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Abstract. First, we classify a real hypersurface of a non-flat complex space form
with (i) semi-parallel 7(= £:g), and (ii) recurrent 7. Next, we characterise a real
hypersurface admitting the generalised n-Ricci soliton in a non-flat complex space
form.
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1. Introduction. A complex n-dimensional Kaehler manifold of constant
holomorphic sectional curvature ¢ is called a complex space form and is denoted
by M'(c). A complete and simply connected complex space form is a complex
Euclidean space C”, if ¢ = 0, a complex projective space P,(C), if ¢ > 0 or a complex
hyperbolic space H,(C), if ¢ < 0. Takagi [17, 18] first characterised all homogeneous
real hypersurfaces in P,(C) into six model spaces 41, A2, B, C, D and E. Thereafter,
Cecil and Ryan [2] (see also [9]) studied extensively that when the structure vector field &
is principal and showed that they are realised as the tubes over certain submanifolds in
P,(C) by using its focal map. On the other hand, Berndt [1] classified all homogeneous
real hypersurfaces in H,(C) with & as principal vector and divided into four model
space Ay, A1, A; and B. Let M be a real hypersurface of a non-flat complex space form.
Then M has an almost contact metric structure (¢, &, 1, g) induced from the complex
structure J. Many differential geometers studied real hypersurfaces of a complex space
form under various conditions on the Ricci tensor, the shape operator 4 (in the
direction of the unit normal of M), curvature tensor etc. For a real hypersurface of a
complex space form, we now define the tensor 7" by

gTX,Y)=(£:9)X, Y)=g((pA4 - Ap)X, Y), )

for all vector fields X, Y tangent to M. A typical characterisation for a real hypersurface
M of type A in a complex space form M (c¢) was given under the condition g(T'X, Y) =
0, for any tangent vector fields X and Y on M. Under this condition Okumura [15],
for ¢ > 0, and Montiel-Romero [13], for ¢ < 0 proved the following:

THEOREM A. Let M*'~! be a real hypersurface in a non-flat complex space form. If
M satisfies Ap = @A, then M is locally congruent to real hypersurface of type A.

Let M be a real hypersurface of type 4 in W(c). Then it follows from Theorem A
that M naturally satisfies Vy 7' = 0. Thus, as a generalisation of Okumura’s condition
g(TX, Y) =0, for any tangent vector fields X and Y on M, here we consider the real
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hypersurfaces M of a non-flat complex space form M’ (¢) with semi-parallel tensor T
(i.e. R.T = 0, where R s the curvature tensor of M) and prove that such hypersurface is
the Hopf hypersurface and also locally congruent to one of type 4 in P,(C) or H,(C).
We also consider a real hypersurface of a non-flat complex space form with recurrent
T and prove that such hypersurface is locally congruent to one of type A4 in P,(C) or
H,(C). We discuss these issues in Section 3.

It is well known [5] that there are no real hypersurfaces with parallel Ricci tensor
in a non-flat complex space form M"(¢c) when n > 3. This is also true for n =2 as
was pointed out by Kim [7]. Since the Einstein manifold has parallel Ricci tensor, it
is easy to observe that there do not exist the Einstein real hypersurfaces in a non-flat
complex space form. For this Kon [10], studied and classified the pseudo-Einstein (that
is there exist constants A, u such that the Ricci tensor S satisfies S = Al + un ® n)
real hypersurfaces of a complex space form M (c) when n > 3. Recently, Kim—Ryan
[8] proved that every pseudo-Einstein hypersurface in P,(C) or Hy(C) is the Hopf
hypersurface. Now we recall some classification theorems of the pseudo-Einstein type
real hypersurfaces in P,(C) (see [2, 10]) or H,(C) (see [12]).

THEOREM B. Let M*"~! (n > 3) be a real hypersurface of P,(C) with Fubini-study
metric of constant holomorphic sectional curvature 4. Then M is pseudo-Einstein if and
only if M is locally congruent to one of the following:

(A1) A geodesic hypersphere of radius r, where 0 < r < 7.

