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QUASI-FLOWS 1II
ADDITIVE FUNCTIONALS AND TQ-SYSTEMS

IZUMI KUBO

0. Introduction

We have given in [3] the definition of the quasi-flow and discussed the
representation and the time-change of the quasi-flow. Further we have
defined the 7Q-system and studied some properties of them using the time-
change and the representation of the quasi-flow. These properties are very
useful to study the ergodicity, the entropy and increasing partitions of the
automorphism. We are now going to extend the definition of the 7Q-system
and to study the similar problems as the above.

We shall begin with the extension of the additive functional and the
multiplicative functional of the quasi-flow. The additive functional of flow
has been introduced by G. Maruyama [5] in connection with the time-
change of the flow. In that case, it has been required that the additive
functional is continuous and increasing. But for the study of the (quasi-)
flow it is convenient that we give a weaker definition of the additive
functional. We call an ®,x8B-measurable function ¢(¢,w) an additive functional
of a quasi-flow {Z,} if it has the additivity

SD(t + s, (1)) = ¢(S, CD) + ¢(t’wa)-

We call an ®,x®B-measurable function ¢(¢,0) >0 a multiplicative functional if
log¢(t,») is an additive functional.

Suppose that we are given a quasi-flow {Z;,} and a flow {7,} and a
multiplicative functional A(s,w) of the flow {T3'}. If [{Z.}, (s,0); Ts]is a
TQ-system in the sense of [3] for each s, then we call the triple
[{Z:}, A(s,0), {Ts}] a TQ-system.D

Received June 30, 1969.
1) We have discussed in [3] a special class of the TQ-system such that (s, w) is

exp[S: (T -y w) du].
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The first purpose of this paper is to represent the additive functional of the
quasi-flow and to study its limit theorems. The second purpose is to give @
representation of the TQ-system. If these problems are solved, the similar results
as in [3] are easily derived for the TQ-system [{Z:}, i(s, ), {T:11.

In section 1 we shall show that an additive functional ¢(¢, (%, #)) of the
S-quasi-flow {Z.} built up by (X,¥, g, f(z), p(x,u),S) can be expressed in the
form

o(t, (x,u) = o(Z(x,u)) — o(%,u) + ¢,(x)

for f,(@)<u+t < fnu(z), where o(z, u) is a measurable function on
0 =1{xu); 0<u< f(z), X} and ¢, () is an additive functional of the
quasi-automorphism S of the basic space X. This expression is useful not
only to know the local structure of the additive functional but also to study
its asymptotic behaviors as t—>oco. In fact, the study of asymptotic be-
haviors of the additive functional can be reduced to that of ¢,, since any
quasi-flow is expressed as an S-quasi-flow (c.f. §3 in [3]).

In section 2 we shall investigate the asymptotic behaviors of increasing
additive functionals of the quasi-flow (see Theorem 2.1). In Theorem 2.2,
we shall show that for any quasi-integrable additive functional of the flow
{T,}, the following equalities hold for almost every o<,

Elp(t, )yl (@) = LE[e(1, *) vz, )(@)
= Elp(¢, +)lvr)(@)

= lim - o(mt, v)

m—o0

= m—slixg% o(st, ).

In section 3 we shall discuss several properties of the TQ-system
{Z:}, a(s,a@), {T:}1 corresponding to those of the TQ-system (the case of
automorphisms discussed in §5 and §6 in [3]) with the help of Theorem 2.2.

In section 4 we shall discuss the representation of the TQ-system which
is anologous to the representation of the quasi-flow, especially with multi-
dimensional parameter (see Theorem 4.1 and c.f. [4]). The representation
is very useful to observe the local structure of the given TQ-system, and
will be applied to the proof of the theorems in the last section. If the
representation of the 7Q-system [{Z.}, i(s,), {Ts}] exists, then {Z,} may be
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called a transversal quasi-flow of the flow {7,} following the terminology of
Ya. G. Sinai [7].

In section 5 the increasing partitions and the entropy of the flow will
be discussed in the connection with 7Q-systems.

The author wishes to express his hearty thanks to Professor H. Kunita
who gave him many suggestions and encouragement in preparing the
manuscript.

1. Additive functionals

We shall use the terminologies in [3]. Let (2,8,P) be a Lebesgue
space, P(2) =1. A non-singular bimeasurable point transformation S of @
is called a quasi-automorphism. A one parameter group of quasi-automorphisms
{Z.} is called a quasi-flow if the mapping (¢,0) = Z,0 is measurable. Let S
be a quasi-automorphism of a Lebesgue space (2, 8, P). A finite function
¢.(0) on NxQ is called an additive functional of S, if

(1.1) Ppim(@) = ¢u(0) + ¢n(S"w)
holds and ¢,(0) is measurable for each #?.

ProrosiTioN 1.1. Let ¢,(w) be an additive functional of a quasi-automorphism
S.  Then it holds that

n-—-1
PAAACK?) n=>1
k=0
(1.2) o) = 0 n=20
3 64(S™0) ne—1.
k=1

Conversely, for a measurable function ¢,(), the functional ¢,(w) defined by the right
terms in (1.2) is an additive functional of S.

Proof. Since ¢y(w) = ¢4(0) + ¢o(0) holds, it follows that ¢, ) =0. For
n=1, we have that

n—1

9a(@) = ¢noi(@) + ¢4(S770) = 2 04(S*0)

=0
by the additivity (1.2). Since 0 = gy0) = ¢,(0) + ¢-,(Sw) holds, it follows that

2) N= {0, £1, £2, +-}.
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£(0) = $2es(0) + §-1(S710) = Pris(o) = i(S"0) = — S p,(5 )

for n < —1. Thus we have the assertion. The converse is obvious.

Given a B-measurable function ¢,(»), the additive functional ¢,(w) of S
defined by (1,2) is said to be constructed from ¢,. A positive function ¢,(w) >0
on NxQ is called a multiplicative functional of S if log¢,(w) is an additive
functional of S. Any multiplicative functional ¢,(e) is represented in the

form
"I ¢(S*) n=>1
k=0
(11 ¢,(Sa)) ne—1.
k=1

Now, we extend the definition of the additive functional of the quasi-
flow as the following manner.

DeriniTION 1.1, Let {Z;} be a quasi-flow. An ®R,xB-measurable func-
tion ¢(t,w) is called an additive functional of {Z,} if for each weQ,

(1.4) ot + s, 0) = ¢(s,0) + ¢(t, Zw)

holds for every ¢ and s€R® A positive function ¢(¢,w) >0 is called a
multiplicative functional of {Z,}, if log¢(¢, ) is an additive functional of {Z,}.

DerFiNITION 1.2, An R x®B-measurable function ¢(¢,) is called an almost
additive functional of {Z,}, if for each pair of ¢ and s, (1.4) holds for almost
every o€ (P). A positive function ¢(¢, ®) > 0 is an almost multiplicative functional
of {Z,}, if log¢(t, ) is an almost additive functional of {Z,}.

