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Abstract

Step changes in current through either grounded or ungrounded wires lying on the surface
of a uniformly conducting half-space produce image current sources within the surface of
the conductor. This image current is effectively the only source term for initial changes in
3,B:, Ex and Ey. The general steady state electric and magnetic field components resulting
from steady currents flowing through either grounded or ungrounded wires of finite length
lying on the surface of a uniform half- space are derived. Then the operators mapping these
steady fields into the early values of 3, Bz, Ex and Ey on or above the conducting half-plane
resulting from instantaneously stopping the current flow through the wires are derived.

1. Introduction

Geophysical prospecting is used widely in the exploration of mineral and geother-
mal resources. Electrical currents are forced to flow through the earth, generating
measurable electric fields at the surface. Mineral resources and hot saline water
from geothermal fields produce anomalous regions of conductivity within the earth,
and so can be detected from anomalies in the corresponding surface values of the
electromagnetic field.

Perhaps the most widely used method in geophysical prospecting utilises the Wen-
ner array. Steady currents flow through different lengths of wire, thus probing the
earth to different depths. The resulting steady electrical potentials are measured by
grounded wires approximately parallel to the current-carrying wires.

Another widely used method employs a current-loop. Transient vertical magnetic
fields can be measured by such loops, either by altering the current source in the loop,
and observing the resulted induced fields in the same loop, or in a nearby loop. From
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the methods of measurement widely used today, the three most important observables
are d,Bz (horizontal ungrounded loops), Ex and Ey (horizontal grounded wires). Here
3, is the partial derivative with respect to time t; x and y are horizontal Cartesian
coordinates; z is a vertically upward coordinate; Bz is the vertical component of the
magnetic field; and Ex, Ey are the horizontal components of the electric field. Recent
instrumentation will allow other components to also be measured. This paper will pay
special attention to the observables d,Bz, Ex and Ey.

Measuring systems often record data which is not analysed. For example, the
transient fields generated by establishing or removing the steady fields used in the
Wenner array are not used (usually) in analyses. Significant advances in instrumen-
tation [5] have provided more detail on the behaviour of these transient fields. The
main aim of this paper is to provide an analysis of the fields which are generated
soon after changes in current flow through either grounded or ungrounded insulated
wires. In principle, this will provide complementary, but independent, parameters on
the conducting properties of the earth, from those which are available using standard
methods of analysis.

This paper considers initially steady current flows, and corresponding steady initial
electromagnetic fields. At time t = 0, these current flows are suddenly stopped, and
eventually the associated electromagnetic fields decay to zero. Three phases [15] in
this decay are recognised.

Firstly, no changes occur at any point on or above the surface until the speed of light
travel time ^/JUr has elapsed, where r is a typical distance between the current source
and observer. With the arrival of the speed of light signals, new fields are established
on and above the surface within several e/a time units. The third phase is associated
with the decay of the fields, as currents within the lower conducting half-plane diffuse
away, with a time constant of /xar2. Within the conductor, displacement currents
associated with the speed of light terms strongly damp changes, so that in practice
only the third phase occurs within the conductor. Here induced polarisation effects
are ignored; fx is the permeability of vacuum; e permittivity of vacuum; and a the
conductivity (for z < 0).

For example, choosing the distance between the source and receiver r as 10 kilo-
metres and a~x as 100 ohm-metres, gives the three time scales ^/JZer, e/a and [iar2

as 10~4, 10~9 and 1 seconds, respectively. Most analyses are applied after the "one
second" lapse, or within the third phase associated with diffusion of fields within
the conductor. This paper aims to analyse the fields established after "10~4 + 10~9"
seconds, but before " 1 " second; that is, after the second phase, but before the third
phase.

