
Abstract. In this note we prove that quadratic algebraic integers, ex-
cept for trivial cases, are not Mahler measures of algebraic integers and
we also answer in negative the question of A. Schinzel [9] whether 1+

√
17

is a Mahler measure of an algebraic number.

1. Introduction and the statement of the theorems

Let P (x) = a0x
n + a1x

n−1 + · · · + an−1x + an ∈ Z[x] be a polynomial.

The Mahler measure of P is de�ned by

M(P ) = |a0|
n∏

i=1

max{|αi|, 1}

where α1, α2, . . . , αn are the zeros of P.

If α is an algebraic number we de�ne its Mahler measure by M(α) = M(P ),

where P is the minimal polynomial of α in Z[x]. Two problems were con-

sidered

(1) Which algebraic numbers are Mahler measures of integer polynomi-

als?

(2) Which algebraic numbers are Mahler measures of algebraic numbers?

Let M = {M(α) : α ∈ Q̄}, where Q̄ is the set of algebraic numbers. It is

well known and easy to check (see [1]) that every β ∈ M is an algebraic

integer and a Perron number. However in [3] D. Boyd gives an example of

Perron units that are not Mahler measures of an algebraic integers. Partial

results are abundant, see for example [2�6]. In [5] the authors show that

every real algebraic integer is a di�erence of two Mahler measures. The

results presented in this paper relate to the following two theorems of A.

Schinzel proved in [9].

Theorem 1.1. [9] A primitive real quadratic integer β is in M if and only
if there exists a rational integer a such that β > a > |β′| and a | ββ′, where
β′ is the conjugate of β. If the condition is satis�ed then β = M(β/a) and
a = N(a, β), where N denotes the absolute norm.
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2 ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS

For quadratic integers that are not primitive he considers the numbers

pβ, where p is a rational prime and β a primitive algebraic integer, and

proves

Theorem 1.2. [9] Let K be a quadratic �eld with discriminant ∆ > 0, β, β′

be primitive conjugate integers of K and p a prime. If

(1)
pβ ∈ M,

then either there exists an integer r such that
(2)

pβ > r > p|β′| and r | ββ′, p ∤ r,
or

(3)
β ∈ M and p splits in K.

Conversely, (2) implies (1), while (3) implies (1) provided either
(4)

β > max

−4β′,

(
1 +

√
∆

4

)2


or
(5)

p >
√
∆.

Here we focus only on quadratic irrationalities. Let β > 1 be an algebraic

integer of degree two. Denote by β′ its algebraic conjugate. If |β′| < 1 then,

obviously β is a Mahler Measure, that is β ∈ M. This covers the case when

β is a unit. However the case when |β′| > 1 is more interesting. We prove

Theorem 1.3. Let β > 1 be an algebraic integer and suppose that |β′| > 1.

Then β is not a Mahler measure of an algebraic integer, that is, β ̸= M(α)

for any algebraic integer α.

Our next theorem relates to Schinzel's result cited here as Theorem 1.2.

He noted that there are algebraic integers of degree two that do not satisfy

condition (2), and satisfy condition (3) without conditions (4) or (5) of this

theorem. As an example he cites the number 1 +
√
17 and asks if it is a

Mahler measure of an algebraic number. This particular question was open

since 2004 and was quoted by A. Dubickas, J. McKee and C. Smyth, P.A.

Filli, L.Potmeyer, and M. Zhang [6�8] among others. In the following remark

we show that the list of numbers with the properties listed above and thus

falling in the gap in Theorem 1.2 is in fact in�nite.
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ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS 3

Remark 1.4. There are in�nitely many real algebraic integers β of degree

two that together with suitable prime p do not satisfy condition (2), but

satisfy condition (3) without conditions (4) or (5).