We now discuss the representation of the additive functional of the
quasi-flow. We have shown in [3] that any quasi-flow {Z,} without fixed
points is isomorphic to an S-quasi-flow. Here the S-quasi-flow built up by
X, ¥, g, f(x), p(x,u),S) is defined as the following way. Let (X, %, ) be a
Lebesgue space, which is called a basic space. Let f(x) be an -measur-
able function on X, which is called a ceiling function and let S be a quasi-
automorphism of X such that kg_(,‘) f(S*x) =k§ f(S*x) =0 for x € X. Set

3) We denote by R, the topological Borel field of R=(—c0, o). R=%, is the completion
of ERQ.
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3 ={(x,u); 0<u< f(x), x€X}. Let § be the restriction of AxRK to 2.
Let p(x,u) be a @B-measurable function such that p(z,u)>0 and
SS& p(x,u) du dp(x) =1. Define a measure P by dP(v,u) = p(x,un) du-dp(x).
Let f.(z) be the additive functional of S constructed from f,(z)= f(z) by
(1.2). Then we can define a quasi-flow {Z,} on the Lebesgue space (2, %, P)

by
(1.5) Zx,u) = (S*x, u + t — fo(a) for fo@)=<u+t< fon(2).

The quasi-flow defined by (1.5) is called the S-quasi-flow built up by
X, A, g, f(x), p(x,u),S).

Suppose that a quasi-flow {Z.} on (2,8, P) is isomorphic to an S-quasi-
flow on @ with an isomorphism H of @ onto 2, that is, Z, = HZ,H"* holds
for teR. For an additive functional ¢(f,w) of {Z,}, if we put

(1.6) p(t,(x,u)) = o(t, H(x,u)),

then @(¢,(x,u)) is an additive functional of {Z,}, obviously. Hence we
discuss the additive functional of the S-quasi-flow.

TraEOREM 1.1. Let ¢(t,(x,u)) be an additive functional of the S-quasi-flow
{Z,} built up by (X, 9, p, f(z), p(z,u), S). Then there exist a B-measurable
Junction ¢(x,u) and an N-measurable function ¢,(x) such that

(1.7) o(t, (z,u)) = p(Z(x,u)) — p(x,u) + ¢, ()
Jor fo@)<u + t < fnei(x), where ¢,(x) is the additive functional of S constructed
Srom o, (x).
Proof. From (1.5) and the additivity of o(t,(x,u)), it follows that
(1.8) ot + s,(x,u) = o(s,(x,u) + ¢(t,(x,u +5)) for 0=u+s< f(a)

Therefore we have

1.9) o(t,(%,5) = o(t + s,(2,0) — o(s,(x,0)) for 0="s< f(x).
If flx)<u+ s< f(x) + f(Sx), it follows that
(1.10) o(t + s,(x,u)) = @(s,(x,u)) + ¢(f,(Sz,u + s — f(x)).

In particular, we have

(1.11) o(t + f(), (2,0)) = o(f(2), (x,0)) + ¢(¢,(S,0))
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by the setting # =0 and s = f(z) in (1.10).

For (z,u)e2, we define o(x,u) by ¢(«,(x,0)) and ¢,(z) by o(f(®), (x,0)).
Then ¢(x,u) is B-measurable and ¢,(x) is A-measurable. By (1.9) and (1.11),
we have that

o(t, (z,u)) = o(t + u, (2,0)) — ¢(u, (%,0)
= ¢(fa(®), (®,0)) + ¢(u + t — fo(®), Z;,(2)(x,0)) — ¢(u, («,0))
= ¢(fn-1(2), (2,0)) + @(f(S™x), (S*"'x,0))
+ o+ t — fa(x), (S*%,0)) — ¢(x, u)
= ¢,(®) + 0(Z,(2, ) — ¢(x, )
for f.(x)<u+ t< foi(2). Thus we have obtained (1.7).
We discuss the problem whether some version of the almost additive
functional is an additive functional. Here we say that an additive functional

©'(¢, ») is a version of the almost additive functional ¢(t,w) if P(¢'(f, 0)7=9¢(t, »))=0
for each t=R.

ProrosiTioN 1.2,  Let {Z,} be an S-quasi-flow with the ceiling function
f(x) >0 for some 0 >0, and let ¢(¢,(%,u)) be an almost additive functional of
{Z.}. Then there exists a version ¢'(¢,(x,u)) of o(t,(x,u)) whick is an additive
Sunctional of {Z,}.

Proof. Since o(t,(z,u)) is ® x B-measurable, there exists an %, x B'-
measurable function ¢’/(¢,(x,#)) such that

(1.12) o(t,(x,u) = ¢"(t,(x,u))  a.e. (dt dP),

where we denote by #¢ the restriction of the o-field R,x%A to 2. From
(1.10) and the almost additivity of ¢(¢, (z,u)) it follows that

(1.13) o"(t + s, (x,0) = ¢"(s, (,u)) + ¢"(2,(S"2, u + s — fn(x))

holds for f,(x)<u + s< f,..(2) a.e. (dt ds dP). Hence there exists u,=(0,6)
such that (1.13) holds almost every (¢,s,z) (dt ds dp) for u = u, Setting
n=0, u=u, and s = v — u, it follows that

(1.14) " (t, (2,0) = @" (8 + v — wy, (@, 8,) — "'V — 0y, (x,u,))

holds for almost every (¢,(x,v))€RxZ. By the same reasoning, there exists
v,€(0,%,) such that
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(1.15) O+ o — uy, (T,u) ="t +u— uy— () + v, (S"%, 05— vp))
+ go”(fn(x) — Vg, (xa uo))

holds for almost every (¢, (x,u))€Rx 2 and that
(1.16) ¢ — 1o, (@, 100) = ¢ (U — ug + Vo, (2,20 — ) + 9" (v, (%, g — vg))
holds for almost (z,#)e@. Define a $-measurable function ¢’'(x,%) and
A-measurable functions ¢4(x), =0, +1,+2,---, by

9" (@, u) = ¢"(u — uo + v, (%, 40— 1)),

oa(®) = " (fo(@) — voy (%, 20)) + ¢""(vey (%, 20 — Vo).

Then by (1,14), (1.15) and (1.16), we have
(1.17) o(t, (v, u) = " (Zy(x, u) — ¢ (v, u) + ¢7(x)

for fo(@)<t+ u< fou(z) a.e. (dt dP). Now we easily see that ¢7(x) is an
almost additive functional of S. Hence

(1.18) on(x) = en(x)  a.e. (dp)

holds, where ¢/(x) is the additive functional of S constructed from
@i(x) = ¢¥(x). Define an R,x B'-measurable function ¢'(¢,(x,u)) by

(1.19) o'(¢, (x,w) = ¢"(Zy(w,u)) — ¢"' (2, u) + ¢1()

for f,(2)<u -+ t< fou:(x). Then ¢'(¢,(x,n))is an additive functional of {Z,}.
Further, from (1.17), (1.18) and (1.19), it follows that

(1.20) Bo(t, (x,u) # o' (¢, (x,u))) =0 for a.e. t<=R.

