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Algebraic and geometric definitions of the cross
product: the link

FRANÇOIS DUBEAU

1.  Introduction
Given two vectors  and  in , the

cross product  is defined as follows (see [1] or [2]):
u
→

= (u1, u2, u3)t y
→

= (v1, v2, v3)t �3

u
→

× v
→

Algebraic definition: .u
→

× v
→

=
⎡

⎢
⎢
⎢

⎣

⎤

⎥
⎥
⎥

⎦

u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

It is a coordinate-dependent definition, but does not depend on a
drawing convention to sketch the basis vectors ,  and

. To associate a direction to , we need to link it to a
geometric definition.

i
→

= (1, 0, 0)t j
→
(0, 1, 0)t

k
→

(0, 0, 1)t u
→

× v
→

In an attempt to have a geometric interpretation of the cross product, it
is pertinent to read the following coordinate-free definition. According to
[2], this definition appeals to the physicists who hate to choose axes and
coordinates.

Geometric definition. There exists a unique vector  satisfying the following
conditions:

w
→

G1:  is perpendicular to  and .w
→

u
→

v
→

G2: The length of  is equal to the area  of the parallelogram
determined by  and .

w
→

A (u→, v
→)

u
→

v
→

G3: (RHR) Using your right hand, curl your fingers from  to  or,
equivalently, put your index finger in direction of  and your middle
finger in direction . Then your thumb points in a direction which we
will consider orthogonal to both  and . We will denote

 the unit vector in the direction indicated by the
thumb, and set .

u
→

v
→

u
→

v
→

u
→

v
→

n
→ (u→, v

→) = n
→

R (u→, v
→)

w
→

= A (u→, v
→) n

→ (u→, v
→)

G3: (LHR) Using your left hand, curl your fingers from  to  or,
equivalently, put your index finger in the direction of  and your
middle finger in direction . Then your thumb points in a direction
which we will consider orthogonal to both  and . We will denote

 the unit vector in the direction indicated by the
thumb, and set .

u
→

v
→

u
→

v
→

u
→

v
→

n
→ (u→, v

→) = n
→

R (u→, v
→)

w
→

= A (u→, v
→) n

→ (u→, v
→)
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This geometric definition leads to two geometric cross products.  One for
the right hand, say , and one for the left hand, say

. Obviously . In physics, it doesn't matter
whether you use your right or left hand to compute the direction of a vector
product, this property is known as ‘conservation of parity’.

w
→

R = A (u→, v
→) n

→
R (u→, v

→)
w
→

L = A (u→, v
→) n

→
L (u→, v

→) w
→

R = −w
→

L

We will see that the link between the two definitions is based on a
convention for drawing axes. Our presentation requires only some
elementary knowledge of linear algebra. It contains, extends, and simplifies
other relatively simple presentations, for example see [3, 4, 5, 6, 7, 8]. Those
interested by more advanced topics on this subject could read [9].

2. Algebraic Considerations
The cross product can be expressed as the symbolic determinant

u
→

× v
→

=

⎡

⎢
⎢
⎢⎢

⎣

⎤

⎥
⎥
⎥⎥

⎦

.
i
→

j
→

k
→

u1 u2 u3

v1 v2 v3

And as a simple example we get . Using the dot product defined byi
→

× j
→

= k
→

u
→

 · v
→

= u1v1 + u2v2 + u3v3,
we have

(u→ × v
→)  · w

→
= det (u

→
, v

→
, w

→) .

It follows that  is orthogonal to  and , so it satisfies (G1) of the
geometric definition.

u
→

× v
→

u
→

v
→

Now we would like to show that  satisfies (G2) of the geometric
definition. This will be done using a representation of  and rotations.

u
→

× v
→

v
→

We assume that  and  are linearly independent and have .
Consider  to be such that

u
→

v
→

u
→

× v
→

≠ 0
→

θ ∈ (0, π)

u
→

 · v
→

= �u
→

� �v
→
� cos θ.

