framing g, and
P is glued as prescribed by Construction 4.17. As L is colour-to-colour algebraically split,
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by Remark 4.20, we have

P =
n⊔
s=1

Σs × S1,

where, for each colour s, Σs is a sphere with |Ls| punctures. The manifold P ∪∂ Y is
thus the disjoint union of the n closed manifolds obtained by capping all of the Σs × S1’s
appropriately with solid tori.

Claim 1. Up to an orientation-preserving diffeomorphism, we have

P ∪∂ Y = −
n⊔
s=1

L(hs, 1),

in such a way that the element 1 ∈ Z/hs = π1(L(hs, 1)) is given by the class [S1] ∈
H1(Σs × S1; Z).

We postpone for the moment the proof of this claim. As a consequence of Claim 1,
(4.14) can be rewritten up to orientation-preserving diffeomorphism as

SL(g) � YL � −
n⊔
s=1

L(hs, 1).

Observe that the restriction of α to H1(Σs × S1) sends the class [S1] to ωs, as the
boundary circles of the form {pi} × S1 are identified with the meridians of the link.
The representation α extends thus to L(hs, 1) in such a way that, for each colour s, the
element 1 ∈ Z/hs = H1(L(hs, 1); Z)) is sent to ωs. We can now apply Theorem 3.9 and
get

ρα(SL(g)) = ρα(YL) −
n∑
s=1

ρ(L(hs, 1), ωs) − τ(VP , VXL
, VY ) (4.15)

(as usual, there is no Maslov triple index in twisted cohomology because of Remark 4.2).
The first summand in the right-hand term of (4.15) is minus the multivariable signature
of L thanks to Proposition 4.18. Using Corollary 2.11 to describe the rho invariant of the
lens spaces at hand, and swapping the second and third variables of the Maslov triple
index (see Proposition 3.2 (i)), we can rewrite (4.15) as

ρα(SL(g)) = −σL(ω) −
n∑
s=1

(2hsθs(1 − θs) − sgn(hs)) + τ(VP , VY , VXL
). (4.16)

Hence, in order to conclude, we need to identify the Maslov triple index term in (4.16).
The rest of the proof is devoted to this.

Instead of trying to calculate the Maslov triple index directly, we use the cocycle
property of our three Lagrangians together with M := SpanC{μ1, . . . , μk} to simplify
this task. Namely, using Proposition 3.2 (ii), we find

τ(VP , VY , VXL
) = τ(M, VP , VY ) − τ(M, VP , VXL

) + τ(M, VY , VXL
). (4.17)

We set the following notation. Let λ1, . . . , λk be the framed longitudes associated with the
surgery framing g = (g1, . . . , gk), and let λ1, . . . , λk bet the framed longitudes associated
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with the coloured Seifert framing fL = (f1, . . . , fk). By definition, then, we have

λ′i = λi + (fi − gi)μi for all i = 1, . . . , k. (4.18)

We also use the notation Λij for the coefficients of the framed linking matrix Λg, and
Λ′
ij for those of the frame linking matrix ΛfL

(these two matrices only differ on the
diagonal). We have the following description of the four Lagrangian subspaces appearing
in the right-hand term of (4.17):

M = SpanC{μ1, . . . , μk},
VP = SpanC{μi − μj | c(i) = c(j)} ⊕ SpanC{v1, . . . , vn}, where vs =

∑
c(i)=s

λ′i,

VY = SpanC{λ1, . . . , λk},

VXL
= SpanC{w1, . . . , wk}, where wi = λi −

k∑
j=1

Λijμj = λ′i −
k∑
j=1

Λ′
ijμj .

We compute now the three summands separately. We will prove the following.

Claim 2. τ(M, VP , VY ) = −∑n
s=1 sgn(hs).

Claim 3. τ(M, VP , VXL
) = 0.

Claim 4. τ(M, VY , VXL
) = sign(Λg).

These three claims, together with (4.16) and (4.17), lead to the desired formula. In
order to conclude, we are only left with proving Claim 1 to 4.

Proof of Claim 2. Write τ(M, VP , VY ) = τ(VY , M, VP ). Clearly, we have

(VY + M) ∩ VP = VP .