Set O(t, (w,u)) = o(t, (%, u)) — ¢"(¢, (x,u). Set @, = {(x,un); O(t,(®,u)) =0} and
set 2,,={(w,u); O +s, (x,u) = O, (x,un) + 0, Z,x,u)}. Then P@,) =1
for almost every t€R and P(@2,, =1 for any pair of ¢ and s. For any
reR, there exist { and s, ¢t +s=# such that P(@,)=P(@,) =1 For
(w,u)e@, N2,NZ_2, O (x,u) =0, (x,u)+ Ot Z, (v,u)) =0. Hence we
have P(o(r,(x,u) = ¢’ (r, (x,u))) =0 for any reR, that is, ¢'(¢,(z,u) is a
version of ¢(t,(x,u)). Thus we have the assertion.

By this proposition and the representation theorem of quasi-flows (c.f.
Theorem 3.1 and Remark 3.1 in [3]), we have the following theorem.

THEOREM 1.2. Let ¢(t,0) be an almost additive functional of a quasi-flow
{Z.,}. Then ¢(t,w) has a version which is an additive functional of {Z,}.
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2. Limit theorems related to additive functionals

Let {Z,} be a quasi-flow and ¢(f,0) be an additive functional of {Z,}.
It follows from the additivity of ¢(t,0) that ¢(f,e) is non-decreasing (resp.
strictly increasing) in ¢ for each o=@ if and only if

o(t,)=0 for every ¢ >0, vEQ
(resp. ¢(t,w) >0 for every ¢>0, 0EQ),

We shall discuss a limit theorem for such additive functionals. First we
notice a lemma concerning the conservativity of a quasi-flow. We say that
a quasi-flow {{Z,} is conservative if

{2.1) S: 9(Z,0)du = o a.e. (P),

2.2) S:g(Z_uco)du = oo a.e. (P)
hold for any measurable function g¢(w) > 0.

Lemma 2.1, Let {Z,} be a quasi-flow. Then the following conditions are
equivalent :
(i)  {Z.} is conservative;
(i1)  for any measurable function g(w) >0, (2.1) holds;
(iii) for any measurable function g(w) >0, (2.2) holds;
(iv) if Z,BCB for any s >0, then P(B— Z,B) =0 for any s>0;
(v) if Z,BDB for any s>0, then P(Z,B— B) =0 for any s >0.
Proof. (i) = (iv). We suppose that there exists a measurable set B

such that Z,BcB for any s >0. Set By=B—Z,B and B,= ZB, Then
B«NB, = ¢ and ECJB" = UZ,B— NZB. Define a measurable function g(w) by

1

() = FF1 ©< B
l (qu L]gBk.
Then we can see that
oo _ oo 1 oo . _ o0 1 ‘
S_ug(Zua)) du= 3 i L/cg‘(zum) du= 3 to<o
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for w€UB,. Hence if (ii) holds, P(kUBk) =0, that is, P(B—ZB) <
P(UZB—nZB) =0.

(iv) = (v). Since Z,BcB holds if and only if Z,B°>B° and since
P(ZBO B) = P(B°® Z,B°), the assertion is obvious.

(v) = (iii). Set B= [a); S:g(Z_um) du < OO} and B, = {a); S:g(Z_um)dn < a].
Then Z,B, = {a); S:g(Z_um) du — S:g(Z_uco) du < a]:)B,, for s >0, because

2.3) S:g(Z_u_sa)) du = S:g(Z_um) du — SZg(Z-uco) du.

Hence if (iv) holds, P(Z,B, — B,) =0 for s >0. On the other hand, from
(2.3), it follows that limrg(Z_u_sm) du =0 for w€B. Hence we have that

S—o0d 0
limP(B— Z,B,) =0. So we have P(B— B,)=0. Since lim P(B,) =0, we
S0 a—0
have that P(B) = 0.
The proof of (iil) => (v) = (iv) = (ii) is similar. From the equiva-

lence of (ii) and (iii), it follows that (i) is equivalent to the others.

TueoreMm 2.1. Let {Z,} be a conservative quasi-flow and ¢(t, ) be an additive
Sunctional of {Z,}. Then, if ¢(t,0) is non-decreasing in t for any fixed o, the
Sollowing conditions are equivalent,

(i) }1& o(t,0) >0 a.e. (P);
1)’ }irr_xwgo(t,w) <0 a.e. (P);
(1) lim ¢(f,0) = o a.e. (P);
(i)’ lim ¢(f,0) = — o a.e. (P);

(1) {o; @(t,0) =0} has no {Z,}-invariant subset with positive measure for some
t=+0 (or any t +0);

(i)  Ele(t, *)lvizy] (@) >0 a.e. (P) for some t >0 (or any t >0);

(iv)" {o; ¢(t,w) =0} has no Z,-invariant subset with positive measure for some
t#0 (or any t +0);

(iv)"  Ele(t, -)|vz] (@) >0 a.e. (P) for some t >0 (or any t>0).

Proof. (i) = (iv). If there exists a measurable subset B of {w; ¢(t,»)=0}
with positive measure such that Z,B = B for some ¢ +0, then Z,B = B for
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any k€N and hence ¢(t,Z,,0) =0 for any k and weB. It is easily seen
that ¢(nt,w) is an additive functional of a quasi-automorphism Z, for fixed
t. Hence by the formula (1.2), we have ¢(nt,0) =0 for wB. Since ¢(t, )

is non-decreasing in ¢, ¢(s,0) =0 for any s€R, w=B.
(iv) => (iii) is obvious.
(iii) = (ii). Set k(w) =tlim ¢(t,w) and set B = {w; h(ow) <}, Then

(2.4) h(Zw) = }irg ?(ts Zs0) =}B’g ot + s, ) — ¢(s,0) = h(w) — o(s, w)

holds. Hence it holds that Z,B,c B, for any s >0, where B,={0; 0<h(o)<a}.
By the concervativity of {Z,}, we have P(Z,B,© B,) =0 for any s, Since
it follows from (2.4) that lim 2(Z,0) = 0 for we B, UZ B, = B holds. Hence
we have P(B) = P(UZ.B,) = P(B,) = P(NZ:B,). The set NZB, is a (Z.)-
invariant measurablse set which is contsained in B,. Sets By= N NZB,,
then B*c:agoB,, = {w; k(o) = 0} holds and B, is a {Z,}-invariant geoa;urable
set with P(B,) = P(QZ,B,L) = P(B). If we assume the condition (iii),

P(B) = P(B,) =0 holds. Thus we have the assertion.
(il) => (i) 1is obvious.

The equivalence of (iii) and (iii)’ (or (iv) and (iv)’) is easily seen. The
equivalence of (i) and (i)’ (or (ii) and (ii)’) is proved by virtue of (iii) and
the fact that ¢(— ¢,0) is an additive functional of the quasi-flow {Z_,} which
is conservative if {Z,} is so.

In the following, we shall discuss a limit theorem for the additive
functional of the flow {7,}. Let ¢(¢,0) be an additive functional of a flow
{T.}. Suppose that ¢(¢,e) is integrable for any teR. Set

2, = [co, there exists the limit of o(t,Tyw) du as K— 00] .