Let us set
⎧

⎩

⎨
⎪

⎪

⎪

⎪

⎪

⎪

i
→
0 =

u
→

�u
→

�
,

j
→

0 =
v
→

− (i→0 · v
→) i

→
0

�v
→

− (i→0 · v
→) i

→
0�

=
v
→

− (i→0 · v
→) i

→
0

�v
→
� sin θ

,

which form an orthonormal basis for the two-dimensional vector subspace

lin{u
→

, v
→} = {ru

→
+ sv

→
| r, s ∈ �} = {αi

→
0 + βj

→

0 | α, β ∈ �} = lin{i
→
0, j

→

0}.
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Then we get the useful representation of v
→

v
→

= �v
→
� (cos θi

→
0 + sin θj

→

0) ,

from which it follows that

u
→

× v
→

= �u
→

� �v
→
� sin θ i

→
0 × j

→

0. (1)

Since , we getsin θ > 0

�u
→

× v
→
� = �u

→
� �v

→
� sin θ �i

→
0 × j

→

0.� . (2)

Now we will use rotations to send  to  and  to . Each rotation we
use will leave one coordinate fixed. The fixed coordinate corresponds to a
basis vector , which can be equal to  or  or . The rotation, denoted by

, is given by

i
→
0 i

→
j
→
0 j

→

d
→

i
→

j
→

k
→

Rd
→

,ω

Rd
→

ω =

⎧

⎩

⎨
⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

( )1 0 0
0 cos ω − sin ω
0 sin ω cos ω

for d
→

= i
→
,

( )cos ω 0 sin ω
0 1 0

− sin ω 0 cos ω
for d

→
= j

→
,

( )cos ω − sin ω 0

sin ω cos ω 0

0 0 1

for d
→

= k
→
.

We have , and . Alsodet (Rd
→

,ω) = +1 R−1
d
→

,ω = Rd
→

,−ω = R t
d
→

,ω

Rd
→

,ωu
→

 · Rd
→

,ωv
→

= u
→

 · v
→
,

so

�Rd
→

,ωu
→

� = �u
→

� ,

and

u
→

 · v
→

= 0 if, and only if,  Rd
→

,ωu
→

 · Rd
→

,ωv
→

= 0.

We first rotate  using  to send  to  in . The angle  is
related to the orthogonal projection of  onto . In fact, we can write

i
→
0 R i

→
,α i

→
0 i

→
1 lin {i

→
, j

→} α
i
→
0 lin {j

→
, k

→}
i
→
0 = (i→ · i→0) i

→
+ r (cos α j

→
+ sin α k

→)
with , so . We haver = �i

→
0 − (i→ · i→0)� = 1 − (i→ · i→0)2

α = −α⎯
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⎧

⎩
⎨
⎪
⎪

R i
→

,αi
→
0 = i

→
1 ∈ lin {i

→
, j

→} ,

R i
→

,αj
→
0 = j

→
1.

If  is already in  then we set  and we use , which
means we do nothing. Then we rotate  using  to send  to . The
angle  is related to the expression of  in . We can write

i
→
0 lin {i

→
, j

→} α = 0 R i
→
,0 = I

i
→
1 R k

→
,β i

→
1 i

→
2 = i

→

β i
→
1 lin {i

→
, j

→}
i
→
1 = cos β

⎯
 i

→
+ sin β

⎯
 j

→
,

so . We haveβ = −β⎯

⎧

⎩
⎨
⎪

⎪

R k
→

,β i
→
1 = i

→
2,

R k
→

,β j
→
1 = j

→
2 ∈ lin {j

→
, k

→} ,

because . Finally, we rotate  using
 to send  to . The angle  is related to the expression of  in

. We can write

j
→
2 · i

→
= j

→
2 · i

→
2 = j

→
1 · i

→
1 = j

→
0 · i

→
0 = 0 j

→
2

R i
→
,γ j

→
2 j

→
3 = j

→
γ j

→
2

lin {j
→
, k

→}
j
→

2 = cos γ¯  j
→

+ sin γ¯  k
→
,

so . We haveγ = −γ¯

⎧

⎩
⎨
⎪

⎪

R i
→
,γ j

→
2 = j

→
3 = j

→
,

R i
→
,γ i

→
2 = i

→
3 = i

→
,

because .i
→
2 = i

→

The successive application of the three rotations, given by

R = R i
→
,γ R k

→
,β R i

→
,α,

is such that

R  i
→
0 = i

→
 and  R  j

→
0

= j
→
.

We also have  and .RRt = I det (R) = 1

The next result, which can be found in [9], will allow us to say that the
rotation of the cross product of two vectors is the cross product of the two
rotated vectors.