(A43) A tube ofltadius rover a totally geodesic P(C) (1 <k <n—2), where0) <r < %
n—k—1"
(B) A tube of radius r over a complex quadric Q""" and P,R, where 0 < r < 7 and

cot2r=n-—2.

and cot*r =

THEOREM C. Let M*"~' (n > 3) be a real hypersurface of H,(C) with Bergman
metric of constant holomorphic sectional curvature —4. Then M is pseudo-Einstein if and
only if M is locally congruent to one of the following:

(Ag) A horosphere.
(A1) A geodesic hypersphere or a tube over a complex hyperbolic hyperplane H,,—1(C).

Moreover, we remark that a tube over a totally geodesic H(C) (1 </ <n—2)is
known as a A,-type hypersurface of H,(C), n > 3. Note that real hypersurfaces of
types A; and A, (without extra restriction cot’r = n_llf,_l )in P,(C) and of types 4y, A;
and 4, in H,(C) are simply known as a real hypersurfaces of type 4.

A Ricci soliton is a generalisation of Einstein metric and is defined on a

Riemannian manifold (M, g) by a vector field V" and a constant A

where £ denotes the Lie-derivative operator along V, S is the Ricci tensor of g
and X, Y are arbitrary vector fields on M. It can be viewed as a fixed point of
the Hamilton’s Ricci flow: %g,»,» = —2R;, as a dynamical system, on the space of
Riemannian metrics modulo diffeomorphisms and scalings. For details we refer to
Chow—Knopf [4]. Recently, Cho—Kimura [3] considered real hypersurfaces of a non-
flat complex space form that admits the Ricci soliton with ' = & and proved that such
hypersurface does not exist. For this reason, Cho—Kimura [3] defined the so-called
n-Ricci soliton by taking V' = & and adding an extra term un ® n in the left-hand side
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of (2), i.e.

1
§£5g+S+/\g+un®n=0,

for constants A and . Under this assumption they proved that M is pseudo-Einstein
(or n-umbilical). Moreover, as a generalisation of n-Ricci soliton, one may consider
real hypersurfaces M of a complex space form M "(¢) satisfying

%(fgg)(X, Y)+S(X, Y)+Arg(X, Y) =0, 3)

for all tangent vectors X, Y orthogonal to &€ and A is constant. We call this a generalised
n-Ricci soliton. Note that there exist real hypersurfaces that admit a n-Ricci soliton and
hence generalised n-Ricci soliton. In fact, it is straight forward to see that any n-
umbilical real hypersurface of a complex space form admits such a structure. Thus, as
a generalisation of Cho—Kimura’s result we classify real hypersurfaces M of complex
space form M'(0) satisfying equation (3). We discuss this matter in Section 4.

2. Real hypersurfaces in a complex space form. In this section we recall some
basic equations and formulas that we shall use later on. For details about the real
hypersurfaces of a complex space form we refer to Niebergall-Ryan [14]. Let M be a
real hypersurface of a Kaehler manifold (M, J, g). For any vector field X tangent to
M, we put

JX =X +n(X)E, 4)
JN = ¢, )

where ¢ is a tensor field of type (1, 1), n is a 1-form and & is a unit vector field on

M. We denote the induced metric of M by g. From equation (4) it is easy to see that
(¢, &, n, g) gives an almost contact metric structure on M, that is

o’ X = —X +n(X)E, n() = 1, (6)

glpX,0Y) =g(X, Y)—n(X)n(Y), (7

for all vector fields X, Y on M. From these equations it is easy to see that & = 0 and
n o ¢ = 0. The Gauss and Weingarten formulas for M are given by

VyY =VyY +g(4X,Y), VyN = —AX,

where V and V are the Levi-Civita connection of M and M, respectively. Making use
of these formulas, equations (4) and (5) and VJ = 0 (as M is Kaehler) it follows that

(Vxo)Y =n(Y)4X —g(4X, Y), ®)
Vx§ = ¢pAX, (€

where A4 is the second fundamental tensor of M. Now we suppose that the Kaehler
manifold M = M(c) is a complex space form. Then we have the following Gauss and
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Codazzi equations:
C
RX. NZ = {8(Y.2)X —g(X. 2)Y +g(¢Y. 2)pX — glpX. Z)p Y
—2g(pX, Y)oZ} + g(AY, Z)AX — g(AX, Z)AY, (10)

for any tangent vector fields X, Y, Z on M. From equation (10), we get
SX = :‘;{(2n + DX = 3n(X)&} + hAX — A°X, (11)

where / is the trace of A. If the vector field & is a principal curvature vector in a
non-flat complex space form, i.e. 4 = a&, then M is called the Hopf hypersurface of
M(c). Such hypersurfaces have some remarkable properties. Note that for ¢ # 0, « is
constant (see [6, 10, 11, 14]).