2 )

By Birkhoff’s ergodic theorem, the {T,}-invariant function

*(t ) km -ZFSK (t,Z«,,,Cl)) du wEQ,
¢, 0) = e

0 weER,

is a version of the conditional expectation E[¢(¢, «)|yryl(w) and 2, is a
{T.}-invariant set with P(®,) =1 for each t=R. Since
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K
(2.5) 5 |0t + s, Tuw) du = 05, 0) e | ot Turia) du

Vo

holds by (1.4), 2.4,CQ.nNT-,2, = 2,NQ2, and 2,C2,,,NQ, for any ¢ and seR.
Hence 2, is independent of ¢{=R, thatis, 2, =2, for any ¢t€R. From
(2.5), it follows that

(2.6) o*(t + s,0) = ¢*(t,w) + ¢*(s,w) for {,sER, 0=Q.
Since ¢*(t,w) is R,-measurable for each fixed w=Q, we have
2.7 0¥t w) = tp*(1,0) for teR and 0=sQ.

On the other hand, we have

(2.8) Elpls, )lsn] (@) = lim L 57005, Ta) ace. (P)

m—roc0 Mk

by Birkhoff’s ergodic theorem. In particular, we have that

(2.9) Elo(t, +)lvr] (@) = lim — Z o(t, Tro) = hm so(mt ) a.e. (P),

M0

by (1.2) and (1.4). From (1.4) and (2.8), it follows that

m-—1

(2. 10) Ele(t, )lvr] (Tho) = lim — 33 ¢(t, Thees0)

M—>00

= lim — 2 [‘P(t, Tyeo) + 08, Tiear0) — ¢(s, Tie0)]

mesco M K=0
= Elo(t, +)lvr] (@) a.e. (P)

for each ¢ and s€R. The last equality shows that E[¢(¢, -)|vr] (@) is {T:}-

invariant (mod 0). By the relation vy, =vs;, we have

(2.11) Ele(2, *)lvr] (o) = E[p(t, )|yl (@) ae. (P)

for each t=R.
We shall discuss the relations (2.7), (2.9) and (2.11) under weaker con-
ditions and prove the following theorem.

THuEOREM 2.2. Let {T,} be a flow and ¢(¢,0) be an additive functional of
{T.}. If o(t,w) ts quasi-integrable for each t= R, then the following equalities
hold®:

4) We say that a measurable function g(») is quasi-integrable, if either the positive or
the negative part of g(w) is integrable.
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(2.12) Elo(t, *)lviryl (@) =t Ele(, +)lvir,] (@)
= Elo(t, )|vr] (@)

= lim - o(mt, w)

m—00

= mlim -1 o(st,0) a.e. (P)®

S—00

Proof. First we shall prove the assertion in the following case: Let
{T.} be the S-flow built up by (X, %, g, f(z), 1, S) with an automorphism
S, and suppose that there exists a constant ¢ >0, such that f(x) > ¢ for any
zeX. Let o(t,(x,u)) be an additive functional of {7,} which is quasi-
integrable for each teR. Now, let ¢(x,u) and ¢,(2) be the functions defined
in Theorem 1.2, Then ¢(T.(x,%))/t and ¢(x,u)/t converge to 0 in measure
as t >oo, Further f,(z)/n converges to E[f(+)lvs](x) as n— o for almost
every z€X (dp)®. Therefore by (1.7) and (2.9), there exists ¢¥(2)=m-lime,(z)/n
admitting infinite values and we have

(2.13) ¢t(x) = melim L8 [ir-lim PO 02 1) iy # el ) (10 ]

n—-00 m—oo m—o0 mt

= %Eﬂ[ﬂ-msl (@) ELp(t, *)lvr) (2,u) a.e. (P).

for 0<t<@. Observing (1.7) again, we have the equality (2.13) for any
t +=0. The expression shows in particular that E[e(¢, - )[vr] = ¢ E[¢(1, +)|vr,].

Now since the Y-measurable function ¢%(z) is S-invariant, —%E[Mt, Ny
(%, u) = @¥(®)/ELS(+)|vs](x) is {T,}-invariant. The relation vy =y, implies
that

(2.14) Elo(t, v,y = Ele(t, <)lvr]l =t E[pQ, +)|vr] a.e. (P).

From (1.7) and (2.12), it follows that

5) The terminology m-lim g,(w)=g(w) means that ¢;(w) converges to g{w) in measure as
S—00

s> o, that is, gn [P(Igs—gl>s, lgl<oc) +Plg, >;—, g=oc) + Pg,< =1

g= —oo)]:O
for any €>0.
6 We denote the conditional expectation of g(x) with respect to a measurable partition

¢ by E[Jg(-)[8] ().
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o L _ 1 _L _ =13 ¢n(x) 3
melim—- o(t, (@, 1)) = mrlim - [p(Ty(w, u)) — o(@, )] + melim L2 S lim s

¢T(x)
EJ7(+)lvs] (@)

= Ele(, *)|vp ) (x,u) a.e. (P).

Hence we have the assertion in our case. Generally, if o is a fixed poit of
{T.}, then o(t + s,0) = ¢(s,0) + ¢(t, T.w) = ¢(s,0) + ¢({,0) hold for t,s€R.
Since ¢(¢,0) is R,measurable for fixed w,¢(f,0) = te(l,0). Hence by ‘the
same reasoning of the proof of Theorem 1.2, we have the assertion.

Keeping Theorem 2.1 and 2.2 in mind, we shall give the following
definitions.

DeriniTiON 2.1.  Let ¢(¢,0) be an additive functional of a quasi-flow
{Z,}. We say that ¢(t,w) belongs to Class (I), if ¢(t,0)=0 for >0 and
Ele(, *)|vizy] >0 a.e. (P) hold. We say that ¢(t,0) belongs to Class (D) if
— ¢(t,») belongs to Class (I).

DeriniTiON 2.2, An additive functional ¢(¢,0) of a flow {T,} belongs to
Class (A) (resp. Class (AI) or Class (AD)) if El¢(l, )lvir,1# 0 a.e. (P) (resp.
Ele(1, «)|yir,;1>0 a.e. or <0 a.e.) holds.

Now we show two remarks,

Remark 2.1. By Theorem 2.1, an additive functional ¢(¢, w) of a
conservative quasi-flow {Z,} belongs to Class (I) if and only if ¢(¢,e) is
non-decreasing in ¢ and

(2.15) lim ¢(¢, ) = —lim ¢(t,0) = o

t—oo _t——)—oo
hold for almost every osQ (P).

REMARK 2.2. By the above remark, (2.15) holds for almost every
regular point (in the sense of Totoki [8]) if {Z,} is conservative, especially
if {Z,} is a flow. This fact means that we may omit the condition (2.15)
in the definition of additive functionals in [8], if we discuss only the pro-
perties which are preserved under isomorphism (mod 0).