Lemma 1:  If  is such that  and , thenR RRt = I det (R) = 1

R (u→ × v
→) = Ru

→
× Rv

→
.
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Proof: Consider any  in , withw
→

�3

(Ru
→

× Rv
→)  · Rw

→
= det (Ru

→
, Rv

→
, Rw

→)
= det (R (u→, v

→
, w

→))
= det (R) det (u→, v

→
, w

→)
= det (u→, v

→
, w

→)
= (u→ × v

→)  · w
→

,
and

(Ru
→

× Rv
→)  · Rw

→
= Rt (Ru

→
× Rv

→)  · w
→

.
Then

Rt (Ru
→

× Rv
→) · w

→
= (u→ × v

→)  · w
→

for all . So we get , and the result follows.w
→

∈ �3 Rt (Ru
→

× Rv
→) = (u→ × v

→)
From this result we have

R (i→0 × j
→

0) = R (i→0) × R (j→0) = i
→

× j
→

= k
→
,

so we obtain

�i
→
0 × j

→

0� = �R (i→0 × j
→

0)� = �R (i→0) × R (j→0)� = �i
→

× j
→
� = �k

→
� = 1.

Consequently, from (2) we obtain , which
corresponds to the area of the parallelogram determined by  and . So

 satisfies (G2).

�u
→

× v
→
� = �u

→
� �v

→
� sin θ

u
→

v
→

u
→

× v
→

3.  Convention for drawing axes
To relate the geometric definition to the algebraic one, we need a way to

sketch the vectors ,  and . So, a drawing convention for the basis
 is necessary. We can consider two ways to sketch the axes based on

the fact that the right-hand rule, or the left-hand rule, holds for  and ,
that is to say that .

u
→

v
→

u
→

× v
→

{i
→
, j

→
, k

→}
i
→
, j

→
k
→

i
→

× j
→

= k
→

= n
→ (i→, j

→)
Right-hand drawing convention for {i

→
, j

→
, k

→}
Fix  and  and determine  from G3 (RHR). Then set .i

→
j
→

n
→ (i→, j

→) k
→

= n
→

R (i→, j
→)

Left-hand drawing convention for {i
→
, j

→
, k

→}
Fix  and  and determine  from G3 (LHR). Then set .i

→
j
→

n
→ (i→, j

→) k
→

= n
→

L (i→, j
→)

Suppose you sketch the system of axes  using the right-hand,
respectively the left-hand, drawing convention. Once the coordinate system
is fixed, then you use (G3-RHR), respectively (G3-LHR), to determine the
direction of the cross product of any two vectors. So, in particular, for  and

 you will get the expected and desired result

{i
→
, j

→
, k

→}

i
→

j
→
,

n
→ (i→, j

→) = k
→

= i
→

× j
→
.
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On the other hand, suppose you sketch the system of axes  using the
right-hand, respectively the left-hand, drawing convention. Once the
coordinate system is fixed, then you use (G3-LHR), respectively (G3-RHR),
to determine the direction of the cross product of any two vectors. So, in
particular, for  and  you will get the undesired result

{i
→
, j

→
, k

→}

i
→

j
→

n
→ (i→, j

→) = −k
→

= − (i→ × j
→) .

These observations mean that for the geometric method, to determine the
direction of the cross product for any pair of vectors use the hand you used
to fix the axes.

4.  Orientation of the cross product
We will say that the right-hand rule, or the left-hand rule, holds if from

both the algebraic and the geometric definitions we get the same vector

u
→

× v
→

= w
→

= A (u→, v
→)  n

→ (u→, v
→) .

Since  already verifies (G1) and (G2), it remains to consider the
direction.

u
→

× v
→

The next result, which is similar to Lemma 1, will allow us to say that
the rotation of the geometric direction of two vectors is the geometric
direction of the two rotated vectors.

Lemma 2: For any rotation  we haveR d⎯,ω

R d⎯,ωn
→ (u→, v

→) = n
→ (R d⎯,ωu

→
, R d⎯,ωv

→) .

Proof: Since a rotation does not change the length of a vector, nor the angle
between two vectors, following [4], and also [6], we can say that, when we
apply the rotation simultaneously to the vectors and to the right or left hand,
the vectors and the right or left hand continuously still fit. So we get the result.

Now we have the following result concerning the correspondence of the
algebraic and the geometric definitions of the cross product.