3. Real hypersurfaces with semi parallel 7'.

THEOREM 1. Let M be real hypersurface of a non-flat complex space form. If the
tensor T is semi-parallel, then M is locally congruent to a type A hypersurface.

Proof. By hypothesis, we have
R(X, Y)T — TR(X, Y) =0,
from which we get
gR(X, Y)TZ, W) —g(R(X, Y)Z, TW) = 0. (12)
Setting Z = W = & the foregoing equation yields
8(R(X, Y)T§,§) = 0. (13)

Now, from equation (1), 7& = pAE and hence equation (13) reduces to
g(R(X, Y)pAE, &) = 0. Thus, in view of this we obtain from equation (10)

g{g( Y, pA§)n(X) — g(X, 9AE)(Y)} + g(AY, pAE)g(AX, §)
—g(AX, pAE)g(AY, &) = 0.

Next, putting ¥ = ¢ A€ and since g(Ap A&, £€) = 0, the foregoing equation implies that
c
18048 9 AE)N(X) + g(ApAE, pAE)S(AX. §) = 0. (14)

Finally, taking X = ¢ Ap A€ in equation (14) provides g(ApAE, p AE) = 0. Making use
of this in equation (14) and since M is non-flat, we see that & is principal, i.e. 4§ = w&.
Utilising this and taking ¥ = Z = £ in equation (12), we get TR(X, £§)§ = 0. Let X be
any principal vector orthogonal to & corresponding to the principal curvature A, i.e.
AX = 2X. Then R(X, &§)T¢é = 0 since T¢ = 0. Also from the Gauss equation (10) it
follows that R(X, £)§ = (aA + )X. Thus,

C
0=TRX, )6 = (an + Z) (Adp — pA)X,
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so that unless there is a principal curvature satisfying aA + 7 = 0, we are finished by
Theorem A. Suppose A is such a principal curvature so that AX = AX and (4d¢ —
pA)X # 0. The well-known properties of principal curvatures of Hopf hypersurfaces
(see [14, pp 245-246]) give a principal curvature u such that ApX = upX. Since
(Ap — pA)X = (u — A)X we have u # A. This is a contradiction as the same argument
applied to o and 9 X gives o + 7 = 0. This completes the proof. ]

REMARK 1. In [16], Pyo-Suh proved that a real hypersurface M of a non-flat
complex space form M "), n>2, satisfying £: R = 0 is of type A. We can prove this
result by applying Theorem 1. In fact, Lie differentiating the identity

gRX, VZ, W)+ g(R(X, Y)W,Z)=0,
using £ R = 0 and (1), it follows that (R(X, Y)T)Z = 0.
Next we prove the following.

THEOREM 2. Let M be real hypersurface of a non-flat complex space form with
recurrent T. Then M is locally congruent to one of type A in P,(C) or H,(C).

Proof. By hypothesis T is recurrent, i.e. there exists a 1-form 7 such that
(VxT)Y = n(X)TY, (15)

for all vector fields Y, Z on M. Clearly T is symmetric. Suppose 7 has a non-zero
eigenvalue o, for otherwise 7' = 0 and by Theorem A, M will be congruent to one of
type 4 in P,(C) or H,(C). Let Y be a unit vector and 7Y = o Y. Then by (15), we
have

T(X)g(TY, Y)=g(VxT)Y, Y) =g(Vx(TY), Y) —g(Vx Y, TY).
Using TY = oY the foregoing equation shows that
(Xo)g(Y, Y)+0g(Vx Y, Y) —0g(Vx Y, Y) = om(X)g(Y, Y),

which, in turn, gives Xo = o (X). Writing this consequence as do = o and operating
this by d (operator of exterior differentiation) and using the Poincare lemma, d> = 0,
we obtain

0=d*c =do A7t +odn =o(n A7)+ odr,

i.e. odm = 0. At this point we take an open set N of all points p of M such that
o(p) #0. Thenon N, dmr =0, i.e.

