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Pure Discrete Spectrum
for One-dimensional Substitution Systems
of Pisot Type

Dedicated to Robert V. Moody on his 60-th birthday

V. E Sirvent and B. Solomyak

Abstract. 'We consider two dynamical systems associated with a substitution of Pisot type: the usual Z-
action on a sequence space, and the R-action, which can be defined as a tiling dynamical system or as a
suspension flow. We describe procedures for checking when these systems have pure discrete spectrum
(the “balanced pairs algorithm” and the “overlap algorithm”) and study the relation between them.
In particular, we show that pure discrete spectrum for the R-action implies pure discrete spectrum
for the Z-action, and obtain a partial result in the other direction. As a corollary, we prove pure
discrete spectrum for every R-action associated with a two-symbol substitution of Pisot type (this is
conjectured for an arbitrary number of symbols).

1 Introduction

Substitution dynamical systems and their spectral properties have been much studied
(see [18], [22]), but there remain many open problems, especially in the non-constant
length case (see Section 2 for definitions). The standard substitution dynamical sys-
tem is defined as the shift on the associated sequence space, resulting in a minimal
uniquely ergodic Z-action in the primitive case. There is a conjecture that, for every
substitution of Pisot type, the resulting measure-preserving transformation has pure
discrete spectrum. There are many partial results in this direction; this conjecture has
been confirmed in the two-symbol case, due to the recent progress made by Barge and
Diamond [2] on the Strong Coincidence Conjecture, see [9], [10]. There is a com-
binatorial “balanced pair algorithm,” introduced by Livshits [15, 16], for checking
pure discrete spectrum of a substitution Z-action. It was used in [9], [10] in the two-
symbol case, and remains, perhaps, the most efficient method for practical checking
of pure discrete spectrum for any number of symbols. In Section 3 we present a ver-
sion of this algorithm convenient for us, and sketch the proof of why it works. We
implemented this algorithm in Mathematica; some examples that we worked out are
presented in the Appendix.

Another one-dimensional system associated to a substitution, is the R-action,
which can be defined as a suspension flow for the Z-action, with the height func-
tion constant on cylinder sets corresponding to symbols of the alphabet. It can also
be viewed as a tiling dynamical system. The most natural choice for heights/tile
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lengths is given by the Perron-Frobenius eigenvector of the substitution matrix; then
the corresponding tilings of the line are self-similar. Tiling dynamical systems and
their spectral properties have been studied in [27] and references therein. In partic-
ular, [27] showed that the Pisot eigenvalue condition is necessary for the R-action to
have non-trivial discrete component in its spectrum, and developed a combinatorial-
geometric “overlap algorithm” for checking when the spectrum is pure discrete. In
Section 4, we describe the overlap algorithm and point out some of its special fea-
tures in the one-dimensional case ([27] was mostly concerned with the planar case).
A natural question arises: what is the relation between the spectral properties of the
Z-action and the R-action associated to the substitution? More specifically: what is
the relation between the balanced pair algorithm and the overlap algorithm? This is
investigated in Section 5. As a corollary, we obtain the following results:

1. For any substitution of Pisot type, if the corresponding R-action has pure dis-
crete spectrum, then the 7-action has pure discrete spectrum.

2. For any substitution of Pisot type on two symbols, the corresponding R-action
has pure discrete spectrum.

A strong motivation for questions on pure discrete spectrum comes from the
physics of quasicrystals. Aperiodic tilings are used as models of atomic configura-
tions, and pure discrete spectrum of the dynamical system is equivalent to pure point
diffractivity [5], [8], [13]. It follows, in particular, that every one-dimensional sys-
tem of Pisot type with two kinds of “atoms” is pure point diffractive. (We note that
the terms “pure discrete” and “pure point” are synonymous; the latter is used in the
literature on quasicrystals, but the former is standard in Ergodic Theory.)

Acknowledgments The first author would like to thank the Department of Mathe-
matics at the University of Washington for its hospitality. The research of this article
was done during a visit of the first author to this institution.

2 Preliminaries

Here we briefly recall some basic facts about substitutions and associated dynamical
systems; proofs and additional information can be found in [18], [22].