The analyses in this paper are a specialisation of general results [7] on elec-
tromagnetic propagation about conducting surfaces [2]. Sommerfeld used a Hertz
vector formulation and obtained the general solution to a constant frequency dipole
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source about the surface. He showed that in addition to the source dipole, an image
dipole about the surface and a continuous distribution of images are needed to satisfy
Maxwell's equations. The corresponding solutions in the time domain [4] (rather than
the frequency domain) were obtained by Wait [10, 11], who pointed out that the solu-
tions for impulsive (/(f) = I8(t)) current sources follow directly from Sommerfeld's
results. However, it was not possible in general to obtain through mathematical anal-
ysis the fields established by step changes in current. In general, numerical methods
are needed to perform the convolutions connecting the solutions for step changes in
current to the solutions from impulsive current sources. However, the corresponding
solutions in a wholespace have been found [14].

This paper derives the general solutions on and above the conducting surface
for d,Bz, Ex and Ey resulting from step changes in current, for the time period
after the arrival of the speed of light terms, but before the diffusive decay terms
become important. In other words, new results are obtained, extending the work of
Sommerfeld, but through the compromise of restricting the time period for which they
are valid.

This paper divides naturally into two parts. The first part derives the steady state
electric and magnetic fields resulting from wires of finite length, either grounded or
ungrounded, on the surface of a uniform half-space. The second part of the paper
derives the early quasi-steady state d,Bz, Ex and Ey components, which are related to
the initial steady field values, and so from the steady state results in the first part of
the paper, the required general solution is obtained for the quasi-steady d,Bz, Ex and
Ey components.

2. Steady state fields

This section considers the steady state electric and magnetic fields generated by
steady currents flowing through a system of grounded and ungrounded wires of finite
length lying on the surface of a uniform half-space. Points where a wire is grounded are
called electrodes, which are assumed to have zero spatial extent. Wires may overlay
one another, or branch, or have common electrodes. The linearity of Maxwell's
equations [8] suggests that wires, electrodes and currents can be superimposed, but
Figure 1 shows that some constraint on such superpositions will be needed in general.

Cases A, B, C and D in Figure 1 represent the four possible permutations of currents
of 1 and 2 amps entering a junction or node, and 3 amps leaving the node. Case A
has the three wires joined, and ungrounded. Case B has the three wires grounded, and
joined to a common electrode. Case C has one wire (carrying 1 amp) grounded to an
electrode, and one wire with a discontinuous change in current. Case D is analogous
to Case C.
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FIGURE 1. Example illustrating the need for constraints on the superposition of wires. Cases A (no
electrodes) and B (three coincident electrodes) are equivalent, but Cases C and D (one electrode) produce
different fields from either A or B.

Later in this section the steady electric and magnetic fields resulting from current
flow in sections of wire, and due to the presence of electrodes, are derived. These
solutions show that Cases A and B are equivalent, but are not equivalent to either
Cases C or D, because the latter have net current flows into the earth of 1 and 2 amps
respectively.

Consequently, Kirchhoff's Law of current conservation must be assumed for the
surface wires, which implies that the net current to the earth from a system of wires is
zero.

Consider one electrode connected to a semi-infinite vertical wire carrying current /
into the earth. From symmetry, the steady magnetic field associated with this current
system [12] is axial,

2jzrsin6
ixl cot(6>/2)

2n~r

z > 0 (0 < 9 < n/2),
(2.1)

where (r, 6, </>) are spherical polar coordinates, centred on the electrode. This magnetic
field satisfies

(0,0, 0)

\2jr/-2' '

z>0,

z<0
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which is consistent with a steady current / flowing into an electrode, since V x B =
, and

Since tangential components of E are continuous across the surface z = 0, (2.2) is
also the required solution for the electric field above the surface.

From the Biot-Savart Law [3], the semi-infinite wire contributes an axial magnetic
field

b* = 4nR2

and subtracting (2.3) from (2.1) gives the effective axial magnetic field from an isolated
electrode as

-fxl(r-\z\)
Be* ~ AnrR ' (2"4)

where R2 = x2 + y2.
The contribution to the magnetic field from the wires is

R - V x 4°
Dw — V X /iw,

f^ (25)
where r is the distance between the wire and the observer, d\w is a vectorial integration
along a wire in the direction of current flow, and the summation is over all wire
segments, w. There is no electric field generated from the vector potential A° in (2.5).