In fact, the generators of VP of the form μi − μj are in M, and the generators vs can be
written as

vs =
∑
c(i)=s

λi +
∑
c(i)=s

(fi − gi)μi, (4.19)

where the first summand is in VY , and the second summand is in M. Let

ψ : VP × VP → C

be the Hermitian form associated with the triple (VY , M, VP ), whose signature is
τ(VY , M, VP ). The generators of the form μi − μj are clearly in the radical of ψ, as
they belong to the Lagrangian M. As a consequence, it is enough to study ψ on the span
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of v1, . . . , vn. Using the definition of ψ and the decomposition (4.19), we compute

ψ(vs, vt) =

⎛⎝ ∑
c(i)=s

λi

⎞⎠ ·
⎛⎝ ∑
c(j)=t

(fj − gj)μj

⎞⎠ =

⎧⎪⎨⎪⎩
∑
c(i)=s

(fi − gi), if s = t,

0, otherwise.

As a consequence, we have

signψ =
n∑
s=1

sgn

⎛⎝ ∑
c(i)=s

(fi − gi)

⎞⎠ .

By definition of the coloured Seifert framing, together with the fact that gi = Λii, we can
now compute that, for each colour s, we have

∑
c(i)=s

(fi − gi) =
∑
c(i)=s

⎛⎜⎜⎝−
∑
c(j)=s
j �=i

lk(Ki,Kj)

⎞⎟⎟⎠−
∑
c(i)=s

gi = −
∑

c(i)=c(j)=s

Λij = −hs.

Putting these computations together, we find the equation in the statement of the claim.

Proof of Claim 3. The space (M + VP ) ∩ VXL
is the n-dimensional subspace generated

by the terms

zs :=
∑
c(i)=s

wi = −
∑
c(i)=s

k∑
j=1

Λ′
ijμj +

∑
c(i)=s

λ′i (4.20)

where the first summand is in M and the second summand is in VP . Let

ϕ : SpanC{z1, . . . , zn} × SpanC{z1, . . . , zn} → C

be the Hermitian form associated with the triple (M, VP , VXL
). Then, from the

decomposition (4.20), we can compute

ϕ(zs, zt) =

⎛⎝−
∑
c(i)=s

k∑
j=1

Λ′
ijμj

⎞⎠ ·
⎛⎝ ∑
c(i)=t

λ′i

⎞⎠ =
∑
c(i)=s
c(j)=t

Λ′
ij .

For s = t, this is 0 by definition of the coloured Seifert framing. For s �= t, instead, it is
equal to lk(Ls, Lt), which is 0 because the link is colour-to-colour algebraically split. In
particular, the form ϕ is trivial and the Maslov triple index is 0 as claimed.

Proof of Claim 4. This follows immediately from Lemma 4.6 (iii), as VY = Lg.
Proof of Claim 1. As we have observed, PΓL

is the disjoint union of manifolds of the form
Σs × S1, where Σs is a punctured sphere. By construction, in the gluing XL ∪∂ Y , the
meridian mi of the solid torus Yi is identified with the framed longitude λi of the surgery
framing g. On the other hand, when −PΓL

is glued to XL, a boundary component Ci ×
S1 ⊆ ∂Σs × S1 is identified with the boundary torusKi in such a way that, homologically,
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the class [Ci] coincides with the framed longitude λ′i of the coloured Seifert framing, and
[S1] coincide with the meridian μi. The “by-product” gluing PΓL

∪∂ Y is the result of
capping the boundary Σs × S1 with solid tori. As a consequence of this and (4.18), these
cappings are given by the identifications

mi = λi = λ′i + (gi − fi)μi = [Ci] + (gi − fi)[S1].

In particular, for each s, this construction leads to the lens space L(−h′s, 1) or equivalently
to −L(h′s, 1), with

h′s :=
∑
c(i)=s

(gi − fi).

It is also easy to see that the element 1 ∈ Z/h′s corresponds to [S1] as desired. The proof
is concluded by proving that h′s = hs. This follows from the definition of the coloured
Seifert framing and the sequence of equalities∑

c(i)=s

(gi − fi) =
∑
c(i)=s

gi +
∑
c(i)=s

∑
j �=i s.t.
c(j)=s

lk(Ki,Kj) =
∑

c(i)=c(j)=s

Λij = hs.