Proof. Let k ≥ 4 be a rational integer. Let 2k+1 = b2m, where m is square-

free and b a positive integer. Obviously m ̸= 1 and m ≡ 1 mod 8. Hence 2

splits in Q(
√
m). Let β = (1 + b

√
m)/2 and p = 2. Then (2) fails because

ββ′ = (1 − b2m)/4 = −2k−2, so p | r. Further (3) hold, (4) fails because
β < −4β′, and (5) fails. □

It is easy to �nd other types examples than those listed in Remark 1.4

that also fail the assumptions of Theorems 1.1 and 1.2. For example many

numbers of the form β = (1 +
√
m)/2 with square-free m ≡ 1 mod 8 and

p = 2 fall to this category. This happens for m = 17, 33, 41, 57, 65, 73, and

the list is most likely in�nite.

The number 1+
√
17 = 2β is of the type of numbers considered in the proof

of Remark 1.4. Our next theorem shows that it is not a Mahler measure of

an algebraic number. We focused on this number as a tribute to A. Schinzel

who speci�cally asked about it.

It is easy to check that

M(4x2 ± 2x− 4) = 1 +
√
17

and also

M(4x2d ± 2xd − 4) = 1 +
√
17

for every positive integer d as M(f(xd)) = M(f(x)). Here we prove the

following theorem.

Theorem 1.5. Let f ∈ Z[x]. If M(f) = 1 +
√
17 and f is irreducible over

Q then

f(x) = 4x2d ± 2xd − 4,

where d is a positive integer.

Since 4x2d±2xd−4 = 2(x2d±xd−2), polynomials f(x) are reducible in Z[x].

Consequently, the answer to Schinzel's question is negative, 1 +
√
17 /∈ M.

The ideas used in the proof potentially can be used to investigate the

numbers described in the remark, especially whenQ(
√
m) has class number 1.

2. Lemmas

We start with
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4 ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS

Lemma 2.1. Let OK be the ring of algebraic integers of a number �eld K.

If

f(x) = a
n∏

i=1

(x− αi) ∈ OK [x]

then aα1 . . . αs is an algebraic integer for 1 ≤ s ≤ n.

This lemma is well known and widely used in case of OK = Z. The

version stated here is a slight generalization. The following lemma may be

deduced from Dixon and Dubickas Lemma 2 in [4].

Lemma 2.2. Suppose that λ is a quadratic algebraic integer that is the
Mahler measure of an algebraic number α, that is λ = M(α). Let f(x) =

a0
∏n

i=1(x − αi) be the minimal polynomial of α in Z[x] and a0 > 0, an =

f(0), λ′ the algebraic conjugate of λ, and N(λ) = λλ′. Then

a2r0 |an|2s = |N(λ)n|,

where s is the number of conjugates of α lying strictly outside the unit circle,
and r = n− s.

The following is Schur's [10] lemma, employed in Schur-Cohn algorithm

to determine the distribution of roots of a complex polynomial relative to

the unit circle.

Lemma 2.3. Let p be a complex polynomial of degree n ≥ 1. De�ne its
reciprocal adjoint polynomial p∗ by
p ∗ (z) = znp(z̄−1) and its Schur transform by Tp = p(0)p− p ∗ (0)p ∗ . Let
δ = Tp(0). Then

(1) If δ ̸= 0 then p, Tp, and p∗ share zeros on the unit circle.
(2) If δ > 0 then p and Tp have the same number of zeros inside the

unit circle.
(3) If δ < 0 then p∗ and Tp have the same number of zeros inside the

unit circle.

3. Proof of Theorem 1.3

For a contradiction suppose that f ∈ Z[x] is a monic irreducible polyno-

mial and M(f) = β. Let

f(x) =
n∏

i=1

(x− αi).

Suppose that |αi| > 1 for i = 1 . . . s, and |αi| ≤ 1 for i = s + 1 . . . n. For

convenience we use notation γi = αs+i for i = 1 . . . r, where r = n − s. We
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ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS 5

de�ne two sets

S = {α1, . . . , αs} and R = {γ1, . . . , γr}.