Theorem 3: The right-hand rule, or the left-hand rule, holds for , , which
means that , if, and only if, it holds for ,
and , which means that .

u
→

v
→

u
→

× v
→

= w
→

= A (u→, v
→)  n

→ (u→, v
→) i

→
j
→

k
→

i
→

× j
→

= k
→

= n
→ (i→, j

→)
Proof: From (1),  and  both point in the same direction.
Moreover, if you curl your fingers from  to  or from  to , in both cases
your thumb points in the same direction, so . Then, from
(1) and (G3), we have

u
→

× v
→

i
→
0 × j

→
0

u
→

v
→

i
→
0 j

→
0

n
→ (u→, v

→) = n
→ (i→0, j

→
0)

⎧

⎩
⎨
⎪
⎪

u
→

× v
→

= A (u→, v
→) i

→
0 × j

→
0,

w
→

= A (u→, v
→) n

→ (i→0, j
→
0) .
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Moreover since  and  are both unit vectors perpendicular to  and
, there exists a constant  such that  is equal to +1 or , and

i
→
0 × j

→
0 n

→ (i→0, j
→
0) i

→
0

j
→
0 λ (i→0, j

→
0) λ (i→0, j

→
0) −1

i
→
0 × j

→

0 = λ (i→0, j
→

0) n
→ (i→0, j

→

0) .

We will get the result if, and only if,  or if, and only if,
.

n
→ (i→0, j

→
0) = i

→
0 × j

→
0

λ (i→0, j
→
0) = 1

Going back to the rotations used in the algebraic context, we apply
successively each rotation, simultaneously, on the vectors and on the right-
hand, or on the left-hand. From Lemma 2, we have

⎧

⎩

⎨
⎪

⎪

⎪

⎪

R i
→
,αn

→ (i→0, j
→
0) = n

→ (R i
→
,αi

→
0, R i

→
,αj

→
0) = n

→ (i→1, j
→
1)

R k
→
,βn

→ (i→1, j
→
1) = n

→ (R k
→
,βi

→
1, R k

→
,βj

→
1) = n

→ (i→2, j
→
2)

R i
→
,γn

→ (i→2, j
→
2) = n

→ (R i
→
,γi

→
2, R i

→
,γj

→
2) = n

→ (i→3, j
→
3)

and . So .n
→ (i→3, j

→
3) = n

→ (i→, j
→) Rn

→ (i→0, j
→
0) = n

→ (Ri
→
0, Rj

→
0) = n

→ (i→, j
→)

Now using Lemma 1 and Lemma 2, we have successively

(algebraic context) (geometric context)
i
→
0 × j

→
0 = λ (i→0, j

→
0) n

→ (i→0, j
→
0)

R (i→0 × j
→
0) = λ (i→0, j

→
0) Rn

→ (i→0, j
→
0)

Ri
→
0 × Rj

→
0 = λ (i→0, j

→
0) n

→ (Ri
→
0, Rj

→
0)

i
→→

× j
→→

= λ (i→0, j
→
0) n

→ (i→, j
→)

k
→

= ,λ (i→0, j
→
0) n

→ (i→, j
→)

so,  if, and only if, .λ (i→0, j
→
0) = 1 = k

→
= i

→
× j

→
n
→ (i→, j

→)

5.  Conclusion
We have explained the link between the algebraic and the geometric

definitions of the cross product. The conditions under which the right-hand
rule and the left-hand rule hold are clearly presented.
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The answers to the Nemo page from July 2024 on curves were:
1. Thomas Hardy The Woodlanders Chapter 1
2. Marianne Moore Marriage
3. Laurence Sterne Tristram Shandy Book 3 Chapter 25
4. PG Wodehouse Piccadilly Jim Chapter 23
5. TE Lawrence Seven Pillars of Wisdom Chapter 3
6. James Joyce Ulysses Circe

Congratulations to Martin Lukarevski on tracking all of these down. It is
time to revisit equations, and quadratics in particular. Quotations are to be
identified by reference to author and work. Solutions are invited to the
Editor by 23rd January 2025.

1. For everything else is on the square
If done by the best quadratics;
And nothing is low in High Finance
Or the Higher Mathematics.

2. He tried it by practice and the unitary method, by multiplication, and by
rule-of-three-and-three-quarters. He tried it by decimals and by
compound interest. He tried it by square root and by cube root. He tried
it by addition, simple and otherwise, and he tried it by mixed examples
in vulgar fractions. But it was all of no use. Then he tried to do the sum
by algebra, by simple and by quadratic equations, by trigonometry, by
logarithms, and by conic sections. 

Continued on page 483
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