�

Remark 4.25. Applying Theorem 4.24 in the onecoloured setting, where the first
hypothesis is always satisfied, we get the following formula relating the rho invariant of
the manifold obtained by surgery and the Levine–Tristram signature:

ρα(SL(g)) = −σL(ω) + signΛg − 2(
∑
i,j

Λij)θ(1 − θ), (4.21)

where θ ∈ (0, 1) is such that ω = e2πiθ and the sum is over the coefficients of Λg. For
θ ∈ Q, this coincides with a formula of Casson and Gordon [7, Lemma 3.1].

Example 4.26. Let r, s be positive coprime integers, and let T (r, s) denote the (r, s)-
torus knot. The (rs− 1)-Dehn surgery on T (r, s) gives a manifold which is orientation-
preserving diffeomorphic to the lens space L(rs− 1, s2) [24, Proposition 3.2]. Let ζ :=
e2πi/(rs−1), and let 0 ≤ k ≤ rs− 2. Keeping track of the induced map on the fundamental
group under this diffeomorphism, by (4.21) (applied with ω = ζk) we obtain

ρ(L(rs− 1, s2), ζkrs
2
) = −σT (r,s)(ζk) + 1 − 2k(rs− 1 − k)

rs− 1
.

It might be interesting to compare this formula to other known computations for
the Levine–Tristram signature of torus knots (see e.g. the paper of Borodzik and
Oleszkiewicz [4]).

Suppose now that the n-coloured link L is component-to-colour algebraically split.
Observe that, under this assumption, the coloured Seifert framing coincides with the usual
Seifert framing, i.e. with the coloured Seifert framing associated with the onecolouring of
the same underlying link. As explained by the next result, this framing has the important
property of being compatible with all U(1)-representations of H1(XL; Z) → U(1).
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Lemma 4.27. Let L be an n-coloured link which is component-to-colour algebraically
split. Then, the coloured Seifert framing fL is compatible with all coloured representations
α : H1(XL; Z) → U(1).

Proof. By Remark 4.8, we need to prove that

k∏
j=1

α(μj)Λij = 1 for all i. (4.22)

Let ω ∈ Tn be the element determined by the relations α(μi) = ωc(i) for all i. We can
write then

k∏
j=1

α(μj)Λij =
n∏
s=1

ω
∑

c(j)=s Λij

s . (4.23)

Since L is component-to-colour algebraically split, for every s different from si := c(i) we
have ∑

c(j)=s

Λij = lk(Ki, Ls) = 0.

As a consequence, (4.23) can be rewritten as

k∏
j=1

α(μj)Λij = ω

∑
c(j)=si

Λij

si . (4.24)

By (4.4), moreover, the exponent in the right-hand term of (4.24) is 0, and thus (4.22) is
satisfied. �

Corollary 4.28. Let L be an n-coloured link which is component-to-colour alge-
braically split. Let ω ∈ Tn∗ , and let α : H1(XL; Z) → U(1) be the associated coloured
representation. Then, α extends to H1(SL(fL); Z) and we have

ρα(SL(fL)) = −σL(ω) + signΛfL
.

Proof. The representation α extends to H1(SL(fL); Z) thanks to Lemma 4.27, so that
we can apply Theorem 4.24. The desired formula follows then from the observation that,
for the coloured Seifert framing, thanks to (4.4) for any colour s we have

hs
def=

∑
c(i)=c(j)=s

Λij =
∑
c(i)=s

∑
c(j)=s

Λij =
∑
c(i)=s

0 = 0.

�

Remark 4.29. Both Lemma 4.27 and Corollary 4.28 hold in particular in the one-
coloured setting, where they were proved by Nagel and Powell [25, Section 5]. Our work
is a generalization of this to the multivariable setting.

https://doi.org/10.1017/S0013091522000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000153


436 Enrico Toffoli

4.5. Rational surgery

We now want to study the rho invariant of the closed manifold obtained by surgery
along a rational framing on a link. We start from the case of a knot, as the statement and
the proof are a bit simpler in this setting. Observe that, for a knot K, a representation
ψ : H1(XK) → U(1), extends to MK(p/q) if and only if ψ(μ)p = 1, i.e. if and only if
ω := ψ(μ) is a pth root of unity.