3. TQ-systems

The definition of TQ-system has been given by the author in [3], but
we need to extend it for the purpose of studying the classical dynamics.
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Let {Z,} be a quasi-flow and {7,} be a flow. Let i(s,0) be a multi-
plicative functional of {75!} such that i(s,e) is integrable along the traject-
ory of {Z,} for any fixed s and o, that is, 2(s,Z,0) is locally integrable
in # for any s and @. Moreover we suppose that

3.1) ["a6s, zuo) du = 25, Z-00) du =
0 0
for any s and o. Let us define an R,x%R,xB-measurable function ¢(t,s, w)
by’
t
3.2 olt,s,0) = | (s, Zu0) du

and let z(¢,s,») be the inverse function of ¢(¢,s,0) for fixed s and w. Let
{Z¢%} be the time-changed quasi-flow of {Z,} by i(s,w), that is,

AP
Z;)w = Zf(t'!.o‘)m.

DeriNiTiON 3.1, The triple [{Z.}, i(s,0), {T;}] of a quasi-flow {Z.}, a
flow {T,} and a multiplicative functional i(s,e) of {T;'} is called a TQ-sysitem
if
(3.3) TZT:' = 29
holds. We say that the 7Q-system has Property (A) (resp. (AC) or (AD)), if
the additive functional log (s, ) of {75!} belongs to Class (A4) (resp. (AI) or
{AD)).

By Theorem 2.2, it holds that

Elloga(s, *)|vr ]= Ellogi(s, *)|vr] = s Elloga(l, *)|vr,]
for almost every w=® (P). So we have the following proposition.

ProrosiTiON 3.1.  Let [{Z.}, Xs,0), {T.}] be a TQ-system. Then the triple
UZ.}, Xs,0); Ts) is a TQ-system for each s and the following-conditions are equiva-
lent :

() the TQ-system [{Z.}, A(s, ), {T:}] has property (A) (resp. (AC) or (AD);
(1) the TQ-system [{Z.}, As,w); Ts] has property (A) (resp. (AC) or (AD)) jor
some s >0;

(i) the TQ-system [{Z.}, i(s,w); Ts1 has property (A) (resp. (AC) or (AD)) for
any s >0.
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The following Theorems 3.1~3.4 are counterparts of Theorems 5.1, 5.2,
6.1 and 6.2 in [3], respectively. The proofs are immediate from the cor-
responding theorems and Proposition 3.1.

Traeorem 3.1. Let [{Z,}, A(s,0), {T:}] be a TQ-system with property (A).
Then the following conditions are equivalent:
1) {z} is a flow;
()  A(s,0) is Blyz,)-measurable for any s;

(iii)  A(s, ) 15 Bvyz,)-measurable for some s (+Q).

Tueorem 3.2, Let [{Z,}, As,w), {T,}] be a TQ-system with property (A).
If {Z,} is a flow, the entropy of the flow {Z,} is 0 or oo,

TrEOREM 3.3, Let [{Z.}, A(s,0), {Ts}1 be a TQ-system. If the additive
Sunctional loga(s,w) of {T3'} belongs to Class (I) (or Class (D)), it holds that
(3.4 Yir,) = Y(z,}-

We shall prove only Theorem 3.3. By Proposition 3.1, [{Z,}, (s, ), T,]
is a TQ-system belonging to Class (AC) (resp. (AD)) for fixed s >0. Hence

vr, = v(z,}

holds by Theorem 6.1 in [3]. Since it is obvious that v;,=vr, we have

the assertion.

THEOREM 3.4. Let [{Z,}, X(s,0), {Ts}] be a TQ-system with property (A).
If (s, 0) is Blyz,)-measurable for some s (+0), (3.4) holds.

4. Representation of 7Q-systems

In order to study the local structure of the T7Q-system, it is necessary
to consider the representation of the 7Q-system. We say that a TQ-system
Z.}, a(s,w), {T,}] on Q is isomorphic to a TQ-system [{Z[}, X(s,0), {T?}] on
@, if there exists an isomorphism H of 2 to 2’ such that

Zy=H'Z{H, T,=H'T{H and (s,0)= 2(s,Ho).

We shall obtain a special type of 7Q-system which is isomorphic to a
given TQ-system with suitable conditions. A similar representation of the
flow (or the quasi-flow with multi-dimensional parameter) has been obtained
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under the condition that it has no fixed points by [1] (resp. under the con-
dition (ND) by [4). We now assume the following two conditions.

Condition (ND): For any {Z,} and {T,}-invariant set 2,cQ, P(2, >0,
there exists a measurable subset V of 2, P(V)>0, and exist positive con-
stants a;,a, such that

(4.1) VnzZ.T,V =¢

for any ¢ and s of ¢, < max{|t], |s]} < a,.
Condition (C): For any (=R and w=, it holds that

4
t
(4.2) lim Soll(s,Zuco) —1|du = 0.

First of all, we shall show the following simple lemma.

Lemma 4.1.  Let [{Z.}, (s, ), {T:}] be a TQ-system.  Then it holds that

(4-3) QD(t, S, o) = (¢, — 39T;1C0)
and
(4.4) §0(§0(t, Sl, (0), Say T;:(!)) = ¢(t, S1 + 32, C()).

Moreover, ¢(t,s,0) and (t,s, o) are continuous in (t,s).
Proof. By the multiplicativity of i(s,») and by (3,2) and (3.3),
t=olu, —s, Ti'w) = S:x(— s, Z,T5'w) dr

* dr

T
- S“ dr

0 2(59 Zr(r,s,w)w)

il

(%, & ,0)
g dv = «(u, s, o)
0

for u =<(t, —s, T7'w). Hence u = ¢(¢,s5,0). The relation (4.4) is obvious
by

t t
| a5+ 500 Zuw) du = Sol(sl,Zuw)X(sz, T71Z,0) du

0

¢
S A(s1, Zuo)A( (825 Zegu, -3, T~3; @ )Ts,l ) du

(1]

e(t,8q, m)

A(ssy ZoT5 o) dv

0

@(90(’ Sty (D), Say T;‘IQ))-
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Since

S‘F(f.!pw)

o(t, s1+ sz 0) — ¢(t, 51, 0) = . (A(sy Z,T5iw) — 1) du,

¢(t,s,0) is continouus in ¢ and equicontinuous in s for ¢ in any bounded
interval. Hence the inverse function <(f,s,®) has the same property. These
facts mean that ¢(¢,s,0) and <(¢,s,w) are continuous in (¢,s).

By Lemma 4.1, there exist positive numbers §;<d,= (@ —a,)/3, j=1,
2,3,4, and exists a measurable subset V, of V, P(V,) >0, such that the
following inequalities hold for w€V|;

[9(t1,5,0) — @ty s,0)] <6, for [t,—t,] <oy, |41, 1t:], Is] <2a,
l2(t, 51, 0) — «(t, 53, 0)| < 0, for |s, — sl <9, [t], Isil, Is.] < 2a,

dq

]So(t’ S,(Dl < 9

for |t] <9, and |s| < 2a,,

lz(¢,s,0)] <65 for [t], |s| < ds,.
We can easily see
c=c(u+t+ o(— 8, Tsrp0), — v, T 0)
=¢(c(u + t + ¢e(—u, —v,0), —s,0), — s —v,0), — s, 0)
by Lemma 4.1. Hence
(4.5) e —t] <,

holds for any weV,, |t], |s| <a, and |ul|, |v] <d,.
Let us define a function ¢(a,b; ) by

dab; o) = Lsagbx (T3 Z,0) du dv
s Uy ab 0Jo Vi v u ]

where %y,(w) is the indicator function of V,. Then by Wiener’s ergodic
theorem (see Lemma 3.2 in [3]), there exist a and b»=(0,6,), such that
P({lo; ¢(a,b; o) >3/4}) >0.

