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We study the stability and dewetting dynamics of a thin free-surface film composed of
two miscible liquids placed on a solid substrate. Our study focuses on the development of
a self-consistent model such that the mixture concentration influences both free-surface
and wetting energies. By assuming a simple relation between these energies and the bulk
and surface concentrations, we analyse their effect on the concentration distribution and
dewetting down to the equilibrium film thickness determined by the fluid–solid interaction
potential. The model, developed within the gradient dynamics formulation, includes the
dependence of the free-surface energy on surface concentration leading to the Marangoni
effect, while a composition-dependent Hamaker constant describes the wetting energy
resulting from the fluid–solid interaction. We analyse the restrictions that must be fulfilled
to ensure an equilibrium state for a flat film of a binary fluid. Then, we proceed by studying
its linear stability. First, we consider the Marangoni effect while assuming that wetting
energy depends only on the fluid thickness. Then, we include a dependence of wetting
energy on concentration and study its effects. We find that the linear stability results
compare very well with those of numerical simulations of the full nonlinear problem
applied to the particular case of a binary melted metal alloy, even close to breakup times.
Therefore, in practice, most of the evolution can be studied by using the linear theory,
simplifying the problem considerably.

Key words: thin films, multiphase flow, coupled diffusion and flow

1. Introduction

Binary fluids are relevant in numerous settings and have been explored extensively.
The modelling of fluid flows combined with concentration evolution requires solving
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of the Navier–Stokes equations coupled with convective and diffusive effects that may
be composition-dependent. Extensive research has been carried out for systems of this
type, particularly in the context of oil-recovery and core–annular flows (Joseph & Renardy
1992a,b; Joseph et al. 1997).

In recent decades, there has been significant interest in the flow dynamics and stability
on much smaller scales, from micro down to nanometric. In particular, various types of
flows and related instabilities have been considered in the context of free-surface thin films
deposited on solid substrates. Short length scales and flow geometries involve additional
complications associated with the presence of free surfaces. There are, however, also
simplifications which could be considered. For many thin-film systems, an asymptotic
long-wave expansion is appropriate, and significant advances have been reached by using
this approach, see Oron, Davis & Bankoff (1997) and Craster & Matar (2009) for reviews.
In the present context, it is relevant to note the relation between the resulting thin film
equation and the Cahn–Hilliard formulation (Cahn & Hilliard 1958; Cahn 1965) as pointed
out by Mitlin (1993). In the context of binary films of thicknesses larger than nanometres,
substantial progress has been achieved in various contexts; the reader is referred to the
introduction of Shklyaev, Nepomnyashchy & Oron (2009) for an instructive overview of
the relevant works; here, we just list a few examples. Two-layer films of immiscible films
have been considered extensively (Pototsky et al. 2004, 2005), as well as those covered
by surfactants (Thiele, Archer & Plapp 2012; Morozov, Oron & Nepomnyashchy 2015).
In an extensive body of work, various authors (Podolny, Oron & Nepomnyashchy 2005;
Shklyaev, Nepomnyashchy & Oron 2013, 2014) studied miscible binary fluids exposed
to heating; in some of these works, both solutal and thermal Marangoni effects were
considered, leading to complicated evolution and instability development. Wetting effects
in binary fluids were considered in the recent work by Areshi et al. (2024).

On even shorter (nanometric) length scales, fluid–solid interaction forces that, in
general, are concentration-dependent become relevant. Most of the work in this direction
has been carried out using the gradient dynamics formulation (Thiele, Velarde & Neuffer
2001; Thiele 2011; Thiele, Todorova & Lopez 2013; Huth et al. 2015; Sarika et al. 2015;
Sarika, Tomar & Basu 2016; Thiele, Archer & Pismen 2016) that we will consider in the
present work as well. We should also mention the early work by Clarke (2005), which is
not fully consistent with the gradient dynamics approach. Other works considering similar
approaches include the ones by Köpf, Gurevich & Friedrich (2009), Köpf et al. (2010)
and Náraigh & Thiffeault (2010), as well as the work by Xu, Thiele & Qian (2015),
which provides further development in terms of symmetric solvent–solute approach.
In mathematical terms, the gradient dynamics formulation leads to coupled partial
differential equations describing the evolving film thickness and the concentration of two
phases (in the case of binary systems). The reader is referred in particular to a mini-review
(Thiele 2018) for a concise overview of the relevance of the formulation of the problem
at hand within the gradient dynamics framework, as well as for a discussion of various
problems that were (and were not) considered in the context of gradient dynamics.

There are numerous important binary or ternary systems with concentration evolution,
with only some recent examples mentioned here (Karpitschka, Liebig & Riegler 2017; Mao
et al. 2019; Chao et al. 2022), where the formulation that we consider in the present paper
is applicable widely. However, for definiteness and also to be able to connect the results
to existing physical experiments, we consider liquid metal films of nanoscale thickness
as a model system. Such films are of particular interest for the applications requiring
nano-patterning, such as solar cells, plasmonics-related set-ups, sensing and detection,
among others (see Hughes, Menumerov & Neretina (2017), Makarov et al. (2016)
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for reviews). One approach to pattern formation is self- and directed instability involving
melting the films by application of laser pulses of duration measured on a nanosecond
time scale (or even shorter); while melted, films evolve as Newtonian fluids and form
drops which solidify into particles once the temperature drops below the melting point.
We focus on the evolution while the metal is in a liquid state and refer the interested reader
to a different problem of solid-state dynamics; see recent works focusing on that regime
(Khenner 2018; Khenner & Henner 2020), as well as a review article (Thompson 2012).

Liquid state dewetting of metal films with other geometries is present in many situations,
and significant progress has been reached in understanding elemental (single fluid)
systems; see Kondic et al. (2020) for a recent review. Bimetallic films were also considered
both experimentally and theoretically in earlier work (Diez et al. 2021) which already
produced interesting new results and insights, particularly regarding the competition of
film thickness instability and the concentration distribution. In the present work, we
remove some significant simplifications of this earlier work and focus on understanding
the influence of the (solutal) Marangoni effect and the concentration dependence of the
fluid–solid interaction forces on the stability of the film thickness and of the concentration
field.

The rest of this paper is organized as follows. In § 2 we revisit the gradient dynamics
formulation by including the various contributions to the free energy of a system formed by
a thin film of binary fluid and a supporting solid substrate. Then, we analyse the component
terms of the resulting pressure and chemical potentials, as well as the system of evolution
equations. In § 3, we find the conditions on the chemical potentials that must be fulfilled
to have the base state in equilibrium. Then, in § 4, we proceed by carrying out a linear
stability analysis (LSA) of such a base state. Section 5 describes the properties of the
instability when the solutal Marangoni effects are considered, with the wetting energy
depending only on the fluid thickness. Then, in § 6, we add a dependence of the latter on
both surface and bulk concentrations. For all cases, we compare the LSA results with the
full nonlinear numerical solution. Finally, in § 7, we summarize the results and discuss
their implications and possible future directions.

2. Gradient dynamics formulation

We study the stability properties of a nanometric thin film composed of two miscible fluids
(binary fluid) on top of a solid planar surface. Figure 1 illustrates the considered geometry.
In the bulk of the film of thickness h(x, t), one of the fluids (say, fluid A) has a volume
fraction, cA(x, z, t), where x = (x, y), so that its z-averaged concentration, φ, is

φ(x, t) = 1
h(x, t)

∫ h(x,t)

0
cA(x, z, t) dz = ψ(x, t)

h(x, t)
. (2.1)

Then, the corresponding z-averaged concentration of fluid B is 1 − φ. Here, we will also
use the variable

ψ(x, t) = φ(x, t)h(x, t), (2.2)

which stands for the amount of fluid A inside a column of height h(x, t) and unit in-plane
area.

Initially, the thickness of the mixture is h0, and the bulk concentration of fluid A is
φ0, so that ψ0 = φ0h0. At the free surface of the film, the fluid A is assumed to have a
surface concentration, Γ (x, t). Analogously, the surface concentration of fluid B is 1 − Γ .
If Γ � 1, then one could think of fluid A as a soluble surfactant with surface concentration
Γ and volume concentration φ. Conversely, if 1 − Γ � 1, then fluid B can be thought of
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Γ (x, t)

φ (x, t) h0
h (x, t)

Thin film of

a binary fluid: A + B 

x

z

Substrate

Figure 1. Sketch of the thin film–substrate system showing the main variables of the problem: thickness h,
volume concentration φ and surface concentration Γ . Initially, the binary fluid has a volume concentration φ0
of fluid A and (1 − φ0) of fluid B and a film thickness h0.

as a surfactant. The model includes the possibility of an exchange of fluids between the
surface and the bulk, but we do not consider a mass exchange with the gaseous phase above
the film. Note that conservation of mass at the free surface implies Γ dSf = Γ̃ dS, where
dSf is the element of the free surface, h(x, t), and Γ̃ is the projected concentration on the
plane element dA = dx dy. Thus, we have Γ̃ = Γ ξ , with ξ =

√
1 + |∇h|2.