Proposition 4.30. Let K be a knot, and let α : H1(XK ; Z) → U(1) be the represen-
tation defined by α(μ) = ω, with ω being a pth root of unity. Then, we have

ρα(SK(p/q)) = −σK(ω) − ρ(L(p, q), ω).

Proof. We perform cut-and-paste on SK(p/q) in the following way: we cut out the
solid torus Y = D2 × S1 of the filling, and we replace it with another copy Y ′ = D2 × S1,
this time glued along the 0 framing. It is convenient to actually glue −Y ′ instead of Y ′:
in such a way, we can define an orientation-reversing diffeomorphism between −∂Y ′ and
∂XK which gives the identifications

m′ = λ, l′ = μ

between the standard basis (m′, l′) of H1(Y ′; Z) and the basis (μ, λ) of H1(∂XL; Z). On
the other hand, the meridian m of Y is identified with pμ+ qλ. Schematically, we write

XK ∪∂ Y � XK ∪∂ (−Y ′) � Y ′ ∪∂ Y. (4.25)

The union of solid tori Y ′ ∪δ Y is now given along a diffeomorphism which gives the
identification of m with qm′ + pl′, so that the resulting manifold is the lens space
L(p, −q) ∼= −L(p, q) (see § 2.4). In particular, (4.25) can be rewritten as

SK(p/q) � SK(0) � −L(p, q).

Observe that the generator 1 ∈ Z/p = π1(L(p, q)) corresponds by construction to the
longitude l′. In turn, l′ is glued in the surgery with the meridian μ of K. As a consequence,
the extension of the representation α to H1(L(p, q); Z) is the representation Z/p→ U(1)
given by 1 �→ ω. Before applying the cut-and-paste formula, we observe that the result is
trivially true for ω = 1. We shall hence suppose ω �= 1. Thanks to Theorem 3.9, we can
now compute

ρα(SK(p/q)) = ρα(SK(0)) − ρ(L(p, q), ω) − τ(VY ′ , VXK
, VY ) (4.26)

(as usual, the Maslov triple index in twisted homology is 0 thanks to Remark 4.2 and the
assumption ω �= 1). Now, we know that the first summand in the right-hand term of (4.26)
is minus the Levine–Tristram signature (see Remark 4.20), while the second summand
coincides with the one of the statement. As a consequence, to complete the proof, it
is enough to show that τ(VY ′ , VXK

, VY ) = 0. We are going to describe the Lagrangians
explicitly. Considering the identifications given by the gluings, in terms of the basis (μ, λ)
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of H1(∂XK ; C) we have

VY ′ = SpanC(λ), VXK
= SpanC(λ), VY = SpanC(pμ+ qλ).

As the first two subspaces coincide, the Maslov triple index is 0, and the proof is complete.
�

We shall now prove the general version of Proposition 4.30, which holds for all
component-to-colour algebraically split links. As we have seen, a special case of these
are onecoloured links. In particular, this gives a general formula relating the Levine–
Tristram signature of a link L with the Atiyah–Patodi–Singer rho invariant of the closed
three-manifold obtained by rational surgery on L.

Theorem 4.31. Let L be an n-coloured, k-component link that is component-to-colour
algebraically split. Let ω ∈ Tn∗ , and let α : π1(XL) → U(1) be the associated coloured
representation. Let r be a compatible rational framing on L. Then, we have

ρα(SL(r)) = −σL(ω) + signΛr −
k∑
i=1

(ρ(L(pi, qi), ωc(i)) + sgn(pi/qi)),

where pi, qi are coprime integers such that ri − fi = pi/qi (here, fi is the i-th coefficient
of the Seifert framing).