Let us fix such ¢ and 5 and set

V= [m; G(a,b; m)>—i’—}.

We shall show that

(4.6) ZTV'nV' = ¢ for a,+ §,< max (|¢], |s]) < a — &,.
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Suppose on the contrary that the set Z,7,V’NV’ contains w for suitable ¢, s.
Then from the definition of ¢ and V’, it is easily seen that 75'Z,0 and
T7'Zy+:Tso belong to V, for some u=(0,4) and v=(0,8). Set o = T5'Z,0,
then T37'Z,Ts0 = T5'Z s TsZ-Too' = ZT0’, where c=c(u+t+7(—u,s,
Tsrp0), —v,Tew). Hence ZTw'eVNZTV and g, < max (|z], |S])<a, hold
by (4.5). This fact contradicts Condition (ND).

LemMA 4.2, ¢(a,b; Z,T5'0) is continuous in (t,s).
Proof. Since

b
da,b; Z,T7'0) = SOXVA(TEIZngTEIQ)) du dv

1
ab
1 bpa _
Tb-SogoXVI(T”iSZ'(u+t.3.w)(D) du dv
_ 1
ab

bspr(t+a,s o)
S S X (T3 Z,0)A(s, Z,0) du dv

F] (¢, 8,0)

hold, we have that

[9(a,b; Z:, T3 o) — $(a,b; Z,,T5 0)]

1 Sb-n Sr(cﬁa,s,m) S,(gh,.w)
< =
Toab s ( “(ta+a.8,0) + t(c2.s.w)) s, zu0) du dv
1 b+s 9
= ab Ss zlt‘_tzl‘h’:‘a‘”x—tzl

and we have similarly that

|¢(a,b> ZsT;lw) - ¢'(a’b> th)l

e (DI ez i
1

T

Sb ( Sr(t+a.s,w) _ S:a) X (T5' Z,0) (s, Zy0) du dvl

0 (L8, 0)

+ —alT ]S: SZMXW(T?ZW) (A(sy Zyw) = 1) du dv‘

= 2]s]

Sr(t-‘-a,s‘w)
ab

A8, Zy0) du

(¢ 8,0)
+ bt a—t—olt + a,5,0) + ¢it,5,0)]

b (" x5, Zuw) — 1] d
+WS$ 12(59 uw)'— l u

2ls] 2 (™ —
<2l 2 S, [4(s, Zut) — 1| du.
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Hence we have the assertion by Condition (C).
LemMA 4.3. Let D be the subset of R*xQ defined by
o€V’ and (¢,s) belongs to the connected
(4.7) D= (t,s,0); component of (0,0) in the set {(«,v);
g[)((l,b; ZuT-va)> >3/4}
Then D is R, X Ry X B-measurable and it holds that
(4.8) D(ZT7'0) = {(u — ¢(t,v — 5,T7'0), v — 5); (#,v)ED(w)}
Sor (¢, s)€ D(w), where we denote by D(w) the w-section of D: D(w)={(#,v); (#,v, w)E D}.
Moreover, D(o) is a bounded open domain of R2.

Proof. Set

stk = (b~ (1) =) G+ )

for integers k,, k, and g, and set
L(q) = {4(g, ks, k»); %, and k, are integers},

We say that two elements 4(q, ki, k,) and 4(¢’,k{,k;) are linked, in symbols
4~ 4, if either k, =k!, |k, —ki| <1 or ky=kj, |ky—k|| <1. Set

L(Q$ %) = < Ak;

{ 7 AO:A(%O:O)"’AU AINAzy""}
k=0 Aoy~ 4d,, 4, L(q)

Then we have

. . - 3 1 H

= Iy > 2 =

D L;l‘ e Uq‘n)[dx t'sfeld w; Ya,b; Z,T7'e) = 7 +
t,s: rational

by Lemma 4.2. Hence D is R,xR,XxB-measurable.
Notice that if Z,T_, = Zy/T-vZ,T-», then

w =u—o(t,v—s,T5 0),
(4.9)

vV=v—s
hold. Since the mapping: (u,v) > (u — ¢(¢t,v — s, T;'®), v — s) is one-to-one
and continuous by Lemma 4.1, the subset

{(u - ¢(t,1) ) T-s'lm)’ v— S), (ul U)ED((")}
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of R? is connected. Hence (4.8) was proved. The boundedness of D(w)
follows from (4.6), immediately.

In what follows, we define two measurable functions #'(w) and s’(o).
For 4eL(q,n), define sp 4(0) by

sup {s; (—¢, —s)€4 for some ¢t} if AC[(t, )3 ¢(a,b;Z£T;‘m)2ﬁ+l}
Sm.A w) = 4 m

— otherwise

for w=V’. Since ¢(a,b; Z,T-.0) is continuous in (¢,s) by Lemma 4.2,

. . -1 3 1] _ . -1 3 1
ps{a): ¢(a1 b, Zsz w)_>_T + —”7 =N [(j), ¢(a, b, ZtT,, a))2T + ——Wl—l

t,s: rational
holds by Lemma 4.2, su o) is measurable. Hence the function defined by

(4.10) s'(w) = sup Sup Sup  Sm,s(®)
m qn del(q,n)

is measurable. With the same reasoning, the functions defined by

(=1, — i : U TN S
o sr0) = sup{(¢; (—t, —s)e 4} if Ac{(t,s),sb(a,b, 2T = + m]

— othersiwe
and

(4.11) t'(s,w) = sup Sup sup  tm,4(s, o)
m gn del(gn)

are measurable. Further

(4.12) #(w) = lim (s, w)

555/ (w0)—0

is measurable. In fact, for any k>0, there exists s,=(s"(0) — 1/k, s’(®)] such
that t'(w) —1/k< t'(sp,0) < t'(0) + 1/k. There exist m, g, and 4<L(qg,n)
such that #'(sg, 0) — 1/k < tm,4 (sp, 0) < t'(s, ») and exist a rational number s,
integrers m', ¢, ' and 4'€L(g'n’) such that 1/k -+ tw,a(Sts W) > tm (st @).
Comparing the above inequalitiles, we have

(4.1 F(0) = 3 < tw.ulshy 0) = (sl 0).
Hence we have
(4.14) t'(w) = lim (s, ®).

s—s/(w)—0
s; rational
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We can easily see that #/(w) is measurable by the measurability of t'(s, )
and (4.14). Hence the following lemma is easily seen.