Further let L = Q(α1, . . . , αn) be the splitting �eld of f, K = Q(β), G =

Gal(L/Q), and H = Gal(L/K). We claim that

(3.1) every σ ∈ H permutes S and permutes R.

Indeed, since H �xes β, for any σ ∈ H we have

|σ(αi)||σ(α2)| . . . |σs(αs)| = β = |α1||α2| . . . |αs|.

Then if σ(αi) /∈ S we would have σ(αi) ∈ R so the left hand side would

be strictly smaller than the right. Further σ is a one-to-one map, hance

σ(R) ∩ S = ∅, so σ(R) ⊆ R, and thus σ(R) = R. We have

β =
s∏

i=1

|αi|.

We must have s < n since otherwise M(f) would be equal to the absolute

value of the constant term of f which is a rational integer. We apply now

Lemma 2.2 with a0 = 1 and λ = β. We get |an|2s = |N(β)n|. Hence

|an|
2s
n = |N(β)| = |ββ′| > β because |β′| > 1.

However |an| = |α1 . . . αs||αs+1 . . . αn| ≤ β. Thus

β ≥ |an| > β
n
2s

and we conclude that 2s > n, so 2s > s+ r, and s > r.

We shall show that the last inequality contradicts the irreducibility of f.

For this let

f1(x) =
s∏

i=1

(x− αi) and f2(x) =
r∏

i=1

(x− γi).

The coe�cients of these polynomials are symmetric functions of α1, . . . , αs

and γ1, . . . , γr, respectively. Since every σ from H permutes S and permutes

R, these coe�cients are in K, the �xed �eld of H. Now let σ be any auto-

morphism in G \H, then we conclude that f1(x)σ(f1(x)) and f2(x)σ(f2(x))

both are in Z[x] as σ(K) = K and σ is a non-identity automorphism of K.

Further f(x) = f1(x)f2(x). We get

f 2(x) = f(x)σ(f(x)) = (f1(x)σ(f1(x))(f2(x)σ(f2(x))).

The degree of integer polynomial f2(x)σ(f2(x)) is 2r < n. However f 2(x) as

a product of two irreducible polynomials of degree n cannot have a factor

of degree 2r < n, a contradiction.
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6 ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS

4. Proof of Theorem 1.5

For a contradiction suppose that λ = 1+
√
17 = M(α) and the minimal

polynomial of α in Z[x] is

f(x) = a0x
n + a1x

n−1 + · · ·+ an−1x+ an.

We also de�ne a polynomial

g(x) = ηxnf(x−1), where η ∈ {−1,+1} is the sign of an.

Hence

g(x) = η(anx
n + an−1x

n−1 + · · ·+ a1x+ a0).

Clearly, both polynomials are irreducible, have positive leading coe�cients,

and M(g) = M(f) = 1 +
√
17. The interplay between f and g plays an

important role in the proof. We use notation from the previous section:

S = {α1, . . . , αs} and R = {γ1, . . . , γr}, where γi = αs+i for 1 ≤ i ≤ r. Also

L = Q(α1, . . . , αn), K = Q(λ), G = Gal(L/Q), and H = Gal(L/K). Again,

the elements of S lie strictly outside the unit circle, while the elements of

R lie inside or on the unit circle. The property (3.1) still holds.

We �rst prove

Lemma 4.1. We have

(1) r=s, so deg f = 2s = 2r is even,
(2) a0 = 4 = |an|,
(3) the polynomials f and g have no zeros on the unit circle.

Proof. (1) We let

f1(x) =
s∏

i=1

(x− αi) and f2(x) =
r∏

i=1

(x− γi)

as in the end of the proof of Theorem 1.3. Then (3.1) still holds, so f1 and

f2 are in K[x], and f = a0f1f2. Again as in the proof of Theorem 1.3, if

r ̸= s we get a contradiction with the irreducibility of f.