We proceed by presenting a brief overview of the formulation developed in Thiele et al.
(2016), where the gradient dynamics approach is extended to describe the non-equilibrium
dissipative dynamics of thin-film systems and to cast the dynamic equations into a form
that reproduces Onsager’s reciprocity relations (Thiele et al. 2016). We start by considering
the corresponding free energy functional

F =
∫ [

f (h, Γ, φ)+ hg(φ)+ ξgs(Γ )+ σ

2
h|∇(φ)|2 + σs

2
|∇(Γ )|2

]
dA, (2.3)

where f is the wetting energy, g the bulk mixing energy and gs the surface energy.
The first term in (2.3) corresponds to the energy per unit surface of the

interatomic/molecular interaction between the liquid in the film and the solid substrate
(e.g. van der Waals interaction). We write it in general form as

f (h, Γ, φ) = Kγref F(h, Γ, φ), K = Href

6πγref h2
e
, (2.4)

where he is the equilibrium film thickness, and γref , Href are the reference values of surface
tension and the Hamaker constant, respectively. Since both concentrations φ and Γ , as
well as ψ , refer to fluid A, we choose γref = γB and Href = HB. In general, we consider
a dependence on both Γ and φ since atoms/molecules in the bulk as well as at the free
surface take part in the interaction with atoms/molecules in the substrate. This contribution
is relevant when the film thickness is nanometric. The function g(φ) in the second term of
(2.3) represents the bulk Gibbs energy per unit volume. For convenience, we write it as

g(φ) = EG(φ), E = kBT
a3 , (2.5)

where G is a non-dimensional function and a is an atomic/molecular length scale in the
fluid bulk (e.g. the radius of a spherical atom/molecule Thiele 2011).

The third term in (2.3) stands for the free energy contribution due to the presence of
molecules of both fluids at the free surface. We write it as

gs(Γ ) = EsGs(Γ ), Es = kBT
a2

s
, (2.6)

where as is a molecular size associated with the interphase molecular structure. According
to the formulation in Thiele et al. (2016) (e.g. in their (B27)), the energy functions gs and
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On dewetting of thin binary fluid films

Variable Symbol In units of

in-plane coordinates x, y �

thickness, aver. bulk concentration h, ψ h̄0

time t 3η0�
4/(γref h̄3

0)

surface tension γ̂ γref
surface and bulk concentrations Γ, φ 1
free energy F γref �

2

pressure p γref h̄0/�
2

bulk chemical potential μ γref /h̄0
surface chemical potential μs γref

Table 1. Scales of the non-dimensional variables used in the dimensionless equations.

f define the general expression of surface tension as

γ (h, Γ, φ) = gs − Γ
∂gs

∂Γ
− Γ

∂f
∂Γ

− σs

2
|∇Γ |2 + σsΓ∇2Γ. (2.7)

The dependence of γ on the surface concentration, Γ , is not surprising. For instance,
the first two terms correspond to the usual Marangoni effect. However, the fluid–solid
interaction energy (i.e. wetting energy) given by third term on the right-hand side of (2.7))
introduces a dependence on both φ and h, leading to additional effects, since the fluid–solid
interaction forces may also influence the free-surface tension.

The last two terms in (2.3) stand for the energetic contribution of gradients in both bulk,
φ, and surface, Γ , concentrations, where σ (energy per unit length) and σs (energy) denote
the interfacial stiffness of the diffuse interface between the pure fluids in the bulk and at
the free surface, respectively (Thiele, Madruga & Frastia 2007).

From now on, we consider a non-dimensional formulation by expressing the thicknesses
h andψ in units of a characteristic thickness of the film, h̄0. The in-plane coordinates (x, y)
are expressed in units of an arbitrary length �, and time t is in units of

tc = 3η�4

γref h̄0
3 , (2.8)

where η is the viscosity of the film. Therefore, the non-dimensional free energy in (2.3),
in units of γref �

2, takes the form

F =
∫

Fs dS =
∫ [

KF(h, Γ, φ)+ βhG(φ)+ ξβsGs(Γ )+ Σ

2
h|∇φ|2 + Σs

2
|∇Γ |2

]
dA,
(2.9)

where the parameters are defined as

Σ = σ h̄0

γref �2 , Σs = σs

γref �2 , β = kBTh̄0

γref a3 , βs = kBT
γref a2

s
. (2.10a–d)

Table 1 gives a summary of the dimensional parameters and their combinations that
have been used for the non-dimensionalization.

In the following, we consider the general formulation of the gradient dynamics for
a given expression of the total free energy, F . Thus, we write the coupled evolution
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equations ((42) to (45) developed in Thiele et al. 2016) for the three fields in the framework
of linear non-equilibrium thermodynamics and the long-wave approximation (ξ ≈ 1,
requiring that we choose h0 � �) as

∂h
∂t

+ ∇ ·
[
−h3∇ δF

δh
− 3

2
h2Γ∇ δF

δΓ
− h2ψ∇ δF

δψ

]
= 0, (2.11a)

∂Γ

∂t
+ ∇ ·

[
−3

2
h2Γ∇ δF

δh
− (3hΓ 2 + 3DsΓ )∇ δF

δΓ
− 3

2
hψΓ∇ δF

δψ

]
= −J̃ad, (2.11b)

∂ψ

∂t
+ ∇ ·

[
−h2ψ∇ δF

δh
− 3

2
hψΓ∇ δF

δΓ
− (hψ2 + 3Dψ)∇ δF

δψ

]
= Jad. (2.11c)

Here, we have defined the non-dimensional diffusivities

D = M

h̄2
0

= Dη
E h̄2

0

= Dηa3

kBTh̄2
0

, (2.12)

Ds = Ms

h̄0
= Dsη

Esh̄0
= Dsηa2

s

kBTh̄0
= Ds

D
a3

s

a3
D
s
, (2.13)

s = as

h̄0
, (2.14)

where M and Ms are the molecular mobilities in the bulk and the surface, respectively,
which are related to the molecular energy densities E and Es through the molecular
diffusion coefficients of the binary fluid for the bulk and surface, D and Ds, respectively.
Note that the definition of D agrees with the Stokes–Einstein relation if M = a2/6π. We
note that the value of D is not sufficient to determine M, since one still needs to estimate
a. This quantity is of the nanometric order, and it is related to diffusion processes in the
bulk. One also needs the value of as, which is associated with adsorption and desorption
processes in the surface, so that it is expected to be even smaller than a (Diamant &
Andelman 1996). It is usual to consider a ≈ as, and we use this approximation here; also,
we assume that Ds ≈ D. Therefore, under these assumptions, we write

Ds = D
s
, βs = sβ, Σs = sΣ. (2.15a–c)

Here, we follow the approach discussed in Diez et al. (2021) and weight average the
parameters of interest. For example, the viscosity, η, and the diffusivity, D, of the mixture
are given by a weighted average of those of the components, i.e.