Let A ={1,...,d}, for somed > 2, and denote by A* = | J;°, A’ the set of finite
words in the alphabet A. A substitution is a map (: A — A*. The substitution ( is
extended to maps (also denoted by ¢) A* — A* and AN — AN by concatenation.
We write [;(w) for the number of occurrences of the letter 7 in the word w and denote
I(w) = [L,(w),...,li(w)]T. The matrix associated with the substitution ¢ is defined
by

M = (m;j)axa, where m;;=1(((j)).
Note that Mq(l(w)) = I(C(W)) for all w € A*. The substitution is primitive if

there exists k such that all entries of M, ]C( are strictly positive; equivalently, if for every

i,j € A, the symbol j occurs in ¢¥(i). Throughout the paper we assume that ((1)
begins with 1 and |¢(1)| > 1. The sequence u = ujuyu3 - - - = lim,_ o, ("(1) € AN
is a fixed point for ¢; we call it the substitution sequence for (.
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Consider the sequence space A” with the product topology, and let o be the shift
transformation (ov), = v,+1 on A%. For a sequence x denote by L(x) the language
of x, that is, the set of all finite words that occur in x. Define

Qe={x¢€ A% L(x) € L(w)}.

Then (€, o) is a topological dynamical system, called the substitution dynamical sys-
tem (for ¢). For a primitive substitution, this dynamical system is minimal, i.e. every
orbit is dense; equivalently, L(x) = L(u) for all x € §;. Minimality implies that
the substitution sequence u (as well as any element of §)¢) is uniformly recurrent:
for every W € L(u), there exists L such that W occurs in any block of u of length
L. For a primitive ¢, the system (£2¢, o) is uniquely ergodic, i.e. there is a unique o-
invariant invariant Borel probability measure p. Unique ergodicity implies that every
W € L(u) occurs in u with a well-defined positive frequency.

Now we have a measure-preserving transformation ()¢, o, 1); its spectral type
is, by definition, the spectral type of the unitary operator U¢: f(-) +— f(o-) on
L*(Q¢, ). The dynamical system (¢, o, p) has pure discrete spectrum if and only if
there is a basis for L*(£2¢, p1) consisting of eigenfunctions for U,. By the Halmos-Von
Neumann Theorem, a measure-preserving transformation has pure discrete spec-
trum if and only if it is measure-theoretically isomorphic to a translation on a com-
pact Abelian group, see [28]. Abusing the terminology a little, we will say that
has pure discrete spectrum when the measure-preserving transformation ()¢, o, i)
does.

The substitution ( is said to have constant length if i — |((i)| is constant on A;
otherwise, it has non-constant length.

Definition A substitution ( satisfies the strong coincidence condition (on prefixes) if
for any two letters i, j € A thereexistn € N, a € A, and p,q,r,t € A%, such that

¢"(i) = patand ¢"(j) = qar, with1(p) = 1(g).

Dekking [4] proved that a primitive substitution of constant length has pure dis-
crete spectrum if and only if it satisfies the strong coincidence condition.

The substitution ( is said to be of Pisot type if the Perron-Frobenius eigenvalue
of the matrix M, is a Pisot number and the characteristic polynomial is irreducible;
equivalently, if all non-Perron-Frobenius eigenvalues are strictly between zero and
one in modulus. A substitution of Pisot type is necessarily primitive, has non-
constant length, and the corresponding substitution sequences are non-periodic, see
[3]. It is conjectured that every substitution of Pisot type satisfies the strong co-
incidence condition. This has recently been proven by Barge and Diamond in the
two-symbol case [2].

3 The Balanced Pair Algorithm

In this section we describe a version of the algorithm, first introduced by Livshits [15,
16], for checking pure discrete spectrum for a substitution of non-constant length.
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There is another approach, pioneered by Rauzy [21], which proceeds by constructing
a geometric representation of a substitution dynamical system on a torus. It was
further extended by [12], [1], [3], [25], [23]. We do not discuss it here.