(2) Lemma 2.2 with λ = 1 +
√
17 gives a2r0 |an|2s = |N(λ)n| = 16n, so

ar0|an|s = 4n.

Further

|an| = |a0α1 . . . αn| ≤ |a0α1 . . . αs| = 1 +
√
17.

The �rst equality shows that |an| is a power of 2, the second implies that

|an| ≤ 4.

We shall show that also a0 ≤ 4. To see this, we apply Lemma 2.2 to g and

get |g(0)| = |a0| ≤ 4 in the same way as we obtained |f(0)| = |an| ≤ 4.
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ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS 7

Both inequalities |an| ≤ 4 and |a0| ≤ 4 together with ar0|an|s = 4n now give

|an| = a0 = 4.

(3) Clearly f(−1) ̸= 0 and f(1) ̸= 0 because f is irreducible. Suppose that

ζ ∈ C \ R is a zero of f, and ζ lies on the unit circle. Then also ζ−1 = ζ̄

lies on the unit circle and is a zero of f because the coe�cients of f are

real numbers. This shows that irreducible polynomials f and g share a zero,

hence f = g. Thus S−1 = {α−1
1 , α−1

2 , . . . , α−1
s } consists of zeros of g and f.

Since S−1 ∩ S = ∅, we conclude R = S−1 and all its elements lie strictly

outside the unit circle. Therefore f cannot have a zero on the unit circle. □

Lemma 4.2. Let f ∈ Z[x] be the polynomial de�ned at the beginning of the
section. That is, M(f) = 1 +

√
17 and f is irreducible over Q then

(1) σ(S) = R and σ(R) = S for any σ ∈ G \H
(2) an = −4.

Proof. (1) By the previous lemma R has no elements on the unit circle, so

|γi| < 1 for all elements of R. We have

(4.1) λ = εa0α1 . . . αs with suitable ε ∈ {−1,+1}

and

an = (−1)2da0α1 . . . αsγ1 . . . γs.

Since a0 = |an| = 4 and λλ′ = −16 we get

|α1 . . . αs| = λ/4 and |γ1 . . . γs| = |4/λ| = |λ′/4|.

Then for any σ ∈ G \H we get |σ(α1 . . . αs)| = |λ′/4|. Hence

|σ(α1)||σ(α2)| . . . |σ(αs)| = |λ′/4| = |γ1||γ2| . . . |γs|.

Since the right hand side has the smallest value among the absolute value of

the products of s distinct zeros of f, its conjugates are uniquely determined

and we conclude that σ(S) = R. Since σ is injective and σ(S) = R then

σ(R) ∩R = ∅, so also σ(R) = S.

(2) From (1) we conclude that σ(α1 . . . αs) = γ1 . . . γs. Also by (4.1)

α1 . . . αs = ελ/4. Hence

an = (−1)2da0α1 . . . αsγ1 . . . γs = a0ελ/4σ(ελ/4) = a0
λλ′

16
= −a0 = −4.

□

Now we proceed to the conclusion of the proof of Theorem 1.5

The previous Lemmas show that
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8 ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS

f(x) = 4x2d + a1x
2d−1 + · · ·+ a2d−x− 4, while

g(x) = 4x2d − a2d−1x
2d−1 − · · · − a1x− 4.

It is convenient to introduce four polynomials

f̂(x) = 4
d∏

i=1

(x− αi), f̌(x) = 4
d∏

i=1

(x− γi)

and

ĝ(x) = 4
d∏

i=1

(x− δi), ǧ(x) = 4
d∏

i=1

(x− κi),

where δi = γ−1
i and κi = α−1

i for i = 1 . . . d. We note that all zeros of f̂

and ĝ lie outside the unit circle, while all zeros of f̌ and ǧ lie inside the unit

circle. By (3.1) and Lemma 2.1, all polynomials are in OK [x].