LemMMA 4.4,  The functions s'(w) and t'(w) on V' defined by (4.10) and (4.12),
respectively, are measurable and satisfy

(4.15) S'"(Z,T5'0) = s'(w) + s
and
(4.16) t(ZT5'e) = tw) + o(t, — s'(0) — s, T5'o)

Jor (¢,s)eD(w).

LeMMmA 4.5, Set
(4.17) D= {(u—o(—t'(), v+ s (), Tywo), v+ s (o),n); (u0v,0)ED}.
Then D is Rox R, xB-measurable and satisfies
(4.18) D(w) = D(Z,T7'w) for (t,s)€D(w).

Proof. By the additivity of ¢(¢,s,0) and Lemma 4.1, we have
(4.19) o(— t'(0) — ¢(t,s'(0) — 5,T5'0), v+ §'(@) + 8, Towy+sZ:T5 @)

= ¢(—t'(w), v+ §'(@) + 5, Towo) — ¢(t,v, T o).

By (4.8), (4.17) and (4.19), we have (4.18). The measurability is easily seen
by Lemma 4.3 and 4.4.
We now define a partition & of vV’ by

Culo) = {Z,T7 0; (¢, s)€D(w)},

which is well defined because of Lemma 4.3. The measurability of & is
shown by the following lemma. Let I'={I',} be a basis of the Lebesgue
space 2. We denote by I'; the countable family of sets I"; = {4} such that

A=T, NN+ AT NI NN - - - AT,
LemMA 4.6.  The system of measurable functions on V' defined by

{0 1aT7 Zemr 0 Tura) dt ds
Do

(4- 20) ¢A(m) = ’ AEF«S ’

Sﬁ(m) dt ds

induces the partition &',
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Progf. The measurability of the given functions is obvious by Lemma
4.4 and 4.5. By Lemma 4.5, ¢4 w) is invariant on each C.. Since
I' = {I',} is completly separable, ¢,(w) is a set function of AeI'; and hence
it defines a Lebesgue measure on D(w) for almost every wsV’. Hence, if
Y4(0) = ¢4(0*) holds for any AeI;, then an isomorphism ¢ of D(w) onto
D(o*) is induced, naturally. Let (u* v*) = 6(u,v), then T-yZy— 11T srm(@)E4 if
and only if T_pZu w0 oWt 0*€ 4 for almost every (#,v). By the separa-
bility of I'={r",}, Ci(w) and C./(0*) contain the same point, i.e. Cy(w) = Ce(0*).

Set

V, = {(x, M,U); (M,U)ED(Q)), X = Cé’(w)EV,/E/}-
Let H’ be the mapping from V' onto V’ defined by
H o = (Culw), t' (o), s'(v)).

Define a function ¢’ by ¢'(¢,s; x,u,v) = ¢(¢,s, H (2, u,v) for (w,u,v)eV’.
Then it holds that

(4.21) H'ZHz,u,v) = (v, u + ¢'(t, —v; x,u,0),v)
(4.22) H'TH Yz, u,v) = (x, %, + 5)

if (z, u + ¢'(t, — v; 2,u,v),v) and (x,u,v + s) belong to V’.

Let us define a measure P’ on V' by P'(B)= PH'"'B), ¥ = {H'B;
BcV', BeB}. Let p(du dv|Cy) be the canonical system of measures with
respect to the measurable partition & = H’¢ of V'. Then %’ is the restric-
tion of the product o-field B, xRXR to V' by the measurability of the set
"D and of the functions #'(w) and s'(w).

Since {Z,} and {T.} are non-singular transformation groups, it follows
from (4.21) and (4.22) that the canonical system of measures p(du dv|Cy) is
equivalent to the ordinary Lebesgue measure du dv, that is, the meausre P’
is expressed in the form

P'(B) = SS Yo%, u,v) p(x,u,v) du dv dPy(x)
D(x)

with some positive measurable function p(z, #,v), where D(x) = D(w), 0€Cer=2.
(c.f. Lemma 3.1 in [3]).

Since {T,} is measure preserving p’(x,u,v) dose not depend on v, that
is,
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(4.23) dP'(x,u,v) = p(x, u) du dv dP.(x).
Thus we have the following lemma.

LemMA 4.6, The mapping H' is an isomorphism from V' onto (V',%', P’}
which satisfies (4.21) and (4.22).

Since D(z) is an open domain in R?, there exist real numbers d;, i =1,
2,3,4, and a measurable &-set AcV’, P'(A) >0, such that

[d,, d;)x[ds,d)cD(w) for ocsA.
Define two functions #y,(@) and siw) by
(4.24) tolw) = ¢(t'(0) — di,dsy Za, -1 Ts1®), So(@) = s'(@) — ds.

Then there exists a positive constant d; and exists a measurable &-set 4,c A
with positive measure such that

d5 =< SD(dz - dl’ d3, Zdl—t/(w)Ts/(w)w) fOI‘ E A.
Set V(): {CD; Oéto(a))<d5, 0é50(0)<d4—d3, CL)EAO}.
Now we have the following main lemma by Lemma 4.6.

LemMa 4.7. Let [{Z.}, (s, ), {T,}] be a TQ-system which satisfies Condition
(ND) and (C). Then for any {Z,} and {T,}-invariant set Q, with P(Q,) >0, there
exists a measurable subset Vi, P(V,) >0, and exists a measurable partition &, of V,
such that V, is isomorphic to a Lebesgue space (Vo,%B,, P,) defined as follows. Set
X =V, and set Vo= {(z,u,0); 0<u<a, 0<v<by, xX}. Let B, be the
restriction of the o-field B, xR to Vo The measure P, on V, is defined by

dPya,u,v) = p(x,u) du dv dp(x), dp(x) = dP(x)

with some positive Bo-measurable function p(x,u) which are independent of v. More-
over, there exists an isomorphism H, of V, onto V, which satisfies

(4.25) HZH (x,u,v) = (x,u + §(¢t, — v, (¢, u,0)),v)

(4.26) HTH;Y(x,u,0) = (x,u, v+ §)

Sor u, u+ g(t, —v, (z,%,0)E[0,a,) and v, v + s<[0,b,), where
(t, s (%, u,0) = @(¢, s, H7 (2, u,v)).