η = ηAφ0 + (1 − φ0)ηB, D = DAφ0 + (1 − φ0)DB, (2.16a,b)

where ηA,B and DA,B are the corresponding values for the pure fluids.
The right-hand sides of (2.11b) and (2.11c) correspond to the adsorption–desorption flux

between the bulk and the surface, given by (see e.g. (38) and (55) in Thiele et al. 2016)

J̃ad = 3DsΓ

(
1
s
δF
δΓ

− δF
δψ

)
= 3DsΓ

(μs

s
− μ

)
= Jad

s
. (2.17)
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On dewetting of thin binary fluid films

Based on the energy functional specified by (2.9), and under the long-wave
approximation, we have (see the Appendix in Thiele et al. 2016)

p ≡ δF
δh

= −∇[γ̂ (Γ, h)∇h] + K
∂F
∂h

− K
ψ

h2
∂F
∂φ

+ β

(
G − ψ

h
∂G
∂φ

)

+Σ

(
−2ψ

h3 ∇h · ∇ψ + |∇ψ |2
2h2 + 3ψ2

2h4 |∇h|2 − ψ2

h3 ∇2h + ψ

h2 ∇2ψ

)
,

(2.18)

μs ≡ δF
δΓ

= βs
∂Gs

∂Γ
+ K

∂F
∂Γ

−Σs∇2Γ, (2.19)

μ ≡ δF
δψ

= β
∂G
∂φ

+ K
h
∂F
∂φ

+Σ

(
−ψ

h3 |∇h|2 + ∇h · ∇ψ
h2 + ψ

h2 ∇2h − ∇2ψ

h

)
, (2.20)

where

γ̂ (Γ, h) = γ

γref
= βs

(
Gs − Γ

∂Gs

∂Γ

)
− K Γ

∂F
∂Γ

− Σs

2
|∇Γ |2 +ΣsΓ∇2Γ, (2.21)

is the non-dimensional version of (2.7). In (2.18)–(2.20), p stands for pressure, and μs,
μ stand for surface and bulk chemical potentials. Here, p and μ are given in units of
γref h0/�

2, and μs in units of γref .
Let us now consider the physical interpretation of the terms in (2.18)–(2.20). The total

pressure, p, can be written as

p = pcap + pwet + posm + pKort, (2.22)

where the subscripts stand for capillary, wetting, osmotic and Korteweg pressures, and

pcap = −∇[γ̂ (Γ, h)∇h], pwet = K
(
∂F
∂h

− ψ

h2
∂F
∂φ

)
, posm = β

(
G − ψ

h
∂G
∂φ

)
,

pKort = Σ

(
−2ψ

h3 ∇h · ∇ψ + 1
2h2 |∇ψ |2 + 3ψ2

2h4 |∇h|2 − ψ2

h3 ∇2h + ψ

h2 ∇2ψ

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23)

The last pressure component, related to diffuse interfaces, can also be found in the
literature (see e.g. Doi 2011; Thiele et al. 2013) in terms of φ as

pKort = Σ

(
1
2
|∇φ|2 + φ

h
∇h · ∇φ + φ∇2φ

)
. (2.24)

The surface chemical potential, μs, see (2.19), includes the contributions due to the
Marangoni effects, i.e. the dependence of surface tension, γ , on surface concentration,
Γ (see (2.21)). These contributions can be separated as

μs = μs,osm + μs,wet + μs,diff , (2.25)

where

μs,osm = βs
∂Gs

∂Γ
, μs,wet = K

∂F
∂Γ

, μs,diff = −Σs∇2Γ, (2.26a–c)

and the subscripts stand for osmotic, wetting and diffusive interface potentials. Thus,
the first one accounts for the variation of the surface energy with respect to the surface
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concentration, the second one for the variation of the wetting energy with the surface
concentration and the third one for the contribution of a diffuse interface at the surface.

Finally, the bulk chemical potential, μ, in (2.20) has three contributions

μ = μwet + μosm + μdiff , (2.27)

where

μwet = K
h
∂F
∂φ
, μosm = β

∂G
∂φ
, (2.28a,b)

μdiff = −Σ
h

(
ψ

h2 |∇h|2 − 1
h
∇h · ∇ψ − ψ

h
∇2h + ∇2ψ

)
= −Σ

h
∇ · (h∇φ). (2.29)

This completes the formulation of the problem. In order to simplify the presentation, in
what follows we write (2.11a)–(2.11c) in matrix form as

∂tΛ − ∇ · (Q∇P) = J , (2.30)

where

Λ =
⎛
⎝ h
Γ

ψ

⎞
⎠ , P = δF

δΛ
=
⎛
⎝ δF/δhδF/δΓ
δF/δψ

⎞
⎠ =

⎛
⎝ p
μs
μ

⎞
⎠ , (2.31a,b)

and the matrix of mobility coefficients is

Q =

⎛
⎜⎜⎜⎜⎜⎝

h3 3
2

h2Γ h2ψ

3
2

h2Γ
(
3h2Γ + 3DsΓ

) 3
2

hψΓ

h2ψ
3
2

hψΓ
(
h2ψ + 3Dψ

)

⎞
⎟⎟⎟⎟⎟⎠ . (2.32)

The bulk-to-surface and surface-to-bulk transfer rates on the right-hand side of (2.30) are

J = −M
δF
δΛ

= −MP =
⎛
⎝ 0

−J̃ad
Jad

⎞
⎠ , (2.33)

where

M = 3DsΓ

⎛
⎝0 0 0

0 1/s −1
0 −1 s

⎞
⎠ . (2.34)

Note that both matrices Q and M are symmetric and positive definite.
Equation (2.11a) is in conservative form, in agreement with the fact that the film

thickness h(x, t) is a conserved field, i.e.∫
h(x, t) dA = V = VA + VB = const., (2.35)

where V is the volume of the binary fluid and VA, VB are the volumes of the pure
fluids, respectively. On the other hand, note that both (2.11b) and (2.11c) have non-zero
right-hand sides, which account for the mass transfer between the surface and the bulk.
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On dewetting of thin binary fluid films

Therefore, neither
∫
Γ (x, t) dS nor

∫
ψ(x, t) dS is conserved. However, if we multiply

(2.11b) by s and add it to (2.11c), we obtain

∂Ψ

∂t
+ ∇ ·

[
−h2

(
Ψ + s

Γ

2

)
∇p − 3Γ

(
hΨ
2

+ s
hΓ
2

+ s Ds

)
∇μs

− (Ψ − sΓ )
(

hΨ + s
hΓ
2

+ 3D
)

∇μ
]

= 0, (2.36)

which is in conservative form for

Ψ = ψ + sΓ. (2.37)

Then,∫
Ψ dA =

∫
(ψ + sΓ ) dA =

∫
φ dV +

∫
sΓ dA = Vbulk

A + Vsurf
A = VA = const.,

(2.38)

which also implies the conservation of VB.
The problem formulation presented so far can be mostly found in Thiele et al. (2016).

We now proceed with the LSA, focusing in particular on the influence of the binary nature
of the considered fluid.

3. Equilibrium base state

We now consider a base state of the film as given by Λ0 = (h0, Γ0, ψ0). Then, we have

∂tΛ0 − [∇ · (Q0∇P0)] = J 0, (3.1)

where Q0 = Q|Λ0 and

J 0 = −M0P0, M0 = 3DsΓ0

⎛
⎝0 0 0

0 1/s −1
0 −1 s

⎞
⎠ , P0 = δF

δΛ

∣∣∣∣
Λ0

=
⎛
⎝ p0
μs,0
μ0

⎞
⎠ . (3.2)

For the spatially homogeneous base state considered in this work, i.e. ( p0, μs0, μ0) =
const., we choose h̄0 as the initial thickness of a flat film so that h0 = 1 and Γ0, ψ0 = φ0
are also constants. Then, the square bracket in (3.1) trivially vanishes. Therefore, the time
variation of Λ0 is controlled by the flux J 0. To ensure a stationary base state, we must have

J 0 = 3DsΓ0

(μs,0

s
− μ0

)⎛⎝ 0
1

−s

⎞
⎠ = 0. (3.3)

Assuming Γ0 > 0, this equation implies

μs,0 = sμ0. (3.4)

Thus, the surface and volumetric chemical potentials must be balanced to ensure no net
transfer between surface and bulk, in agreement with steady values of φ0 and Γ0 and
the assumption of the stationary base state. This condition leads to a constraint on the
properties that the energy functions (G, Gs and F) must obey in the base state. In fact,
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J.A. Diez, A.G. González and L. Kondic

when evaluating the expressions for μ and μs in (2.19) and (2.20) at Λ0 = (1, Γ0, ψ0), we
obtain

βs
∂Gs

∂Γ

∣∣∣∣
Γ0

+ K
∂F
∂Γ

∣∣∣∣
Γ0

= sβ
∂G
∂φ

∣∣∣∣
φ0

+ s K
∂F
∂φ

∣∣∣∣
φ0

. (3.5)

One of the simplest ways to fulfil this condition is to assume the following relations
compatible with these requirements:

∂Gs

∂Γ

∣∣∣∣
Γ0

= ∂G
∂φ

∣∣∣∣
φ0

, (3.6)

∂F
∂Γ

∣∣∣∣
Γ0

= s
∂F
∂φ

∣∣∣∣
φ0

. (3.7)

Since we are interested in analysing a wide range of concentrations, we assume an entropic
form for the volumetric free energy, namely (see e.g. Archer et al. 2007, 2008; Thiele et al.
2016)

G(φ) = φ lnφ + (1 − φ) ln(1 − φ). (3.8)

Consistently with the approach used for volumetric concentrations, we resort to a similar
form for the surface free energy, namely

Gs(Γ ) = 1
βs

+ Γ lnΓ + (1 − Γ ) ln(1 − Γ ). (3.9)

Then, the surface tension of the base state, γ̂0, is given by

γ̂0 = βs

(
Gs − Γ

∂Gs

∂Γ

)∣∣∣∣
Γ0

= 1 + βs ln(1 − Γ0). (3.10)

Note that, for small Γ0, this expression reduces to the usual linear Marangoni effect, i.e.
γ̂0 ≈ 1 − βsΓ0. Since γ̂0 > 0, it must be that

Γ < Γ0,max = 1 − e−1/βs . (3.11)

Moreover, Γ0 also needs to satisfy the condition specified by (3.6) which, for G and Gs
given by (3.8) and (3.9), yields

Γ0 = φ0, (3.12)

which is a simple equilibrium condition (adsorption isotherm). Different choices of G and
Gs lead to more complex isotherms, such as the Langmuir and Frumkin relations (see e.g.
Thiele et al. 2016).