Proof. We generalize the cut-and-paste construction of Proposition 4.30, removing the
union of solid tori Y coming from the r-framed filling of XL, and replacing them with a
union of solid tori Y ′ glued along the coloured Seifert framing. As the difference between
these framings is now given by the k-tuple (p1/q1, . . . , pk/qk), the same argument used
in the proof of Proposition 4.30 (repeated now for each link component) implies that this
cut-and-paste can be written as

SL(r) � SL(fL) �
(

k⊔
i=1

−L(pi, qi)

)
.

In particular, Theorem 3.9 gives in this case

ρα(SL(r)) = ρα(SL(fL)) −
k∑
i=1

ρα(L(pi, qi)) − τ(VY ′ , VXL
, VY ).

Applying Corollary 4.28 and rearranging the variables of the Maslov triple index with
Proposition 3.2 (i), we can rewrite the last equation as

ρα(SL(r)) = −σL(ω) + signΛfL
−

k∑
i=1

ρ(L(p, q), ωc(i)) + τ(VY ′ , VY , VXL
). (4.27)

The computation of the Maslov triple index is more involved than in the case of knots. As
we did in the proof of Theorem 4.24, instead of trying to calculate it directly, we use the

https://doi.org/10.1017/S0013091522000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000153


438 Enrico Toffoli

cocycle property of our three Lagrangians together with M := {μ1, . . . , μk} to simplify
this task. Namely, using Proposition 3.2 (ii), we find

τ(VY ′ , VY , VXL
) = τ(M, VY ′ , VY ) − τ(M, VY ′ , VXL

) + τ(M, VY , VXL
). (4.28)

Claim 1. τ(M, VY ′ , VY ) = −∑k
i=1 sgn(pi/qi).

Claim 2. τ(M, VY ′ , VXL
) = sign ΛfL

and τ(M, VY , VXL
) = sign Λr.

Thanks to (4.28), the two claims (whose proof we postpone for the moment) combine
to give

τ(VY ′ , VY , VXL
) = −

k∑
i=1

sgn(pi/qi) − signΛfL
+ signΛr.

Substituting this value into (4.27), we obtain the formula in the statement of the theorem.

Proof of Claim 1. Let λ1, . . . , λk be the framed longitudes corresponding to the
framing r, and let λ′1, . . . , λ

′
k be the framed longitudes of the Seifert framing. Then,

it is clear that

VY = SpanC{λ1, · · · , λk}, VY ′ = SpanC{λ′1, · · · , λ′k}.
Moreover, by definition, we have λi = λsi + riμi and λ′i = λsi + fiμi, so that the two sets
of longitudes are related by

λi = λ′i + (ri − fi)μi = λ′i +
pi
qi
μi.

In particular, the three Lagrangians in the first summand of (4.28) all split according to
the symplectic decomposition

H1(∂XL; C) =
k⊕
i=1

SpanC{μi, λi}.

As the pair (μi, λ′i) is a symplectic basis for (H1(Ti; C), ·) (see Example 3.3), it is
immediate to compute

τ(M, VY ′ , VY ) =
k∑
i=1

τ
(
μi, λ

′
i, λ

′
i +

pi
qi
μi

)
= −

k∑
i=1

sgn(pi/qi).

Proof of Claim 2. The claim follows immediately from Lemma 4.6 (iii), as we have VY = Lr
and VY ′ = LfL

. �

Remark 4.32. The hypothesis of L being component-to-colour algebraically split
allows us to obtain a single nice explicit formula, because, in this case, we can always apply
the cut-and-paste formula after performing the Dehn surgery along the Seifert framing,

https://doi.org/10.1017/S0013091522000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091522000153


The Atiyah–Patodi–Singer rho invariant and signatures of links 439

which is compatible with all representations thanks to Lemma 4.27. More general cases
of rational surgery can be faced by finding an appropriate compatible integral framing
(together with Theorem 4.21 or Theorem 4.24) and then modifying it into the desired
rational framing in the same way as in the proof of Theorem 4.31. However, this is better
dealt with on a case-by-case basis, as a general formula would be quite cumbersome.

Remark 4.33. If L is component-to-colour algebraically split and g is an integer
framing on L which is compatible with the given ω ∈ Tn∗ , we can apply either Theorem
4.24 or Theorem 4.31. The fact that the resulting formulas are compatible can be verified
by a quick computation using Corollary 2.11.