Let (X,%, ) be a Lebesgue space and f®(x) and f®(x) be measurable
functions on X. Set 2 ={(x, u,v); 0<u< fO(z), 0<<v< fO(z), xX},
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X0 = {(z,0); 0=<v< (), xe€X} and XO® = {(x,u); 0=<u< fO), zeX].
We shall identify the space {((z, v), u); 0<<u < fO(x), (2, u)eX®} and
{(z,0),0); 0<v< fO(x), (v,u)eX®} with 2, Let 8 (resp. AV or A®) be
the restriction of AXAXR to & (resp. AXR to X® or AXR to X®). Let
»(x,u,v) = p(x,u) >0 be a measurable function on 2 which is independent
of v. Suppose that

@)z Az
ngj ‘ )Sf ‘ )p(x,u) du dv dp(z) =1,

0 0
Set dP(x,u,v) = p(x,u) du dv dp(x), dp®(x,v) = dv dp(x) and dp® (z,u) =
p(z,u) du dp(z). Thus we have three Lebesgue space (2,8, P), (XM, AD, p®)
and (X®,A®, @), Define mappings =%(x,%) and =j(z,u), j = 1,2, by
i (x,u) =z and ri(x,u) = u for (z,u)eX?, j=1,2.
Let S; be a quasi-automorphism of X® such that there exists
I = §MO(x,v) >0 and
h(x,v’) = nk(x,v) and =i(x,v’) — mi(x,v) =0 — v

hold for any v'€[v,v +®). Let {Z/} be the S-quasi-flow built up by
(XD, A, p®, fO(2), p(x,u), Sq). Let Sp be an automorphism of X® such
that there exists 6® = §®(x,%) >0 and

~i(o,a) = w3, 4) and =i, w) — wha,0) = | alo,u) du

hold for any u'€[u, u + 6®) with some positive A®-measurable function
A(x,u). Let {T5'} be the S-flow built up by (X®, A®, p®  fO)(g), 1, Se)e
Define a multiplicative functional 2'(s,(x,#,v)) of {T;'} by

A (s, (@, 2,0)) = 2,(x, ) for fiP(x,u) <v+ s < f2u(x,u),

where 2,(x,u) and f,(#,u) are multiplicative and additive functional of S,
constructed from 2,(x, ») and f{(x, u) = f®(x), respectively. Then it holds that

{4.17) T Z T2, u,0) = 24,5 cmunmy (@ Uy V)

if either [#] or |s| is sufficiently small where <'(¢,s,(x,u,v)) is the inverse
function of ¢’(¢,s,(x, u,v)) = S:z’(s,Zf(x,u,v)) dt for each (z,u,v)ef and seR.

Suppose that (4.17) holds for any ¢,s€R and (x,u,0)e2. Then we
have a TQ-system [{Z/}, ¥ (s, (x,%,0)), {T:}] on 2. Let i(x,u,v) be a positive
measurable function and let {Z;} be the time-changed quasi-flow of {Z/} by
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Alz,u,v), that is,

Zt(xvuyv) = Z‘:(t.(x.u.v))(x’ u’U) (x’ M,U)Eg,

where (¢, (2,u%,v)) is the inverse function of ¢(¢,(x,u,v)) = S:z(Z{(x,u,v)) dt
for fixed (x,u,v)e2. Then it follows from Proposition 5.1 in [3] that
[{Z.}, a(s, (x,u,0), {T,}] is a TQ-system, where A(s,(x,u,v)) is the multiplica-
tive functional of {7;!} defined by

s, (@, ,0) = ATZELI)_ (5, (3, u,0).

We say that the 7TQ-system [{Z,}, (s, (z,u,v)), {T;}] is an S-TQ-system. By
virtue of Lemma 4.7, we have the following theorem.

THEOREM 4.1. Let us assume that the TQ-system [{Z,}, A(s,w), {T;}] satisfies
Condition (C). Then there exists an S-TQ-system isomorphic to it if and only if the
original TQ-system satisfies Condition (ND).

ReMark. If i(s,w) = er* with constant £+0, then {Z,} is a flow by
Theorem 3.1. Hence we can choose p(x,u) =1, A(x,u%,v) = e¢*® and A,(x,u)=
e’*®, Then we have

Z T e, u,0) = (X, u + te~ =+ v+ 5)
for 0 u, u+ te =@+ < fO(x), 0w, v+ s< fO(x).

5. TQ-systems and increasing partitions of Flows
We now discuss increasing partitions of flows with the help of the

representation of TQ-systems. The similar results are given in the case of
automorphisms [3].

TueoreMm 5.1. Let [{Z,}, A(s,), {Ts}] be a TQ-system which satisfies Con-
dition (ND) and (C). If the system has property (AC) and A(s,w) is B(vyz,))-measur-
able for some s(#0), then there exists a partition & of 2 such that almost every
element of Q is a segment of a trajectory of {Z,} and it holds that

(i) T{=¢ (mod 0) for s >0,

(it) VT = ¢ (mod 0),

(1ii) /S\Tsé‘ = iz, (mod 0),

(iv) H(T|¢) = Ellogi(s,w)] = s E[logA(l, )], s >0.
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Proof. By the same reasoning as the proof of Theorem 7.1 in [3], it
suffices to prove that, for any {Z,} and {T,}-invariant set £, with positive
measure, there exists a {Z,} and {T,}-invariant subset @,c@, with positive
measure and exists a measurable partition ¢ of @, which satisfies the fol-
lowing four conditions: (i) T.f;=¢, (mod 0) for s>0; (il)) VT, is the
partition of 2, to the individual points which is denoted by &; s(iii)' AT,&,
is the restriction of vy, onto 2,, we denote simply it by u},,; (iv)’s the
following equality holds

5.1) SOllog P(Cre,(@)]Ce, (@) dP = Sallogl(s,m) dP.

We shall fix a {Z,} and {T,}-invariant measurable set 2, with positive
measure. Let V,, V,, p(x,u),z(x) and H, be the ones given by Lemma 4.7.
Since {Z,} is a flow by Theorem 3.1, we may assume that p(z,u) =1. Let
7 be the measurable partition of V, defined by

C;(xo uav) = {(x’ul9v); 0=u' < ao}

and 7 be the partition of V, given by 7= H3'5. Let 2, = l};’TmVo with
r = b,, and define a partition & of 2, by

(5.2) &=V Ty,
kL0

wilere 7, is the partion of @, which is eaual to 7 on V, and is degenerated
on ‘Ql - Vo.

Then @, satisfies the following conditions (i)’ ~ (iv)”” by Theorem 7.1
in [8]: ()" T,&,=¢, (mod 0); (ii)” )cl Te.$ = €' (mod 0); (iii)” é\ Tirly = vlzy
(mod 0); (iv)" H(T.Li1E) = | 1082(r, 0) dP.

By the construction of &, it is easily seen that

(5.3) Top VTe-yp=zn 0=s<r
and that
(5. 4) T,g"h = P}z‘}.

By (5.3) and (ii)”, we have
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(5.5) Ty = N T,Twm
k<0
= VT,(To NV Ts-r11)
k<0
= VT =8
k<0

for r=s=0. From (ii)”, (iii)” and (5.4), it follows that

(5'6) v Txgx = >c/ Tkrgl = El
and
(5.7) l—'{z,} = /\ ngl /\ Tkrgl = V}Z¢

By (iv)” and Theorem 2.2, we have that

(Tstlgl) = H(Tr§1l§x)

S loga(r, @) dP

S

¥

S logi(l,w) dP.
Thus our proof is concluded.

TueoreM 5.2. Let [{Z,}, (s, 0), {T.}] be a TQ-system which satisfies Con~
dition (ND) and (C). If the additive functional logi(s,w) of {T3'} belongs to Class
(I), then there exists a measurable partition & of Q which salisfies the conditions
(1)~(iv) tn Theorem 5.1.

The proof of this theorem is performed similarly as the proof of Theo-
rem 5.1 (see Theorem 7.2 in [3]).
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