We say that a pair of words U, V is a balanced pair if they have the same length
and the same occurrence of symbols, i.e. I(U) = 1(V). We will denote the balanced

Vv
2 < m < |U|. A balanced pair is called irreducible if it does not split nontrivially.
The process of splitting a balanced pair into irreducible balanced subpairs is called
reduction. Clearly, if [U, V] is a balanced pair, then [((U), {(V)] is a balanced pair
as well. We may also consider a reduction for a pair of infinite words [x,y] in the
alphabet A (although it may happen that it never splits).

Let u be the substitution sequence and let W be a nonempty prefix of u. The
set of irreducible balanced pairs arising in the reduction of [u, o"u] is denoted by
I;(W) (they are called initial irreducible balanced pairs). We claim that I;(W) is
finite, and every element of I; (W) occurs with a well-defined positive frequency in
the reduction of [u, U‘W|u]. Indeed, writingu = WU, WU,W - - ., where U; € A*
does not contain W, we see that [u, o!"lu] splits into balanced pairs as follows:

pairU,Vas [U,V]or ’U} It splits at m if [Up m—1], V[1,m—1]] is a balanced pair, with

u
cWlu

wU,
uw

wU,
u,w

There are finitely many balanced pairs arising this way since W occurs in u with
bounded gaps. They need not be irreducible; performing further reduction yields
I, (W), which is therefore also finite. The existence of frequencies follows from the
fact that W occurs in u with a well-defined positive frequency.

Next, we define inductively, for n > 1,

L, (W) ={[X,Y] : [X,Y] is an irreducible balanced subpair of
(3.1) [C(V),¢(2)], for some [V, Z] € I,_1(W)}.

Equivalently, I,,(W) is the set of all irreducible balanced pairs that arise from the
reduction of [u, a'C'H(W)‘u]. We define the set of balanced pairs as I = I(W) =
Unzy L(W).

We call this process the balanced pair algorithm associated to the prefix W, or bpa-
W for short. We say that the bpa-W terminates if (W) is finite. In this case we
obtain a new substitution ¢, with the alphabet I(W), and the substitution map that
takes [U, V] € I(W) into the reduction of [{(U), {(V)].

A balanced pair [i, 1], for i € A, is called a coincidence. Coincidences need not be
in I(W), but if they are, then the new substitution C is not primitive, since ( ([1,1]) is
the reduction of [{(7), {(i)], and thus contains only coincidences.

We say that the balanced pair [U, V'] leads to a coincidence if there exists m such
that the reduction of [("(U), ("™ (V)] contains a coincidence.

Theorem 3.1 (Livshits [15,16])  Let ¢ be a primitive substitution such that ((1)
starts with 1.

https://doi.org/10.4153/CMB-2002-062-3 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2002-062-3

Pure Discrete Spectrum for Pisot Substitutions 701

(a) If for some prefix W the bpa-W terminates and every balanced pair in (W) leads
to a coincidence, then ¢ has pure discrete spectrum.

(b) If the bpa-W terminates for some prefix W = ug - - - Uy, such that 41 = uy, and
¢ has pure discrete spectrum, then every balanced pair in (W) leads to a coinci-
dence.

We include a sketch of the proof of Theorem 3.1 below, for the reader’s conve-
nience, but first we make some remarks and then give an example of how the algo-
rithm works.

Remarks 1. This theorem was proved by Livshits in [16] (in a slightly different
form), but similar ideas appeared before. As already mentioned, the idea of coinci-
dences was introduced by Dekking [4] in the constant length case. For substitutions
of non-constant length, the balanced pair algorithm essentially goes back to the pa-
per of Michel [17]. The main steps of the proof of part (a) (in a special case) can be
found in Queffélec’s book [18, VI.5]. Hollander [9] has worked out the details of this
proof, and our sketch below largely follows his argument.

2. Note that the Pisot condition is not assumed in the theorem. However, it
seems that if the characteristic polynomial of the substitution matrix is irreducible
and the Perron-Frobenius eigenvalue is not Pisot, then ¢ does not have pure discrete
spectrum and the bpa does not terminate. We do not know if these claims have been
proved in full generality; partial results in this direction were obtained in [26], [6].