Let us now consider the wetting energy, F, that depends on both Γ and φ. We propose
a factorized expression for F in the form

F(h, Γ, φ) = H(Φ)
Href

F̂(h), (3.13)

where we define

Φ = φ + s
h
Γ. (3.14)

Note that this combination is of the same type as that used to define Ψ in (2.37), since
Φ = Ψ/h. We point out that the condition expressed by (3.7) is automatically satisfied
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On dewetting of thin binary fluid films

1 2 3 4 5 6
ζ = h/he

–0.5

–0.4

–0.3

–0.2

–0.1

0.1

0.2

F̂(ζ)

Figure 2. Fluid–solid interaction energy, F̂(ζ ), as a function of ζ = h/he for n = 3 and m = 2. The vertical
dotted red lines indicate the points where F̂′ = 0 (ζ = 1) and F̂′′ = 0 (ζ = eln(m/n)/(m−n) = 1.5).

by this factorized form. Here, H(Φ) is a Hamaker constant (for simplicity we assume
the same constant for both attractive and repulsive forces). Also, we assume that H(Φ)
depends linearly on Φ (see e.g. Thiele et al. (2013) and Todorova (2013) for a somewhat
different linear dependence of F on φ only). Therefore, we have

H(Φ) = Href (1 + τΦ), (3.15)

so that F can be written as

F(h, Γ, φ) = F(h, Φ) = (1 + τΦ)F̂(h). (3.16)

Regarding the h-dependence, we consider a power-law dependence of F̂ on h, as

F̂(h) = ζ 1−n

n − 1
− ζ 1−m

m − 1
, ζ = h

h∗
, (3.17)

where h∗ = he/h̄0. Figure 2 illustrates the form of F for (n,m) = (3, 2), the values
successfully used to model single metal instabilities (Kondic et al. 2020). Here, he is the
equilibrium thickness.

4. Linear stability analysis

Next, we linearize the formulation by considering perturbations of order ε(� 1) as

Λ ≈ Λ0 + εΛ1, P ≈ P0 + εP1, Q ≈ Q0 + εQ1, M ≈ M0 + εM1, J ≈ J 0 + εJ 1.

(4.1a–e)

To the first order in ε, we obtain

∂tΛ1 − ∇ · (Q0∇P1) = J 1, (4.2)

where

P1 = ∂P
∂Λ

∣∣∣∣
Λ0

Λ1 + ∂P
∂Λx

∣∣∣∣
Λ0

Λ1,x + ∂P
∂Λxx

∣∣∣∣
Λ0

Λ1,xx,

= E0Λ1 + E1Λ1,x + E2Λ1,xx. (4.3)

Here, we omit the y-dependence for brevity, since our focus is on the two-dimensional
problem, i.e. we consider only an x-dependence. Note that we have E1 = 0, since all the
gradients of Ψ in (2.18)–(2.20) are quadratic and the base state is uniform (∇Λ|0 = 0).
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The right-hand side of (4.2) is

J 1 = −M0P1 − M1P0, (4.4)

where

M1 = 3DsΓ1

⎛
⎝0 0 0

0 1/s −1
0 −1 s

⎞
⎠ . (4.5)

Note that the last term in (4.4) can be written as

M1P0 = 3Ds

(μs,0

s
− μ0

)
Γ1

⎛
⎝ 0

1
−s

⎞
⎠ = 0. (4.6)

Thus, this contribution to J1 vanishes due to (3.3).
By considering a perturbation in terms of normal modes

Λ = Λ0 + εX eikx+ωt, (4.7)

then (4.2) leads to

ωX = [(k2Q0 + M0)(k2E2 − E0)]X , (4.8)

where ω and X are the eigenvalue and eigenfunction of the system.
As defined in (4.3), the matrix operator E0 of the linearized problem is given by

E0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂p
∂h

∣∣∣∣
0

∂p
∂Γ

∣∣∣∣
0

∂p
∂ψ

∣∣∣∣
0

∂μs

∂h

∣∣∣∣
0

∂μs

∂Γ

∣∣∣∣
0

∂μs

∂ψ

∣∣∣∣
0

∂μ

∂h

∣∣∣∣
0

∂μ

∂Γ

∣∣∣∣
0

∂μ

∂ψ

∣∣∣∣
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, E2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂p
∂hxx

∣∣∣∣
0

∂p
∂Γxx

∣∣∣∣
0

∂p
∂ψxx

∣∣∣∣
0

∂μs

∂hxx

∣∣∣∣
0

∂μs

∂Γxx

∣∣∣∣
0

∂μs

∂ψxx

∣∣∣∣
0

∂μ

∂hxx

∣∣∣∣
0

∂μ

∂Γxx

∣∣∣∣
0

∂μ

∂ψxx

∣∣∣∣
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.9a,b)

where p, μs and μ are given by (2.18)–(2.20). This calculation yields the matrices E0 and
E2 as

E0 = K

⎛
⎜⎜⎜⎝
φ0(Uφ0 − 2F0

hφ + 2F0
φ)+ F0

hh F0
hΓ − F0

Γ φφ0 F0
hφ − F0

φ − Uφ0

F0
hΓ − F0

Γ φφ0 F0
Γ Γ + βs

K
G0

s,Γ Γ F0
Γ φ

F0
hφ − F0

φ − Uφ0 F0
Γ φ U

⎞
⎟⎟⎟⎠ ,
(4.10)

where U = F0
φφ + βG0

φφ/K, and

E2 =
⎛
⎝Γ0(KF0

Γ + βsG0
s,Γ )− βsG0

s −Σφ2
0 0 Σφ0

0 −sΣ 0
Σφ0 0 −Σ

⎞
⎠ . (4.11)

Here, the subscripts on F, G and Gs stand for derivatives, and the superscript 0 indicates
that they are evaluated at the base state (1, Γ0, φ0). Note that, as expected, both E0 and
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On dewetting of thin binary fluid films

E2 are symmetric matrices. Thus, the LSA for the normal modes finally leads to the
eigenvalue problem (see (4.8))

ωX = AX , (4.12)

where

A = CE, (4.13)

and

E = k2E2 − E0, C = k2Q0 + M0, (4.14a,b)

with

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

k2 3k2Γ0

2
k2φ0

3k2Γ0

2

(
3Γ 2

0 + 3DΓ0

s

)
k2 + 3DΓ0

s2
3
2

k2Γ0φ0 − 3DΓ0

s

k2φ0
3
2

k2Γ0φ0 − 3DΓ0

s
(φ2

0 + 3Dφ0)k2 + 3DΓ0

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.15)

For reference, in Appendix A, we outline a proof showing that since C−1 is positive
definite and E are symmetric, the eigenvalues of the matrix A are real. Therefore, the
perturbations grow or decay exponentially in time.

The dispersion relation corresponding to (4.8) is obtained by requiring

det[ωI − (k2Q0 + M0)(k2E2 − E0)] = 0. (4.16)

The critical wavenumber kc at which ω(kc) = 0 is obtained from

det[k2
cE2 − E0] = 0, (4.17)

since (k2Q0 + M0) is positive definite. We note that the eigenvalue problem in (4.8) has
two modes which have ω(k = 0) = 0 (onset of the instability) since the three governing
equations correspond to two conservation laws. The other real kc values, when they exist,
limit the band of unstable wavenumbers.