Acknowledgements. This project was supported by the collaborative research cen-
ter SFB 1085 ’Higher Invariants’, funded by the Deutsche Forschungsgemeinschaft. Part
of the article is based on the author’s PhD thesis, which was written under the support
of the graduate school GRK 1692 ’Curvature, Cycles, and Cohomology’, also funded by
the Deutsche Forschungsgemeinschaft. The author would like to thank Stefan Friedl for
several interesting discussions.

References

1. M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian
geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69.

2. M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian
geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432.

3. M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian
geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), 71–99.

4. M. Borodzik and K. Oleszkiewicz, On the signatures of torus knots, in Bulletin of the
Polish Academy of Sciences Mathematics, Volume 58 (2010).

5. U. Bunke, On the gluing problem for the η-invariant, J. Differential Geom. 41(2) (1995),
397–448.

6. S. E. Cappell, R. Lee and E. Y. Miller, On the Maslov index, Comm. Pure Appl.
Math. 47(2) (1994), 121–186.

7. A. J. Casson and C. McA. Gordon, On slice knots in dimension three, Proc. Sympos.
Pure Math. 32 (1978), 339–53.

8. A. J. Casson and C. McA. Gordon, Cobordism of classical knots. In À la recherche de
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MA, 1986).

9. D. Cimasoni and V. Florens, Generalized Seifert surfaces and signatures of colored
links, Trans. Amer. Math. Soc. 360(3) (2008), 1223–1264.

10. A. Conway, S. Friedl and E. Toffoli, The Blanchfield pairing of colored links, Indiana
Univ. Math. J. 67 (2018), 2151–2180.

11. A. Conway and M. Nagel, Twisted signatures of fibered knots, Algebr. Geom. Topol.
21 (2021), 1973–2036.

12. A. Conway, M. Nagel and E. Toffoli, Multivariable signatures, genus bounds and
0.5-solvable cobordisms, Mich. Math. J. 69(2) (2020).

13. A. Degtyarev, V. Florens and A. G. Lecuona, The signature of a splice, Int. Math.
Res. Not. 8 (2017), 2249–2283.

14. A. Degtyarev, V. Florens and A. G. Lecuona, Slopes and signatures of links. 2018,
available at https://arxiv.org/abs/1802.01836.

https://doi.org/10.1017/S0013091522000153 Published online by Cambridge University Press

https://arxiv.org/abs/1802.01836
https://doi.org/10.1017/S0013091522000153


440 Enrico Toffoli

15. S. Friedl, Algebraic Topology I-V.

16. S. Friedl, Eta invariants as sliceness obstructions and their relation to Casson–Gordon
invariants, Algebr. Geom. Topol. 4(2) (2004), 893–934.

17. S. Friedl, Link concordance, boundary link concordance and eta-invariants, Math. Proc.
Cambridge Philos. Soc. 138(3) (2005), 437–460.

18. S. Friedl, M. Nagel, P. Orson and M. Powell, A survey of the foundations of
four-manifold theory in the topological category, 2020

19. P. M. Gilmer, Configuration of surfaces in 4-manifolds, Trans. Amer. Math. Soc. 264(2)
(1981), 333–380.

20. P. Kirk and M. Lesch, On the rho invariant for manifolds with boundary, Algebr. Geom.
Topol. 3 (2003), 623–675.

21. P. Kirk and M. Lesch, The η-invariant, Maslov index, and spectral flow for Dirac-type
operators on manifolds with boundary, Forum Math. 16(4) (2004), 553–629.

22. J. P. Levine, Link invariants via the eta invariant, Comment. Math. Helv. 69(1) (1994),
82–119.

23. J. P. Levine, Concordance of boundary links, J. Knot Theory Ramifications 16(9) (2007),
1111–1120.

24. L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38(3) (1971), 737–745.

25. M. Nagel and M. Powell, Concordance invariance of Levine–Tristram signatures of
links, Doc. Math. 22 (2017), 25–43.

26. W. D. Neumann, Signature related invariants of manifolds. I. Monodromy and γ-
invariants, Topology 18(2) (1979), 147–172.
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