(Vxﬂ')Z = (Vzﬂ)X. (16)

Now, for any X, Y and Z € T,M and p € N, by differentiating (15) covariantly with
respect to Z, we obtain

(VzVxD)Y = {(Vzm)X}TY + n(Z)n(X)TY.
Interchanging Z and X we have

(VyVzT)Y = {(Vym)Z)TY + n(X)n(2)TY.
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Making use of these equations, together with the Ricci identity and (16) we find that
R(X,Z2)TY —TR(X,Z)Y =0.

Therefore, following the proof of Theorem 1 it is easy to see that 7 =0 and so o =0
on N. Thus, we arrive at a contradiction and hence 94 = Agp. Using Theorem A, we
complete the proof. O

4. Generalised n-Ricci soliton.

THEOREM 3. Let M be real hypersurface of a non-flat complex space form admitting a
generalised n-Ricci soliton. If the tensor g(T X, Y) of M vanishes for all X, Y orthogonal
to &, then M is pseudo-Einstein.

Proof. In view of equation (1), the hypothesis g(TX, Y)=0, for all X, Y
orthogonal to & implies g((Ap — pA)X, Y) =0, for all X, Y orthogonal to &, which is
equivalent to

9AP*X — ¢’ ApX =0,

for all X tangent to M. Operating this by ¢ and replacing X by ¢ X, the foregoing
equation provides

(Ap — o)X — g(ApX, §)§ + n(X)pAE = 0. (17)

Since M admits a generalised n-Ricci soliton, equation (3) is equivalent to
8(Vyx&, 9 Y) +8(Vyrk, 0X) +2S(pX, ¢ ¥) + 24g(pX, ¢ Y) = 0 (18)
for all vectors X, Y tangent to M. Making use of equations (9) and (11), the foregoing

equation yields

2n+1
0AP*X — @*ApX + pA%pX — hopApX — {2A + M} X =0

2
for all vectors X tangent to M. Therefore, use of (6) the last equation entails that
(Ap — )X — g(ApX, E)E + n(X)pAE + oA pX
—hpApX — (20 + —}¢*X = 0. (19)

Feeding equation (17) into (19) provides

2n+ l)c}

@A’ X — hpApX — {2x + 5

@’X =0. (20)

Operating equation (20) by ¢ we get an equation and replacing X by ¢ X in equation
(20) gives another equation. Differentiating them yields

(pA> — A0)X + g(A%0X, §)E — n(X)pA’E
+h{(Ap — pA)X — g(ApX, £)E + n(X)pAE} = 0.
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Thus, in view of equation (17), the preceding equation shows that
(pA? = A9)X + g(A29 X, £)§ — n(X)pA’s = 0. 21)
In other words
g((pA”> — A9)X, Y) =0, (22)
for all tangent vectors X, Y orthogonal to £. Now, operating equation (17) by 4 gives
(A2 — ApA)X — g(AgX, §)AE + n(X)ApA§ = 0. (23)
Further, replacing X by AX, equation (17) transforms into
(ApA — pAM)X — g(APAX, §)§ + g(AX, §)pAE = 0. 24)
Adding equation (23) with (24) and taking into account equation (22) it follows that

g(AX, E)g(pAE, Y) + g(pAE, X)g(AY, §) =0, (25)

for all tangent vectors X, Y orthogonal to &. Since ¢& = 0, the vector fields ¢’ A&
and @A are orthogonal to &. Therefore, if we replace X by ¢>4& and Y by pAE,
then equation (25) shows |pA&|* = 0, which implies 9 A& = 0, that is 4§ = a&. This,
together with the hypothesis (g(4¢ — pA)X, Y) =0, for all X, Y orthogonal to &
implies that Ap = ¢ A. Moreover, using 4§ = «£ in equation (11), we see that S& = B¢,
where 8 = f’(anl) + ha — o®. Making use of equation (9), g(4g — pA)X,Y) =0 in
equation (18), we find that

S(pX,0Y)+ 2g(pX,9Y)=0.

Finally, replacing X by ¢ X and Y by ¢ Y in the foregoing equation and since S§ = &
we see that M is pseudo-Einstein. O
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