Finally, the above equation does not necessarily lead to ω = 0 at k = 0 for all modes. In
fact, (4.16) for k = 0 becomes

det[ω0I + M0E0] = 0, (4.18)

where ω0 = ω(k = 0). Although ω0 = 0 is a possibility since det M0 = 0, another root
ω0 /= 0 exists.

We proceed by discussing two separate sub-cases: (i) the pure Marangoni case, such that
the fluid–solid interaction potential is concentration independent, and (ii) the general case,
such that both the Marangoni effect and the influence of concentration-dependent wetting
potentials isconsidered. The results are illustrated by analysing the instability of a metallic
binary alloy.
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5. Marangoni effect with wetting energy depending only on film thickness

When the wettability does not depend on the concentrations Γ and φ, i.e. F = F̂(h), the
matrix A, see (4.13), takes the form

AM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ω̃h −3
2

k2Γ0Δ 0

Γ0

(
3
2
ω̃h + ω̃ψ

sk2

)
−3Γ0�[(1 + k2s)Ds + k2sΓ0]

s
−Γ0ω̃ψ

k2sφ0

φ0(ω̃h − ω̃ψ)− Γ0ω̃ψ

k2
3
2
Γ0�(2Ds − k2φ0) ω̃ψ

(
1 + Γ0

k2φ0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

(5.1)

where we have used the reference frequencies

ω̃h = k2(k̃2
c,h − k2), ω̃ψ = 3DsΣsφ0k2(k̃2

c,ψ − k2), (5.2a,b)

with the corresponding wavenumbers

k̃c,h =
√

−KF̂0
hh

γ̂0
, k̃c,ψ =

√
−βsG0

φφ

Σs
, (5.3a,b)

and Δ = Σsk2 + βsG0
s,Γ Γ .

According to (4.17), the critical wavenumbers kc, when they are real, that limit the band
of unstable wavenumbers from above are

kc,1 = k̃c,h, kc,2 = k̃c,ψ , kc,3 =
√

−βsG0
s,Γ Γ

Σs
. (5.4a–c)

Thus, in order to have a real critical wavenumber, at least one of the second derivatives
F0

hh, G0
φφ and G0

s,Γ Γ must be negative. Otherwise, no instability is possible. In fact, when

using (3.17) for the wetting energy dependence on h, F̂(h), as well as (3.8) for G and (3.9)
for Gs, we have

F0
hh = F̂

0
hh < 0, G0

s,Γ Γ = 1
Γ0(1 − Γ0)

> 0, G0
φφ = 1

φ0(1 − φ0)
> 0, (5.5a–c)

for h > 1.5he (see figure 2). Thus, there is only one unstable mode, since only kc,1 is real
and positive. However, if an alternative expression for G,Gs (e.g. the double-well potential
as in Diez et al. 2021) is used, another unstable mode may appear. Note that the critical
wavenumbers reported in Diez et al. (2021) correspond to kc,1 with γ̂0 = 1 (no Marangoni
effect), and kc,2. Therefore, the Marangoni effect increases the unstable k-range since it
leads to a larger k̃c,1 due to the decrease in γ̂0 with respect to the case without surfactant.
However, if one compares a film with a homogeneous surfactant with another one without
surfactant but with the same surface tension, there is no change in kc,h.

The characteristic equation corresponding to AM in (5.1) is given by

6�Γ 2
0 sω̃ψ [2Ds(ω − ω̃h)+ ω̃ψ(φ0k2 + Γ0)− φ0k2ω]

+ {4sω(ω − ω̃h)+ 12Ds(1 + sk2)�Γ0(ω − ω̃h)+ 3�Γ 2
0 [sk2(4ω − ω̃h)+ 2ω̃ψ ]}

× [φ0k2(ω − ω̃ψ)− Γ0ω̃ψ ] = 0. (5.6)

In what follows, we find it convenient to consider the case s � 1 (thin interface), since
the leading-order results (found by considering the limit s → 0) simplify considerably.
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On dewetting of thin binary fluid films

For the dispersion relation specified by (5.6), such a limit leads to

12Dsk2�Γ0φ0(ω − ω̃h)(ω − ω̃ψ) = 0, (5.7)

which has the roots (ω̃h, ω̃ψ). When comparing with the results obtained without
consideration of the Marangoni effect, see Diez et al. (2021), we observe that they are
functionally identical, except for the fact that the presence of the Marangoni effect modifies
k̃c,h. Since the maximum growth rates are proportional to k̃4

c,h and k̃4
c,ψ , the increased

k̃c,h also implies a larger maximum of ω̃h. Note that the modes ω̃h and ω̃ψ coincide (i.e.
degenerate) at the wavenumber

kd =
√

k̃2
c,h + 3DΣφ0G0

φφ

1 − 3DΣφ0
. (5.8)

Since we here consider G0
φφ > 0 and relatively small values of DΣ , we can assure that

this crossing point (where ω̃h = ω̃ψ ) exists for all values of φ0 and kd > k̃c,h.
Let us now analyse the main characteristics of matrix AM in (5.1). For k = 0, we have

(see also (4.18))

AM(k = 0) = 3DsΓ0βs

s

⎛
⎝ 0 0 0

−φ0G0
φφ −G0

s,Γ Γ G0
φφ

sφ0G0
φφ sG0

s,Γ Γ −sG0
φφ

⎞
⎠ , (5.9)

which has two vanishing eigenvalues, ω1 = ω2 = 0 (as expected due to the fact that there
are two conserved quantities in the problem, h and ψ), as well as

ω3 = −3DsΓ0βs

(
G0
φφ + G0

s,Γ Γ

s

)
, (5.10)

whose eigenvector is X 3 = (0,−1/s, 1). Therefore, this mode only affects Γ and ψ ,
and it does not contribute to h, i.e. to the film stability. It represents a spatially uniform
decrease of Γ while φ increases (J 1 /= 0). When both G0

s,Γ Γ and G0
φφ are positive, this

concentration mode is stable, confirming the thermodynamic consistency.
Regarding the behaviour of ω as k → ∞, we note the matrix A in (5.1) adopts the form

AM(k → ∞) = k4

⎛
⎜⎜⎜⎜⎜⎝

−γ̂0 −3
2
ΣsΓ0 0

−3
2
Γ0γ̂0 −3ΣsΓ0(Ds + Γ0) 0

φ0(3DsΣsφ0 − γ̂0) −3
2
ΣsΓ0φ0 −3DsΣsφ0

⎞
⎟⎟⎟⎟⎟⎠ . (5.11)

Note that γ̂0 is the surface tension of the base state Λ = (1, Γ0, ψ0). Considering the
structure of the third column of the matrix defined by (5.11), we immediately realize that
one eigenvalue is ω∞

3 = −3DsΣsφ0k4 < 0, so that this mode is stable. In order to find the
sign of ω∞

1 and ω∞
2 , we analyse their characteristic quadratic equations as given by the

elements of the submatrix formed by the first two elements of the first and second rows.
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Parameter Value Constant Value

φ0 0.4 (n,m) (3, 2)
T 2200 K 1.081
h̄0 15 nm β 0.4643
he 1 nm βs 0.03095
a 1 nm Σ 1.39 × 10−4

as 1 nm Σs 9.25 × 10−6

η 2 mPa s D 1.83 × 10−3

Href 2 × 10−17 J Ds 2.74 × 10−2

γref 0.981 J m−2 s 0.067
σ 1.816 × 10−10 J m−2 h∗ 0.067

Table 2. List of dimensional parameters and non-dimensional constants that characterize the experimental
set-up.

We find that their sum and product are given by

ω∞
1 + ω∞

2 = −γ̂0k4 − 3ΣsΓ0(Ds + Γ0)k4, ω∞
1 ω

∞
2 = 3

4
Γ0Σs(4Ds + Γ0)γ̂0k8.

(5.12a,b)

Since the product is positive and the sum is negative, both modes are stable for k → ∞,
as expected.

5.1. Linear stability analysis results: eigenvalues and eigenfunctions
In the following, we apply the formulation to alloys of nanometric thickness melted by
laser radiation. The experiments reported in Diez et al. (2021) correspond to a binary
system such that fluids A and B are silver, Ag, and nickel, Ni, respectively. The results have
shown that the films become unstable and break up into drops, which typically consist
of both metals. In the context of modelling results, we use the expression ‘breakup’ to
signify film thickness reaching its equilibrium, he, discussed later in this section. In that
work, the instability leading to breakup was analysed based only on two fields, h and ψ ,
without Marangoni effects. The growth rates obtained were ω̃h with γ̂0 = 1 and ω̃ψ . Here,
we discuss the modifications of the results due to the influence of the Marangoni effect
and the presence of the additional field, Γ .