The general solution of the steady state electric field is therefore obtained by
summing fields of the form (2.2) over each electrode position, and recalling that (2.2)
is a radial field centred on an electrode position. Similarly, the general steady state
magnetic field is obtained by summing the contributions in (2.4) from each electrode
position, recalling that (2.4) describes an axial field centred on each electrode, and
then adding the contributions from (2.5) for current flow through the wires.

In later sections it will be of critical importance to observe that the vector potential
A° in (2.5) has only horizontal components, and so the only contribution to the
steady state vertical magnetic field results from current flow through the wires, since
the contribution from (2.4) has no vertical component. Additionally, the vertical
component of the steady magnetic field depends on the particular positioning of the
wires, and not on the positions of the electrodes alone.
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To emphasise that the vector potential in (2.5) is dependent on wire positions,
consider an infinitesimal small loop of wire of radius Ro, carrying current / in an anti-
clockwise direction, with the centre at the origin of a Cartesian coordinate system.
Then the vector potential, generated from (2.5), is a non-zero axial field at (x, y, z),

y+yy*

which would have to be zero, if (2.5) produced results independent of the positioning
of the wires.

3. Transient vertical magnetic field

The aim of this section is to derive the early behaviour of the vertical component
of the magnetic field which results from instantaneously stopping the current flows in
the surface wires considered in the last section. The differential equation for Bz is

V2Bz = (xodtBz + fX€dJBz, (3.1)

where V2 is the Laplacian, and 3, differentiation with respect to time, and a, e are
assumed constant with respect to frequency.

The "natural" non-dimensionalisation of (3.1) is obtained by scaling distance and
time by respectively r0 and t0, where

/7JJl , (3.2)

which places the three terms in (3.1) on an equal footing. Choosing a~l = 100 ohm-
metres fixes r0 ~ 0.3 metres and t0 ~ 10~9 seconds, both of which are too small to
be of physical importance in geophysical prospecting. Consequently, the time scale
needed is not to, but tof, where T is some large number. This is equivalent to setting
e to zero in (3.1), and requires the new time scale tor to be fxaL2, where L is some
typical length scale.

Later in this paper some of the mathematical expressions will be simplified by
setting e to zero, which is called the "quasi-steady" approximation. Although this
approximation is justified through dimensional analysis, dimensional parameters will
be retained throughout this paper, primarily because the general nature of the problem
formulated here does not produce a natural length scale (other than r0).

To proceed, double horizontal Fourier transforms of (3.1) are taken, yielding

(3.3)
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where

\ + k)

I
k2 = k\ + k) and (3.4)

= ^ - [ dx I dyei{k'x+k>y)Bz.2n J_oo J_oo
(3.5)

Consequently, the Fourier transform of any steady state field component (satisfying
Laplace's equation) has the form

=B°ze-kM, (3.6)

where B° is independent of spatial position.
Taking the Laplace transform of (3.1),

-f
Jo

~5'Bzdt (3.7)
Jo

and the double horizontal Fourier transform, and using (3.3) yields

z (3.8)

k2 = k2 + nas + nes2, (3.9)

where B° is the initial value of Bz, and so

B°
&LBZ = B±e~XM + - s - e~kM, (3.10)

s

where B* denote the two spatially independent coefficients above and below the
conducting surface. Similarly, from (3.9), above and below the surface z = 0, X has
different values which are denoted by X+, X~ respectively.

The coefficients B± are obtained from application of the boundary conditions on
Bz; that is, that Bz and dzBz are continuous at z = 0, and so from (3.10)

9 50/, 50
£ ^ ^ M\ ^ t|zl_ ( 3 A !)

e + g _
s(X+ + k~) s

Equation (3.11) shows that the transient behaviour of Bz results from an induced field
and the original steady state field. For large time, k+ ~ k~ ~ k, and so the field
in (3.11) decays to zero, as required.

From the comments in the Introduction, there is particular interest in the time
derivative of Bz, and from (3.11),

e X) ^
k+ + k~ /xas
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Equation (3.12) shows that d,Bz can be considered to result from two terms; that con-
taining k+, and that from — \~. The former term is associated with transmission above
the conductor, and the latter with transmission through the conductor. Consequently,
the latter term is expected to be insignificant for early time.