Further

(4.2) 4f = f̂ f̌ and 4g = ĝǧ.

We claim that

(4.3)
1

2
f̂ and

1

2
f̌ are in OK [x]

or

(4.4)
1

2
ĝ and

1

2
ǧ are in OK [x].

For this note that K = Q(
√
17) has class number 1, so OK [x] is a unique

factorization ring and the content of polynomials is well de�ned up to a unit

factor. By (4.2) we have

(4.5) 4 = c(f̂)c(f̌) and 4 = c(ĝ)c(ǧ).

To proceed further we need to list basic arithmetic facts about OK [x].

We have

(a) u = 4 +
√
17 is the fundamental unit in OK . The group of unit of

OK is U = {±un : n ∈ Z},
(b) π1 =

−3+
√
17

2
and π2 =

−3−
√
17

2
are primes in OK ,

(c) π1π2 = −2,

(d) 1+
√
17

2
= uπ2

1,

(e) 1−
√
17

2
= −u−1π2

2.

Further we also have

(1) 4α1 . . . αd = ελ, 4γ1 . . . γd = ελ′,

(2) 4δ1 . . . δd = −ελ, 4κ1 . . . κd = −ελ′,
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ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS 9

(3) 4f(x) = f̂(x)f̌(x) and 4g(x) = ĝ(x)ǧ(x),

(4) f̂(0) = (−1)dελ = (−1)dεu2π2
1,

(5) f̌(0) = (−1)dελ′ = −(−1)dεu−12π2
2,

(6) ĝ(0) = −(−1)dελ = −(−1)dεu2π2
1,

(7) ǧ(0) = −(−1)dελ′ = (−1)dεu−12π2
2.

In particular 4 = π2
1π

2
2 and π1π2 = −2. By Lemma 4.2, for any σ ∈ G \H

we have f̌ = σ(f̂) and ǧ = σ(ĝ), also σ(π1) = π2. The item (4) on the

list above shows that π2
2 ∤ c(f̂). This together with (4.2) leaves us with two

possibilities

(1) 2 | c(f̂) and 2 | c(f̌) or
(2) π2

1 | c(f̂) and π2
2 | c(f̌).

We shall show that if the possibility (2) occurs then

2 | c(ĝ) so also 2 | c(ǧ) because ǧ = σ(ĝ).

Indeed

ĝ(x) =
4

f̌(0)
xdf̌(x−1) =

4εu

−(−1)d2π2
2

xdf̌(x−1).

Hence c(ĝ) = c(± 2u
π2
2
)c(xdf̌(x−1)) = c(± 2u

π2
2
)c(f̌), we deduce that 2|c(ĝ) be-

cause π2
2|c(f̌). Consequently also 2|c(ǧ). Therefore if the second case occurs

we can work with polynomial g instead of f, so without loss of generality

we assume that the �rst case occurs.

We thus conclude that

f̂1(x) =
1

2
f̂(x) = 2xd +

d−1∑
i=1

Aix
d−i + (−1)dεuπ2

1

and

f̌1(x) =
1

2
f̌(x) = 2xd +

d−1∑
i=1

Ãix
d−i − (−1)d

ε

u
π2
2

are in OK [x], and f = f̂1(x)f̌1(x). Here Ãi are algebraic conjugates of Ai,

i = 1 . . . d. In the last part we employ Lemma 2.3 to study the coe�cients

of these polynomials. Put p(x) = xdf̂1(x
−1) = (−1)dεuπ2

1x
d+
∑d−1

i=1 Aix
i+2.

Then p ∗ (x) = f̂1(x) and

Tp(x) =
d−1∑
i=1

(2Ai − (−1)dεuπ2
1Ad−i)x

i + 4− ε2u2π4
1.