We consider the specific alloy Ag40Ni60, so that we have φ0 = 0.4 as the initial
concentration of the A-component. The appropriate choice of material parameters for
the problem of alloys (binary fluid) was also discussed in Diez et al. (2021), where we
considered non-constant temperature of the alloy due to heating and cooling by a laser. In
the present work, for simplicity, we do not consider thermal aspects of the problem.

The first two columns of table 2 give the values of the parameters, while the third and
fourth columns show the corresponding non-dimensional constants. The resulting time
scale, see (2.8), is tc = 180.47 ns, where we have used a spatial scale � = 100 nm.

Figure 3 shows by solid lines the dispersion curves ω(k) for the metal alloy when the
Marangoni effect is included, but the wetting energy depends on h only, i.e. the eigenvalues
of AM . The dashed lines correspond to the solutions for s → 0 given by (5.7). Note that the
maximum growth rate, ωm, is only slightly smaller than the one obtained by considering
s → 0 (dashed lines), as expected, since s is fairly small (see table 2). Note that, around
the crossing point of the dashed lines (k ≈ kd), the degeneracy of the modes ω̃h and ω̃ψ is
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Figure 3. Dispersion relations including Marangoni effect and considering wetting energy depending only on
thickness (τ = 0): (a) zooms into the unstable region (small k values), and (b) shows the results for a larger
k-range. The solid blue, black and red lines show ω1,2,3(k), while the dashed lines correspond to the results for
s → 0, ω̃h (magenta) and ω̃ψ (grey).

broken for s > 0 (see figure 3a). Therefore, the mode 1 (blue line), which for k < kd can
be associated with ω̃h (magenta dashed line), i.e. the h unstable mode, converts for k > kd
into a mode dominated by the ψ-evolution associated with ω̃ψ (black dashed line). The
reverse occurs for mode 2. However, for sufficiently large k, mode 1 departs from both ω̃h
and ω̃ψ , while mode 3 (solid red line in figure 3b) approaches the asymptotic behaviour of
ω̃h.

Once the eigenvalues ωi(k) (i = 1, 2, 3) are obtained, we proceed to calculate the
corresponding complex amplitudes of the eigenfunctions

X i =
⎛
⎝h1i
Γ1i
ψ1i

⎞
⎠ , (5.13)

for each normal mode at a given k (see (4.8)), and |X i|2 = h2
1i + Γ 2

1i + ψ2
1i = 1. Note

that, due to the nature of the considered problem, all the amplitudes are, in fact, real
numbers with their signs indicating whether Γ1i or ψ1i are in-phase or anti-phase with h1i.
Figure 4 shows the eigenfunctions corresponding to the eigenvalues ω1,2,3(k) in figure 3.
For k < kd = 0.3689, figure 4(a) shows that the amplitude of the h-eigenfunctions of mode
3 are negligible with respect to those of modes 1 and 2. Instead, in the same k-range,
figure 4(b) shows that the amplitude of the unstable mode 1 for Γ is very small, while
those of modes 2 and 3 are much larger. Finally, figure 4(c) shows that the amplitude of
the ψ-eigenfunction is negligible for mode 3 in comparison with modes 1 and 2. These
results illustrate that, for the unstable k range, modes 1 and 2 are mainly connected with
perturbations in h and ψ , respectively, while mode 3 is more prone to be excited by
perturbations in Γ . These results are in agreement with the previous discussion on the
conversion of modes when degeneracy close to kd is broken for s > 0. Also, note that the
transitions between in-phase and anti-phase behaviour of the Γ11 and ψ13 modes occur at
kd.

5.2. Nonlinear regime
We proceed by solving numerically the nonlinear (2.11a)–(2.11c); see Appendix B
for details. We consider the initial condition corresponding to the monochromatic

999 A55-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.927


J.A. Diez, A.G. González and L. Kondic

h11

h12

h13

0.2 0.4 0.6 0.8 1.00

0.2

0.4

0.6

0.8

1.0

k

h 1
1
, 
h 1

2
, 
h 1

3
Γ13

Γ11

Γ12

0 0.2 0.4 0.6 0.8 1.0
–1.0

–0.5

0

0.5

1.0

k

Γ
1
1
, 
Γ

1
2
, 
Γ

1
3

ψ13
ψ12

ψ11

0 0.2 0.4 0.6 0.8 1.0
–1.0

–0.5

0

0.5

1.0

k

ψ
1
1
, 
ψ

1
2
, 
ψ

1
3

(a) (b) (c)

Figure 4. Amplitudes of the eigenfunctions including Marangoni effect and considering wetting energy
depending only on thickness (τ = 0) (dispersion relation shown in figure 3) for (a) h, (b) Γ and (c) ψ . The
vertical grey dashed lines indicate the value of kd .

perturbations of the three fields

Λ = Λ0 + ε1X 1(k) eikx+ω1(k)t, (5.14)

where 0 < ε1 � 1. Here, we use ε1 = 0.01.
More precisely, we consider a flat uniform film in a spatial domain 0 ≤ x ≤ λ = 2π/k

with periodic boundary conditions and initial perturbations as given by (5.14). We take
k = 0.25, so that the corresponding eigenvalue is ω1 = 0.00395 (see figure 3). Figure 5(a)
shows the corresponding h, Γ , ψ and φ profiles at different times. We observe the
instability development until the film breakup and drop formation. Figure 6 compares the
evolution of the perturbations at x = 0 with the LSA prediction, that is, an exponential
growth with the corresponding eigenvalue, ω1. Interestingly, the exponential growth is
valid not only for small perturbations and early times (as expected), but even up to times
close to the film breakup (i.e. h approaching h∗), when the perturbations have increased
at least an order of magnitude with respect to their initial values. This result is consistent
with similar ones found for other single-phase films, see, e.g. Sharma & Jameel (1993)
and Sharma et al. (1995). The departure from the linear model is due to the change of the
profiles with respect to the sinusoidal shape as the system approaches the breakup (see
figure 3c,d), which requires the excitation of new wavenumbers because of a nonlinear
transfer of energy to these new k values (see figure 6(a) for t > 1000). As a consequence,
the evolution of the perturbations with the original wavenumber tends to a plateau, since
its energy is depleted to feed the other wavenumbers. Note that φ and Γ become identical
for very long times, i.e. when the drop has formed since it constitutes a new equilibrium
state.

Moreover, the LSA can be used to estimate the breakup time as

tbreak = 1
ω1

ln
1 − h∗
ε1

, (5.15)

which yields tbreak = 1184. According to the numerical simulations, this time should be
between those shown in figure 5c,d) (i.e. between t = 953 and 1108), so that the prediction
from LSA gives a reasonable estimate.

Next, we consider the case when all three normal modes are excited

Λ = Λ0 + ε1X 1(k) eikx+ω1(k)t + ε2X 2(k) eikx+ω2(k)t + ε3X 3(k) eikx+ω3(k)t, (5.16)

where ε1, ε2 and ε3 were chosen so as to ensure that the amplitudes of the perturbations in
h, Γ and ψ are initially equal to 0.01. Figure 6(b) compares the results of this numerical
simulation (solid lines) with those of the LSA (dashed lines). We observe that the full
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Figure 5. Spatial profiles of h, Γ , ψ and φ at different times obtained from the numerical solution of the
nonlinear equations when the flat film is perturbed as in (5.14) with k = 0.25 only by mode 1 (with Marangoni
effect and wetting energy depending only on thickness (τ = 0)). Panels show (a) t = 609, (b) t = 809,
(c) t = 953 and (d) t = 1108.
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Figure 6. Perturbations at x = 0 as a function of time for a monochromatic (k = 0.25) perturbation including
Marangoni effect and considering wetting energy depending only on thickness (τ = 0). Dashed lines
correspond to LSA for h (blue), Γ (green), ψ (red) and φ (black): (a) single unstable mode (see (5.14)), (b) all
three modes (see (5.16)). Solid lines show the numerical simulation results with the same initial conditions.

problem is also very well described by the LSA, even up to times very close to breakup.
Naturally, the evolution is not represented by a straight line (in linear–log scale), since it is
a linear combination of three exponential terms.