3. It is easy to see that if the balanced pair algorithm terminates and ( satisfies
the strong coincidence condition, then every balanced pair leads to a coincidence.
Hollander [9] (see also [10]) proved that for every substitution of Pisot type on two
symbols, the balanced pair algorithm terminates. Together with the recent result of
Barge and Diamond [2] and Theorem 3.1, this implies that all such substitutions have
pure discrete spectrum.

Example Let ¢ be the substitution:
112, 213, 3—1.
Sou = 12131211213 - - -. We take the shortest prefix W = 1. First we need to find

all the words in u of the form 1U1 where U does not contain 1’s. This is easy to do,
and we get the following set of initial balanced pairs:

11 {2] |3] |12| |13
II(W)_{‘]- ) 2 ) 3 ) 21 ) 31’}
The substitution and reduction of the pairs which are not coincidences, is as follows:
12 1| (213
21 1{ |312
13 N 1f |21
31 1] (12
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We got a new irreducible pair, which we break down:
213 1| 3121
312 1{ |1213

Continuing the reduction process:

3121 1| 12| (13] |12

1213 1| |21} |31} |21

1 (2| |3] (12} |13| |213| |3121
I(W){‘l 11217 3] 21}’ 31 ’}312 ’ 1213’}

Since every balanced pair leads to a coincidence, by Theorem 3.1(a), the Z-action
associated to this substitution has pure discrete spectrum.

Sketch of the Proof of Theorem 3.1 Let W be a prefix of the substitution sequence
u. Denote D,, = {n : iy, # u,} and p; = [¢(W)|. Recall that for R C N the
density is defined by
#RN[1,k])

k )
if the limit exists. The existence of dens(D,,) follows from unique ergodicity of the
substitution dynamical system. We are interested in the behavior of dens(D,) as
I — oo. Let

dens(R) = klim
— 00

(3.2) a = agl)ag) e

be the reduction of [u, o?'u] into irreducible balanced pairs. For a balanced pair
B=1[U,V]let|8] =|U| = |V|and A(B) = #{i < |B|: U; # V;}. Then

N 0
- Aay)
(3.3) dens(D,,) = lim E’;j—(l;
N=oo Zj:l |O‘j |

Consider the the substitution C on the set of irreducible balanced pairs I = I(W).
According to (3.2), we have a®) € IV and a) = ({)!(a®). Here a® is the reduction
of [u, ¢!"VIu] into irreducible balanced pairs.

There is a directed graph §(¢) associated with the substitution (. Its vertices are
labelled by I = I(W), and for every vertex ( there are directed edges from (3 into the
letters of C (B) (with multiplicities).

(a) Let 8 € I(W) be an irreducible balanced pair which is not a coincidence. By
assumption, there is a path in the graph G(¢) leading from 3 to a coincidence. But all
the edges from coincidences lead to coincidences, so (3 is a “non-essential” vertex. It
is not hard to deduce (and it is a standard argument) that the frequency of the symbol
Bina® = (é)l(a(o)) goes to zero geometrically fast, as | — oo. Since I(W) is finite,
and A(B) > 0 if and only if 3 is a non-coincidence, it follows from (3.3) that

(3.4) dens(D,,) < const -71
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for some vy € (0, 1). Now we can conclude as in [18, VI.4]: the sequence u is mean-
almost periodic so ¢ has pure discrete spectrum.

(b) Let W = ug---u, be such that u,,; = ug, and denote p; = |¢'(W)|. It
follows from [11] that lim;_, o, A?" = 1 for any eigenvalue A of the dynamical system
(Q¢, 0, p). If the spectrum is pure discrete, we have that the eigenfunctions span a
dense subset of L*(€)¢), and hence lim;_; o, ||Ué”f — fll» = 0 for every f € L*(2).
Taking f to be the characteristic function of the cylinder set corresponding to i € A,
we obtain, as in [18, VI.26], that lim;_,, dens(D,,) = 0. Suppose that there is an
irreducible balanced pair in I(W') which does not lead to a coincidence. This implies
that there exists an irreducible (strongly connected) component Gy of the graph S(é )
which contains no coincidences. There exists Iy such that for every I > I; elements
of the component Gy occur in a'”’ with a positive frequency. (Note that different
elements of Gy may occur for different I). A standard argument then shows that this
frequency is bounded away from zero, as I — oo. Since A(3) > 0 for all 5 € Gy, in
view of (3.3), it follows that dens(D,,) / 0, which is a contradiction. |

4 Tiling Dynamical Systems

The reader is referred to [19], [27] for preliminaries on tiling dynamical systems.
Here the situation is much simplified since we consider the one-dimensional case
only.