Hence

δ = 4− ε2u2π4
1 ≈ −2.56 < 0

The polynomial p∗ has no roots inside the unit circle, therefore the same is

true about Tp. The degree of Tp is less than d. Suppose that deg Tp = i
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10 ON THE VALUES OF THE MAHLER MEASURE IN QUADRATIC FIELDS

for some i, 1 ≤ i ≤ d − 1. Then the leading coe�cient of Tp is 2Ai −
(−1)dεuπ2

1Ad−i. Since all roots of Tp lie outside of the unit circle, we must

have

|2Ai − (−1)dεuπ2
1Ad−i| < |4− ε2u2π4

1| = |Tp(0)|.

Now we apply the same argument to

p(x) = f̆1 = 2xd +
d−1∑
i=1

Ãix
d−i − (−1)dε

1

u
π2
2

whose roots lie inside the unit circle. Then

p ∗ (x) = −(−1)dε
1

u
π2
2x

d +
d−1∑
i=1

Ãix
i + 2.

Tp(x) =
d−1∑
i=1

(−(−1)dεu−1π2
2Ãd−i − 2Ãi)x

i + ε2u−2π4
2 − 4.

Hence

δ = ε2
1

u2
π4
2 − 4 ≈ −1.56 < 0

We conclude as in the previous case that

|−ε

u
(−1)dπ2

2Ãd−i − 2Ãi| = |2Ãi +
ε

u
(−1)dπ2

2Ãd−i| < | 1
u2

π4
2 − 4|.

From both inequalities we get

|2Ai − (−1)dεuπ2
1Ad−i||2Ãi +

ε

u
(−1)dπ2

2Ãd−i| = |N(2Ai − (−1)dεuπ2
1Ad−i)|

< |4− ε2u2π4
1||

1

u2
π4
2 − 4| = 4,

where N is the norm from K to Q. Further

2Ai − (−1)dεuπ2
1Ad−i = −π1(π2Ai − (−1)dεuπ1Ad−i)

and

2Ãi +
ε

u
(−1)dπ2

2Ãd−i = −π2(π1Ãi − (−1)d
ε

u
π2Ãd−i).

Hence

|N(π2Ai + (−1)dεuπ1Ad−i)| =
1

2
|N(2Ai − (−1)dεuπ2

1Ad−i| < 2.

We conclude that π2Ai − (−1)dεuπ1Ad−i is a unit.

However we have

|π2Ai + (−1)dεuπ1Ad−i| < |4− ε2u2π4
1

π1

| < 4.562

and

|π1Ãi − (−1)d
ε

u
π2Ãd−i| < |

1
u2π

4
2 − 4

π2

| < 0.4385
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The last inequality excludes the possibility π2Ai + (−1)dεuπ1As−i = ±1.

It remains the possibility that π2Ai + (−1)dεuπ1Ad−i = ±uk with k ̸= 0.

However then π1Ãi − (−1)d ε
u
π2Ãs−i = ±u−k, but

max(|uk|, |u−k|) ≥ u = 4 +
√
17 > 4.562,

hence this possibility is also excluded. Finally, we have proved that Tp has

degree 0, so that

π2Ai + (−1)dεuπ1Ad−i = 0 for i = 1 . . . d− 1.

This implies that π1 and π2 divide each Ai for i = 1 . . . d− 1, so also divide

each Ãi. Thus 2|Ai, so also 2|Ãi. Hence Ai = 2Bi with Bi ∈ OK for all i.

and we get

π2Bi + (−1)dεuπ1Bd−i = 0 for i = 1 . . . d− 1.

We can repeat the same argument again and conclude that 2|Bi for all i.

After several repetitions we get

2k|Ai for every positive integer k and all i.

Hence all coe�cients Ai are zero. We have

f̂1 = 2xd + (−1)dεuπ2
1 and f̆1 = 2xd − (−1)dεu−1π2

2.

Finally, we get

f(x) =
1

4
f̂ f̆ = f̂1f̌1 = 4x2d ± 2xd − 4.
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