Setting e = 0, and taking the inverse Laplace transform [6] of (3.12) yields, for
z>0,

k erfc . / . / — e

(3.13)

where the last approximation is true for small time. In (3.13), erfc is the error
function [1]. However, for small values of time, the second term on the right hand
side of (3.13) is negligible, since

It

and so for early times, the exponential factor dominates. Consequently, for z > 0, and
for early times,

d,Bz ~ —dJB°z. (3.14)

4. The transient horizontal electric field

The horizontal electric field results from two contributions: the decay of the initial
field, and effects resulting from the image current source under the wires lying on
the surface. These two effects are essentially independent, since current flow through
the ground depends on the electrode positions, whereas the image current sources can
take any path between the electrodes. Also, the initial electric field is independent of
the position of the wires.

It is shown in the Appendix in (A.9) that the electric field above the conductor
associated with the electrode currents (that is, the scalar potential, * ) reduces to
zero in the quasi-steady approximation as soon as the current flowing through the
wires is stopped. Thus the only contribution to the electric field above the conductor
results from the vector potential, A. The aim in the remainder of this section is to
give a physically motivated argument to emphasise the role of the surface wires in
establishing the new horizontal electric fields on and above the conductor. A formal
derivation of the same results is contained in the Appendix.
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It remains to evaluate the contribution to the horizontal electric field from the
surface wires, for very small values of time, on and above the conducting surface.
This is done by considering the contribution from each infinitesimal section of surface
wire, and then summing all such terms.

Consider a right-handed Cartesian coordinate system, with unit normals (e/, en, ez),
where et is directed in the direction of the infinitesimal section of surface wire. The
unit vector ez is directed vertically upwards, and en = e, x ex. From the relevant
Maxwell equation,

d,En - dnE, + d,Bz = 0. (4.1)

But from (3.14) for early time, on and above the surface z = 0,

8nE, = —d2
z B°z (4.2)

since, from symmetry, En = 0. From V • B = 0,

d\B\ = -dzd,B? - dzdnB°n = -dndzB°n (4.3)

since, from the Biot-Savart Law (applicable to steady state fields), fi,0 = 0. From
(4.3) and (4.2),

E, = - — dzB°n, (4.4)

where the arbitrary function of integration has been set to zero, which is its value for
unbounded values of n.

Applying the Biot-Savart Law to the infinitesimal length of wire,

(dl x er) • (ez x ej) »I\dl\

where r is the distance between the wire segment and the observation point, and er is
a unit vector directed from the wire segment to the observation point.

From (4.5) and (4.4),

(4.6)

showing that the early-time contribution to the horizontal electric field results from
the initial steady state vector potential in (2.5). Consequently, from linearity, (2.5)
and (4.6), the early time horizontal electric field satisfies

2
Eh = KK (4.7)
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where A°h is the initial steady state vector potential from the surface wires (which are
considered horizontal). This condition has also been derived more formally in the
Appendix in (A. 10).

For example, on the conducting surface, the early horizontal electric field generated
by impulsively stopping the current in an infinitesimal vertical magnetic dipole is axial
((7) and (8) in [15]), and equals 3/Rl/(2aR4). This result follows from (2.6) and
(4.7). The corresponding surface electric field from impulsively stopping the current
in an infinitesimal horizontal electric dipole is Idl/(2noR3) ((7) and (13) in [13]),
which follows from (4.7) and (2.5).

Conclusion

The main analytical result in this paper has been the derivation of the early time
quasi-steady horizontal components of the electric field, on or above a uniformly
conducting half-space, resulting from instantaneously interrupting initially steady
electrical currents in surface wires. Equation (4.7) shows that this early time horizontal
electric field results wholly from image currents established in the earth.

A similar analytical result was established in (3.14) for the early time behaviour
of d,Bz on or above the conducting surface. However, the result in (3.14) follows
from (4.7), because of one of Maxwell's equations. Both (3.14) and (4.7) agree with
published results for the infinitesimal magnetic [9] and electric [13] dipole fields.