Let M, be the incidence matrix of the substitution ¢ and let 6 be its Perron-
Frobenius eigenvalue. We assume 6 to be a Pisot number and the characteristic poly-
nomial of M, to be irreducible. Then there exists a left Perron-Frobenius eigenvector
(t1,...,tg) such thatt; € Z[0], i < d (first we find an eigenvector with entries in
Q.(0) and then multiply it by an appropriate scalar polynomial in 6). Furthermore,
it is not hard to see that the numbers {t1, ... ,#;} are independent over the rationals
(see, e.g. [3, Proposition 3.1] where independence is proved for a right eigenvector of
M¢; replacing M, by its transpose yields the desired result).

To the substitution ¢ we can associate a tiling T of the half-line R, by intervals. The
“prototiles” are closed intervals of length #y, ... , ;. We say that any closed interval
of length ¢; is a tile of type i. The tiling T is obtained by taking the substitution
sequence u = uju, --- and putting the tiles of types uj, u,,... adjacent to each
other, starting from the origin. (Tiles are sometimes equipped with “labels,” when
there is a need to distinguish congruent tiles. However, in our case all ¢;’s are distinct
by rational independence, so the type of a tile is uniquely determined by its length.)
The tiling space X is defined as the set of tilings & of the line R such that every
“patch” of 8 is a translate of a T-patch. The usual topology is introduced on X<,
making it a compact space. The tiling dynamical system is the R-action (X+,T')
where I',(§) = § — x for x € R. Observe that this R-action is topologically conjugate
to the suspension flow over the Z-action (§)¢, o), with the height function equal to
t; on the cylinder corresponding to the symbol i. The tiling T is self-similar, where
the similarity map is the multiplication by 6 and the tile-substitution is the geometric
version of (. (Here the situation is slightly different from that considered in [27] since
T is a tiling of the half-line rather than of the whole line; however, everything extends
readily to this case. It is also possible to find another tiling T”, of the whole line, which
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is self-similar with respect to a power of the substitution, and which generates the
same tiling space.) Since the substitution ( is primitive, the tiling dynamical system
(Xg,Ty) is uniquely ergodic, that is, there is a unique invariant Borel probability
measure v on Xg, see [20], [27]. The system (X, Iy, 1) is said to have pure discrete
spectrum if there is a basis of L?>(Xy, v/) consisting of eigenfunctions for the R-action.

4.1 Overlap Algorithm

This algorithm was introduced in [27] for tilings in the plane. It extends to the case
of tilings in the line; in fact, the arguments become easier, but there are also some
features which are exclusively one-dimensional.

Let T be the self-similar tiling of the half-line as above, with a Pisot expansion
coefficient 6. Let T, S € T and y € R,. The triple (T, S, y) is called an overlap if the
interiors of T and S— y intersect; this overlap is denoted by Or;s .. The overlaps Ors ,
and O s/, are equivalent if T = T' +z,S—y = §' — y' + z for some real number z.
We will denote by [Or,, ] the equivalence class of an overlap. There are finitely many
equivalence classes for a fixed y, since the tiling has a finite number of patches up to
translation. We will denote by O, the set of all overlaps Or,5, with T, S € T, and let
[O, ] be the corresponding set of equivalence classes. The set of overlaps O, has the
following geometric interpretation: Consider the tiling T “on top” of the tiling T — y.
The pairs of tiles from these tilings, whose interiors intersect, give rise to the overlaps
in O,. We say that an overlap Or , is an overlap-coincidence if T = S — y. We call
Ors,y a half-coincidence if one of the endpoints of T coincides with an endpoint of
S — y. (Thus, every overlap-coincidence is a half-coincidence too). Let