Before concluding this section, we note that we have also considered a single mode
perturbed by a superposition of two wavenumbers, one unstable and one stable (figures not
shown for brevity). As expected, the stable wavenumber decays exponentially, while the
unstable one grows. In the context of melted metallic thin films, if the duration of the
laser pulses (and correspondingly the liquid lifetime) is shorter than the decay time,
the subsequent solidification freezes the evolution. Therefore, the stable modes may still
appear as an outcome of such experiments.
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Figure 7. Dispersion relations for modes 1 (solid blue) and 2 (solid black) when both Marangoni effect and
concentration-dependent wetting energy are considered (τ = 1 and τ = −0.9) compared with the case when
the wetting energy depends only on h (τ = 0) (also shown in figure 3). The magenta dashed lines correspond
to ω̃h and the grey dashed line corresponds to ω̃ψ .

6. Marangoni effect combined with concentration-dependent wetting energy

Let us now consider the wetting energy, F, that depends on both Γ and φ (see (3.16)). This
type of dependence yields an additional contribution to matrix A, see (4.13), of the form

A = AM + k2A1 + k4A2, (6.1)

where

A1 = τK
2
(F̂

0 − F̂
′0
)

⎛
⎜⎝

3Γ0s − 2φ0 2s 2
3Γ0(2D + 2Γ0s − φ0) 3Γ0s 3Γ0

φ0(6D + 3Γ0s − 2φ0) 2sφ0 2φ0

⎞
⎟⎠ , (6.2)

A2 = τK
2

sΓ0F̂
0

⎛
⎜⎝

2 0 0
3Γ0 0 0
2φ0 0 0

⎞
⎟⎠ . (6.3)

The additional contributions yield the characteristic equation which generalizes (5.6).
Since the equation is rather cumbersome to deal with, we show here just the figures that
use the parameters from the melted metal problem. The wetting energy dependence on
concentration, i.e. F(h, Γ, φ), is assumed to be given by (3.13).

Let us first consider the case s → 0. For a given τ , one solution is ω̃h from (5.2a,b). In
this expression, k̃c,h is calculated using F0

hh (which depends linearly on τ ), but γ̂0 = 1 (see
(3.10)), since ω̃h does not include Marangoni effect. Figure 7 represents these solutions
for different values of τ as magenta dashed lines. In this figure, the grey dashed line
corresponds to ω̃ψ , which is neither affected by the Marangoni effect, nor by the value
of τ . Note that the crossings, where there is degeneracy of ω̃h(τ ) and ω̃ψ , give new values
of kd that depend on τ .

Figure 7 also shows the corresponding dispersion relations for modes 1 (blue) and
2 (black) for τ = 1 and for τ = −0.9 . These results show that the inclusion of the
wetting energy dependence on concentrations (τ /= 0) produces significant changes of
the growth rates with respect to τ = 0. In particular, we observe that both the critical
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Figure 8. Amplitudes of eigenfunctions when both Marangoni effect and concentration-dependent wetting
energy are considered for τ = 1.0 (a–c) and τ = −0.9 (d–f ), and for (a,d) h, (b,e) Γ and (c, f ) ψ . The vertical
grey dashed lines indicate the value of kd .

wavenumber, kc,1, and the maximum growth rate, ωm, increase (decrease) significantly
for positive (negative) values of τ . As a consequence, the wavenumber of the maximum
growth rate, km, can fall in the stable range of the τ = 0 case for τ sufficiently large.
The physical basis for this behaviour is that τ > 0 increases the wetting energy, leading
to increased instability of mode 1, which is dominated by the film thickness evolution.
Note that the stable mode 3 is not shown in figure 7 since it corresponds to much smaller
growth rates (see figure 3); the effect of τ is similar to what is shown in figure 7 for
mode 2.

Figure 8 shows the amplitudes of the eigenfunctions for the eigenvalues shown in
figure 7 for τ = 1 and τ = −0.9. We note that the amplitudes for τ = 0 in figure 4
are qualitatively similar to the ones for τ = 1 in figure 8, but the transitions between
in-phase and anti-phase behaviour of the Γ11 and ψ13 modes move now to larger k values
in consonance with the increase of kd(≈ kc). However, there are remarkable differences
between τ = 1 and τ = −0.9 in Γ and ψ for modes 1 and 2 . In fact, the comparison of
Γ12 and ψ12 between both values of τ shows that they change sign for small k values (that
include the unstable region of mode 1), while for large k values (stable region) this sign
reversal does not occur. In contrast, there is no such sign change of Γ11 and ψ11 for small k
values, but there is a sign change for large k values. Note that mode 3 is the least affected
by the value of τ . As mentioned above, the contribution of h perturbations to mode 1 is
predominant in the unstable domain (small k values), as seen by comparing the blue lines
with the black and red ones in figure 8(a,d).

Figure 9 compares LSA predictions with the nonlinear numerical simulations for the
considered values of τ . Here, we perturb the base state by a mode 1 monochromatic
perturbation for τ = 1 and τ = −0.9 using k = 0.2. According to figure 7, this
wavenumber corresponds to unstable perturbations. The comparison between figures 6(a),
9 (a) and 9(c) shows a similar qualitative behaviour, except for the fact that the time scales
of the breakups change due to the different growth rates as τ varies (see figure 7). Clearly,
the predictions of the LSA remain valid close to the breakup time, which varies as the
inverse of the growth rate, ω1.
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Figure 9. Perturbations at x = 0 as a function of time for mode 1 and k = 0.2 when both Marangoni effect and
concentration-dependent wetting energy are considered. Solid lines: h (blue), Γ (green), ψ (red) and φ (black)
as given by the numerical simulations for (a) τ = 1 and (b) τ = −0.9. Dashed lines: the LSA predictions. Note
different time ranges for (a,b).

7. Summary and conclusions

This paper analyses the stability properties of a binary fluid thin film, focusing on the
influence of the solutal Marangoni effects and the fluid–solid interaction, including its
dependence on concentrations. The results include a LSA using analytical methods as
well as a comparison with the numerical solutions of the full nonlinear problem. Due
to the complexity of the task at hand, we have implemented various simplifications and
attempted to concentrate on the main aspects of the problem as much as possible.

Carrying out tractable and insightful LSA requires the existence of a stationary base
state. We find that such a state is possible when surface and volumetric chemical potentials
are balanced, leading to vanishing (to the leading order) fluid exchange between the surface
and the volume.

We find it helpful to separate the discussion into two separate cases. The first one focuses
on the Marangoni effect assuming a wetting energy F = F(h) (therefore concentration
independent). Our finding is that the Marangoni effect alters the critical wavenumber,
increasing the unstable k-range with respect to the results that do not include Marangoni
effects (Diez et al. 2021). Therefore, the Marangoni effect leads to faster formation of
smaller droplets, assuming that the LSA findings extend qualitatively to the nonlinear
regime. We note that the previous experiments involving liquid metal nanometric films
involve a set of parameters that allow for modelling of the problem accurately by assuming
a very thin adsorption interface, which corresponds to the limit s → 0 (as � h0), and leads
to simple analytical expressions for the growth rates. In the context of flows such that
surfactants are relevant, we note that a case with surfactant and a certain surface tension
compared with another without surfactant and the same surface tension (red dashed line
in figure 3a) shows no change in kc,h, but a slight decrease of the maximum growth rate.

Notably, comparing the LSA results with the numerical simulations of the full nonlinear
problem reveals that most of the evolution is well described by the LSA results, with a
significant difference between LSA and nonlinear simulations only very close to the film
breakup time. Consequently, the validity of the linear approach can be extended to rather
large unstable perturbations, confirming the LSA predictions regarding the expected size
of the resulting drops and their formation times. We have made this comparison not only
for single mode and monochromatic perturbations but also for a combination of modes
and multiple wavenumbers. These combinations, which require a precise understanding of
the stable modes, are relevant for the transient initial stages of the instability. In fact, this
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transient behaviour may be of particular interest in the case of melted metallic films, since
they could re-solidify and freeze the evolution before reaching the long-time asymptotic
behaviour dominated by the unstable mode.

When additional dependence of the wetting energy on both surface and bulk
concentrations is considered, we can describe its influence in terms of a single parameter,
τ . As τ increases, both the critical wavenumber and the maximum growth rate of the
unstable mode increase. While the Marangoni effect is found to be always destabilizing,
the influence of concentration dependence of the wetting energy on concentrations could
be either stabilizing (τ < 0) or destabilizing (τ > 0), compared with the τ = 0 case.
Therefore, the manner in which instability develops depends on the material properties of
the considered fluids. For the considered case (including the wetting energy dependence
on concentration), we have also confirmed an excellent agreement of the LSA results with
the nonlinear numerical simulations until times close to film breakup.