Perhaps the key result in this paper has been recognising that the conductivity value
appearing in both (3.14) and (4.7) arises from the image currents, and so provides
an indication of surface values of conductivity. In steady state methods, such as the
Wenner array, the horizontal electric fields at the earth's surface resulting from the
electrode currents are used. The horizontal electric field in (4.7) has zero contribution
from the electrode currents, and arises instead wholly from the image currents under
the wires. Consequently, different physical parameters are being sampled in steady
state methods, and those using (4.7) and (3.14).

The magnetic field from an electrode is axial for both a uniform, and a horizontally
layered, earth. Further, the inability of early field changes to significantly penetrate
into the earth is also true for uniform or horizontally layered half-spaces. This suggests
that (3.14) and (4.7) should remain valid for a horizontally layered earth, although this
has not been proved in this paper.

Nevertheless, there are some (unrealistic?) situations in which extremely high con-
ductivity lower layers may alter the apparent conductivity of surface layers. Consider
a layer of thickness z m, conductivity a, mho/m, overlying a thick layer of conduc-
tivity o2 mho/my. The time for fields to penetrate vertically through the upper layer
is t\ ~ fxctxz2, while the time for fields to penetrate horizontally through the lower
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layer is t2 ~ /j.o2r
2. For lower transmission to affect the surface layers for early time

requires^ < fi.orr < <Jo\J<*2Z- Since interest is in small values of z and large values
of r, this inequality will usually not be satisfied. Thus the early time quasi-steady
fields will typically sample surface values of conductivity.

A key assumption in this paper was the quasi-steady approximation that e = 0.
This allowed the coefficients in (A.8) to be determined. This may reflect some
indeterminacy in the mathematical system, since the same coefficients in (A.8) should
result if the currents in the wires are stopped either impulsively, or over a time scale
of the order of e/cr.

Several uses of (4.7) and (3.14) can be considered. For example, the majority of
life on the solid earth depends on water relationships within the top metre or so of
the earth. Electrical conductivity depends on water content. Consequently, (4.7) and
(3.14) may yield information on the average state of water relations within the surface
layers of the earth.

Appendix

Maxwell's equations can be written as

B = VxA, (A.I)

E = -d,A - V*, (A.2)

where A and *I> are the vector and scalar potentials, respectively. Freedom in the
choice of A allows A and * to be selected so that

V- A + IAOV +/j.€d,y = 0, (A.3)

which results in the wave equations

V2A = fiad,A + /ze92A, (A.4)

V2* = n<rd,V + ixedfV - p/e, (A.5)

where p is electrical charge density, assumed non-zero only on the surface of the
conductor.

The boundary conditions are that Ax, Ay and ^ are continuous at the boundary of
the conductor. Charge conservation requires

ed,E) = 0. (A.6)

The Fourier transform of the Laplace transform of components has the form

±-km + -e-'k\ (A.I)
s
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where C* are position-independent coefficients.
Application of the boundary conditions then fixes

k+C+ + k~C; = 2kA°/s,

ikx{C+ - CD - (X+ + k~)Cx = 2kA°Js,

iky(C+ - C p - (X+ + k-)Cy = 2kA°y/s.

These constraints are insufficient to fix the coefficients. The quasi-steady approxima-
tion is now made that € = 0, and from (A.6), E~ = 0 at the surface z = 0. This leads
to the quasi-steady conditions that

X+C; +X~C+ = -2kA°t/s

and so

+

' Z~ ^ ' (A.8)

* (Jfc A ) ' y

The solution for ^ follows from (A.3) and (A.8). Above the conductor, and for the
quasi-steady approximation,

0 (A.9)

since the initial vector potential, A(0), is divergence-less above the conductor. The
scalar potential therefore collapses to zero above the conductor in the quasi-steady
approximation.

From (A.2), (A.7), (A.9) and the derivation leading to (3.14) for early time,

2k2 ~n kl 2 ,
-A°e~ = d2&LAx(0). (A.10)

/xa z
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