(4.1) E(T) ={x€R:3IT,T' € Twith T' = T +x}

be the set of translation vectors between tiles of the same type. Since the lengths of
tiles are in Z[60], we have Z(7T) C Z[60]. For a fixed x € Z[0] N R, we will construct
a subdivision graph of overlaps Go (7T, x). It is a directed graph whose vertices are the
elements of | J,,~,[Ognc]. Applying the expansion we have

(4.2) o(TnEs-0x) = |J (TN —0""%).
T'COT,S'COS

There is an edge in the graph from [Orggne] to [O7/ g/ gnny] for every intersection
with non-empty interior in the right-hand side of (4.2). A priori, this graph may
have infinitely many vertices; however, since the expansion coefficient  is a Pisot
number, the graph is finite. This is proved in [27, Proposition 6.4] (although it was
assumed in [27] that x € Z(7), only x € Z[0] was used). The graph G (7, x) has
two special kinds of vertices: the overlap-coincidences and the half-coincidences. It
is clear that every edge from an overlap-coincidence leads to an overlap-coincidence.
On the other hand, for a half-coincidence, there is at least one edge leading to some
(possibly the same) half-coincidence.

The overlap algorithm associated to a translation vector x € Z[#] N R, (abbre-
viated as oa-x) runs as follows: We construct the subdivision graph of overlaps for
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x, .e. Go(7,x), starting with [O,]. Then expansions and subdivisions in (4.2) are
applied. New vertices and edges are added as described above. The process is re-
peated until [Ogu1,] C [Ox] U -+ U [Ogny]. As we pointed out, the graph is finite
when 6 is Pisot, so the overlap algorithm always terminates in this case. We say that
the overlap algorithm associated to a translation vector x € Z[0] N R, terminates
with coincidences (resp. half-coincidences) if from any vertex of the graph G (7, x),
there is a path leading to an overlap-coincidence (resp. half-coincidence). This con-
struction is valid in higher dimensions, except that the concept of half-coincidence is
one-dimensional.

Theorem 4.1 (Solomyak [27])

(a) The dynamical system (Xg,T'y) has pure discrete spectrum if and only if for all
x € 2(T) NRy, the corresponding overlap algorithm terminates with coincidences.

(b) If for some x € Z[0] N Ry the corresponding overlap algorithm terminates with
coincidences, then (X, ') has pure discrete spectrum.

The proof is essentially contained in [27]. There are two distinctions. First, [27]
is mostly concerned with tilings in the plane, but the arguments only get simpler for
tilings of the line. Second, here T is a tiling of the half-line, so, strictly speaking, it is
not self-similar in the sense of [27]. However, T is repetitive and has uniform patch
frequencies in Ry, so this change does not cause any difficulties. Part (b) holds by [27,
Theorem 6.1]. The key step is showing that dens (‘J’\ (T+ H”x)) — 0,as n — o0,
geometrically fast, which is analogous to (3.4).

5 Relation Between the R-Action and the Z-Action

There are similarities between the balanced pair algorithm for symbolic systems (Z-
action) and the overlap algorithm for the corresponding tiling systems (IR-action).
In this section we explore the relation between them and the consequences for the
spectrum of the systems.

Theorem 5.1  The following are equivalent:

(1) the balanced pair algorithm associated to some prefix W of u terminates and every
balanced pair in (W) leads to a coincidence;

(ii) thereexists x € Z[0]NR, such that the corresponding overlap algorithm terminates
with coincidences.

The proof requires some preparation; it is given at the end of the section. First we
deduce several corollaries.

Corollary 5.2 Let ( be a substitution of Pisot type. If the R-action (X, T'y) has pure
discrete spectrum, then the 7-action (¢, o) has pure discrete spectrum.

Proof Ifthe R-action (X, I',) has pure discrete spectrum, then oa-x terminates with

coincidences for all x € Z(7), by Theorem 4.1(a). By Theorem 5.1 and Theorem 3.1,
the Z-action (€2¢, o) has pure discrete spectrum. ]
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Corollary 5.3  The R-action (X+,1';) has pure discrete spectrum if and only if there
exists a prefix W of u such that the corresponding balanced pair algorithm terminates
and every balanced pair in I(W') leads to a coincidence.