Several aspects deserve future study. In this paper, we have selected particular forms
of G(φ) and Gs(Γ ) that preclude the existence of additional unstable modes, since both
are convex functions of their argument. However, one could also consider potentials
that include concavity due to additional quadratic terms to an entropic or double-well
potential. This could lead to new unstable modes with much larger growth rates (at also
much larger wavenumber), as considered in Diez et al. (2021) for the case without the
Marangoni effect and without consideration of concentration-dependent wetting energies,
but with double-well potential. Therefore, an interesting extension of our analysis could
be the inclusion of these types of potentials. A more involved aspect of the problem
is the possibility that the base state is non-stationary, which occurs when the flux
J0 /= 0. Considering these issues may allow for a better understanding of some features
of experimentally observed results, such as core–shell and Janus-like droplets in the
experiments carried out with liquid metals. We expect that our work provides a basic
set-up that can serve as a basis for such endeavours.
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Appendix A. Discussion of the eigenvalue properties

We consider here the eigenvalues of (4.12). For the purpose of understanding their
properties, we consider the generalized eigenvalue problem (Parlett 1998) by multiplying
the equation by the inverse matrix C−1, if C is not singular

ωC−1X = EX . (A1)

This can be done since C−1 is positive definite. In fact, a necessary and sufficient
condition for the real symmetric matrix C−1 to be positive definite is that all the upper
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left submatrices C−1
k have positive determinants (Strang 1988). These are given by

S1 ≡ C−1
11 = 1

h3Δ
[4Ds(3Dψ(Γ + k2s)+ h(Γ ψ2 + sψ(3Γ 2 + k2ψ)+ 3Γ 3s2))

+ Γ hk2sψ(12D + hψ)+ 12Γ 2D2
s s2], (A2)

S2 ≡
∣∣∣∣ C−1

11 C−1
12

C−1
21 C−1

22

∣∣∣∣ = 1
h3Δ

4s(k2ψ(3D + hψ)+ 3Γ 2Dss)
3Γ k2 , (A3)

S3 ≡ det(C−1) = 4s
3h3Δ

, (A4)

where

Δ = 3k2(4DDsψ(Γ + k2s)+ ΓDhk2sψ + 4Γ 2D2
s s2 + Γ 3Dshs2). (A5)

Clearly, all determinants are positive since all variables and parameters are.
Since C−1 is positive definite, it can be decomposed by the Cholesky factorization

C−1 = LL�, (A6)

where L is a lower triangular matrix with real coefficients. Then, (A1) can be written as
(Peters & Wilkinson 1970)

ωLL�X = EX
L−1(ωLL�X ) = L−1(EX )

ωL�X = L−1EX
ωL�X = L−1EL−�L�X

⎫⎪⎪⎬
⎪⎪⎭ . (A7)

If Y = L�X , we can write the standard eigenvalue problem

ωY = (L−1EL−�)Y ≡ BY . (A8)

Note that matrix B satisfies the relation

B� = ((L−1E)L−�)� = L−1(L−1E)� = L−1EL−� = B, (A9)

since E is symmetric. Therefore, B is also symmetric, and consequently, we claim that
(A8) has real eigenvalues, ω. In order to prove this statement, let us now take the complex
conjugate of (A8)

ω∗Y∗ = BY∗, (A10)

where B is a real matrix. By multiplying (A8) by Y∗ and (A10) by Y , and subtracting both
equations, we have

(ω − ω∗)|Y |2 = Y∗BY − YBY∗ = 0, (A11)

since

YBY∗ = Y∗(YB) = Y∗B�Y = Y∗BY , (A12)

because B = B�. Consequently, ω is real.
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Appendix B. Numerical simulations

The form of (2.11a)–(2.11c) is convenient to treat with the COMSOL Multiphysics
formulation of partial differential equation coefficients form. This package solves by finite
elements a vectorial equation for the unknown vector u = (u1, u2, . . . , uN)

�, which reads
as

e
∂2u
∂t2

+ d
∂u
∂t

+ ∇ · (−c∇u − αu + γ )+ β∇u + au = f , (B1)

where the coefficients of the N scalar equations are in the matrices e, d, γ , a (of dimensions
N × N), α, β (of dimensions N × N × n), c (of dimensions N × N × n × n) and the vector
f (of dimension N), where n is the spatial dimension of the problem (n = 1, 2, 3). In index
notation, this expression reads as

eij
∂2uj

∂t2
+ dij

∂uj

∂t
+ ∂

∂xl

(
−cijkl

∂uj

∂xk
− αijluj + γil

)
+ βijl

∂uj

∂xl
+ aijuj = fi, (B2)

where i, j = 1 . . . ,N and k, l = 1, . . . , n.
In our system of equations, we define six components u = (h, Γ, ψ, p, μs, μ) (N = 6)

and we use six equations, namely, (2.11a)–(2.11c) and (2.18)–(2.20) for a one-dimensional
problem (n = 1).

Below, we list the coefficients which are not zero for our system (since k = l = 1, we
omit these indexes for brevity and consider x1 ≡ x).

(a) Row 1 (i = 1) for (2.11a)

d11 = 1, c14 = h3, c15 = 3
2 h2Γ, c16 = h2ψ. (B3a–d)

(b) Row 2 (i = 2) for (2.11b)

d22 = 1, c24 = 3
2 h2Γ, c25 = 3hΓ 2 + 3DsΓ, c26 = 3

2 hψΓ, (B4a–d)

a25 = 3DsΓ/s, a26 = 3DsΓ. (B5a,b)

(c) Row 3 (i = 3) for (2.11c)

d33 = 1, c34 = h2ψ, c35 = 3
2 hψΓ, c36 = hψ2 + 3Dψ, (B6a–d)

a35 = −3DsΓ, a36 = 3sDsΓ. (B7a,b)

(d) Row 4 (i = 4) for (2.18): note that this equation can be written in a more convenient
form to resemble the general form of (B1) as

p = −∇ ·
[
γ̂ (Γ, h)∇h +Σ

ψ2

h3 ∇h −Σ
ψ

h2 ∇ψ
]

+ K
∂F
∂h

− K
ψ

h2
∂F
∂φ

+ β

(
G − ψ

h
∂G
∂φ

)
+Σ

(
2ψ
h3 ∇h · ∇ψ − (∇ψ)2

2h2 − 3ψ2

2h4 (∇h)2
)
, (B8)

so that

a44 = −1, c41 = γ̂ +Σ
ψ2

h3 , c43 = −Σ ψ

h2 , (B9a–c)

f4 = −K
∂F
∂h

+ K
ψ

h2
∂F
∂φ

− β

(
G − ψ

h
∂G
∂φ

)
, (B10)

β41 = Σ

(
ψ

h3 ∇ψ − 3ψ2

2h4 ∇h
)
, β43 = Σ

(
ψ

h3 ∇h − 1
2h2 ∇ψ

)
. (B11a,b)
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Here, the term ∇h · ∇ψ has been separated into two parts: one as a factor of ∇h
(first term in β41) and the other as a factor of ∇ψ (first term in β43).

(e) Row 5 (i = 5) for (2.19)

a55 = −1, c52 = Σs, f5 = −βs
∂Gs

∂Γ
− K

∂F
∂Γ

. (B12a–c)

(f) Row 6 (i = 6) for (2.20): note that this equation can be written in a more convenient
form to resemble the general form of (B1) as

μ = Σ∇ ·
[
ψ

h2 ∇h − 1
h
∇ψ

]
+ K

h
∂F
∂φ

+ β
∂G
∂φ

(B13)

+Σ

(
− 1

h2 ∇h · ∇ψ + ψ

h3 (∇h)2
)
, (B14)

so that

a66 = −1, c61 = −Σ ψ

h2 , c63 = Σ

h
, (B15a–c)

f6 = −K
h
∂F
∂φ

− β
∂G
∂φ
, (B16)

β61 = Σ

(
− ψ

2h2 ∇ψ + ψ

2h3 ∇h
)
, β63 = −Σ ψ

2h2 ∇h. (B17a,b)

Analogously to the case for i = 4, the rectangular term ∇h · ∇ψ has been separated
into two parts: one as a factor of ∇h (first term in β61) and the other as a factor of
∇ψ (first term in β63).

This system of equations is solved with periodic boundary conditions in the x-interval
(0, λ = 2π/k).
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