Proof This is immediate from Theorem 5.1 and Theorem 4.1. For the “only if”
direction we use that =Z(7) C Z[0]. [ |

This “if” part of the last corollary is important since it gives us a checkable crite-
rion for pure discrete spectrum of the R-action. The balanced pair algorithm is much
easier to deal with, from the computational point of view, than the overlap algorithm.

Corollary 5.4  For any substitution of Pisot type on two symbols, the corresponding
R-action (X, T'y) has pure discrete spectrum.

Proof Combining [9] and [2] (see also [10]), we know that there exists a prefix W
such that the bpa-W terminates and every balanced pair leads to a coincidence. Now
the claim follows from Corollary 5.3. ]

Next we start preparation for the proof of Theorem 5.1.

A geometric balanced pair is a pair of patches [P, P,] where P; is a collection
of consecutive tiles {T;,,...,T; } C T and P, is a collection of consecutive tiles
{Sj,=»,-..,Sj, =y} C T —y, forsome y € Ry, such that the left endpoints of Tj,,
Sj, — y» and the right endpoints of T}, S;, — y, coincide.

Lemma 5.5 If [Py, P,] is a geometric balanced pair, then m = n and [iy - iy,
J1++ jnl is a balanced word pair.

Proof Clearly, t; +---+1t; =tj +---+t; . Now the statement is immediate from

the rational independence of t, . . . , ;. [ |

Notice that a geometric balanced pair for (7, T — y) gives rise to a number of
overlaps, among which the first one, (T;,,S;,, ), and the last one, (T;,, S;,, y), are
half-coincidences. (In the special case, when m = n = 1, there is just one overlap-
coincidence corresponding to the geometric balanced pair.)

Let W = uy---u, be a prefix of u. To this prefix we associate a positive real
number x = x(W), the sum of the lengths of tiles given by the symbols in W, that is,

x=x(W)=t, +:--+1t,.

Thus, x € Z[0] N R; and T — x has a tile [0, t,,,,]. Moreover, the restriction of the
tiling T — x to R, corresponds precisely to the infinite word ¢! lu, in the sense that
the former is the sequence of tile types for the latter, written in the order they appear.
Recall that the set of initial balanced word pairs I; (W) arises from the reduction of
[u, c/"lu]. Every balanced word pair corresponds to a geometric balanced pair for
the tilings (7, T — x). Further, the set of balanced word pairs I,,(W) arises from the
reduction of [u, ¢/¢"~ W)ly]. By the choice of t; as components of the left eigenvector
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for 0, the infinite word /<"~ W)l is the sequence of tile types for the tiling T — 0"~ !x
restricted to R,. Recall that the pair of tilings (T, T—6"~'x) yields the overlaps Ogu—1,
which come up in the overlap algorithm. Thus, there is a clear link between the bpa-
W and the oa-x, for x = x(W).

The following theorem is of independent interest, since it allows one to check
when the balanced pair algorithm terminates.

Theorem 5.6  The following are equivalent:

(i")  the balanced pair algorithm associated with a prefix W terminates;

(ii")  the overlap algorithm corresponding to x = x(W) terminates with half-coinci-
dences;

(iii") the distance between consecutive half-coincidences arising from (T, T — 6"x) is
bounded, with a bound independent of n.

Proof (i’) < (iii") We employ the correspondence between the bpa-W and oa-x in-
dicated above. The bpa-W terminates if and only if there are finitely many balanced
word pairsin |, I,(W). This happens if and only if there are finitely many geomet-
ric balanced pairs arising from (T, T — 0"x) (for all # > 0), up to translation. Since
every geometric balanced pair starts and ends with a half-coincidence, (i’) = (iii’)
follows. Conversely, whenever we have consecutive half-coincidences arising from

(T, T —y), there is a geometric balanced pair between them, see Figure 1. This proves
(iii") = @{").

Figure I: A geometric balanced pair in T and T — y.

(ii") < (iii’) All the overlaps in 0a-x arise from the pairs of tilings (T, T—0"x), n >
0. Fix any of these overlaps, say, O ,. The (equivalence classes of) overlaps that it
leads to, are those which arise from (G"T, 0"(S — y)) ,n>1.Since TN (S — y) has
positive length, the length of " T M 0"(S — y) tends to infinity. If the oa-x terminates
with half-coincidences, then there exists N € N independent of T, S, y, such that
(HN T,ON(S — )/)) contains a half-coincidence. This implies (iii’). Conversely, if
(iii") holds, then for n large, (O“T, 0" (S — )/)) contains a half-coincidence, which
means that (ii’) holds. [ |

Proof of Theorem 5.1 (i) = (ii) We let x = x(W) as above. By Theorem 5.6, we
already know that oa-x terminates with half-coincidences. Every balanced word pair
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leads to a letter coincidence, hence the distance between consecutive such coinci-
dences in the reduction of [u, o!¢"™)lu] is bounded by a constant independent of 7.
Every letter coincidence yields a geometric overlap-coincidence. Then arguing as in
the proof of Theorem 5.6, we obtain that oa-x terminates with coincidences.

(ii) = (i) By Theorem 4.1(b), the tiling dynamical system (Xg,I';) has pure dis-
crete spectrum, and hence, by Theorem 4.1(a), oa-y terminates with coincidences
for any y € Z(7). Choose a prefix W = uy---u, of u so that u,y; = u;. Then
x = x(W) € Z(7), since this is a translation vector between two congruent tiles,
those that correspond to u; and u,,;. Thus, oa-x terminates with coincidences. By
Theorem 5.6, bpa-W terminates, and it only remains to check that every balanced
word pair leads to a letter coincidence. But, as we saw already, any geometric balanced
pair corresponds to a balanced word pair, and any overlap-coincidence corresponds
to a letter coincidence, so the theorem is proved. ]

6 Appendix: Examples

We implemented the balanced pair algorithm in Mathematica; the code of the pro-
gram can be found at the URL: http://www.ma.usb.ve/ vsirvent/software/bpa.html

The algorithm was tested on a number of examples which we considered “diffi-
cult,” for some vague heuristic reasons, in the hope of finding a counterexample to
“Pisot implies pure discrete spectrum” conjecture. However, in all examples the bpa-
W terminated with coincidences, so the associated dynamical systems (the Z-action
and the R-action) have pure discrete spectrum. Four of the examples are presented
below; in all of them we considered the prefix W = 1. Recall that a substitution ¢ is
unimodular if det(M,) = £1.

1. Consider the following non-unimodular Pisot substitution:

1—12
2 — 223
311
The balanced pair algorithm produces 559 different irreducible balanced pairs (we
count [U, V] and [V, U] as the same pair) and the maximal length of an irreducible
balanced pair is 1673. This is, perhaps, due to the fact that the conjugates of the Pisot
number are =~ .89 in modulus, which is rather close to 1.
2. Consider the following unimodular Pisot substitution:
1 — 1111112223
2 — 2231111
3 = 311122
The balanced pair algorithm produces 260 different irreducible balanced pairs, and

the maximal length of an irreducible balanced pair is 194. This substitution has high
complexity and its Rauzy fractal is very irregular, see [24, 25] for details.
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3. Consider the following unimodular Pisot substitution:

1—112
2—3
3514

41

The balanced pair algorithm produces 37 different irreducible balanced pairs, and
the maximal length of an irreducible balanced pair is 41. The Pisot number 6 of this
substitution has the property that there are integers whose “greedy” expansions in
base 6 is not finite, see [7] for details.

4. Consider the following unimodular Pisot substitution:

1 — 1111223
2 — 41
3 = 2111
4 — 121

The balanced pair algorithm produces 628 different irreducible balanced pairs, and
the maximal length of an irreducible balanced pair is 2306. The associated Pisot
number of this substitution is the cube of the previous example.

Added In Proof After this paper was accepted, we became aware of the preprint
math.DS/0201152, available at http://xxx.lanl.gov/, by A. Clark and L. Sadun, enti-
tled “When size matters: subshifts and their related tiling spaces”. Their Theorem 3.1
implies that the Z-action, corresponding to the substitution of Pisot type, is pure
discrete if and only if the corresponding IR-action is pure discrete.
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