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Many natural and industrial processes involve the flow of fluids made of solid particles
suspended in non-Newtonian liquid matrices, which are challenging to control due to the
fluid’s nonlinear rheology. In the present work, a Taylor–Couette canonical system is used
to investigate the flow of dilute to semi-dilute suspensions of neutrally buoyant spherical
particles in highly elastic base polymer solutions. Friction measurement synchronized
with direct flow visualization are combined to characterize the critical conditions for the
onset of elasto-inertial instabilities, expected here as a direct transition to elasto-inertial
turbulence (EIT). Adding a low particle volume fraction (≤2 %, dilute regime) does not
affect the nature of the primary transition and reduces the critical Weissenberg number for
the onset of EIT, despite a significant decrease in the apparent fluid elasticity. However,
for particle volume fractions ≥6 % (semi-dilute regime), EIT is no longer observed
in the explored Reynolds range, suggesting an apparent relaminarization with yet not
further decrease in fluid elasticity. Instead, a new regime, termed here elasto-inertial
dissipative (EID), was uncovered. It originates from particle–particle interactions altering
particle–polymer interactions and occurring under elasto-inertial conditions comparable
to those of EIT. Increasing particle volume fraction in the semi-dilute regime and, in so,
the particle contribution to the overall viscosity, delays the onset of EID similarly to what
was observed previously for EIT in lower elasticity fluids. After this onset, a decrease
in the pseudo-Nusselt number observed with increasing inertia and particle-to-polymer
concentration ratio confirms a particle-induced alteration of energy transfer in the flow.
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Figure 1. (a) Taylor–Couette cell mounted on an MCR102 Anton Paar rheometer with geometrical parameters
symbols and illustration of the imaging system (see details in Moazzen et al. 2022, 2023) and quasi-steady
inner cylinder ramp-up protocol. (b) Geometrical cell parameters values.

1. Introduction

Suspensions of solid particles in a Newtonian or non-Newtonian liquid matrix are
frequently encountered in nature and industrial applications (cement, toothpaste,
three-dimensional printing material, avalanches, blood flow, to name a few). When flowing
at various scales, such fluids demonstrate a wide variety of nonlinear dynamic behaviours,
arising from inertia, complex rheology of the suspending liquid phase, fluid–particle
interactions or particle–particle interactions. They induce a dynamic complexity of the
flow, making it difficult to control its stability, mixing and heat transfer efficiency as well
as to predict overall process performance. Despite recent studies (Tanner 2020; Baroudi
et al. 2023; Boulafentis et al. 2023; Zhang & Shaqfeh 2023; Boulafentis et al. 2024),
experimental data are still needed to better understand the hydrodynamic behaviour of
complex suspensions and confront numerical models (Kang & Mirbod 2021; Song et al.
2021; Lin et al. 2023; Kang, Schatz & Mirbod 2024; Lin et al. 2024).

To gather experimental data and deepen understanding on complex fluid flows, it is
convenient to consider well-studied canonical flows. In the present work, the canonical
Taylor–Couette flow (TCF) is used (Andereck, Liu & Swinney 1986; Taylor 1922; Fardin,
Perge & Taberlet 2014). It consists in two concentric cylinders of radii ri and re (with
re > ri, see figure 1) and height h. Here the case considered is that where only the inner
cylinder is rotated at rotation speed Ω and the outer cylinder is fixed. The fluid entrapped
in the gap δ = re − ri is subjected to a shear rate γ̇ = Ωri/δ. This configuration has been
widely used in the recent literature to characterize instabilities and transition to chaos in a
wide range of complex fluids (Fardin et al. 2014; Boulafentis et al. 2023). In that context,
it was for example found that the presence of non-colloidal neutrally buoyant particles
in a viscous Newtonian base fluid alters the nature and onset of the primary bifurcation
(Majji, Banerjee & Morris 2018; Ramesh, Bharadwaj & Alam 2019), as well as the friction
dynamics, as evidenced by the evolution of the torque exerted on the inner cylinder τ as
a function of the Reynolds number R (Dash, Anantharaman & Poelma 2020; Kang &
Mirbod 2021; Moazzen et al. 2022):

R = ρriΩδ

μ
= ργ̇ δ2

μ
, (1.1)

where R is the non-dimensional flow control parameter characterizing the onset of
inertial instabilities (see (1.1)) (with ρ is the fluid density and μ is the suspension
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dynamic viscosity). However, particle-free viscoelastic fluids exhibit their own rich set
of specific dynamics: low R transitions to modes that are not evidenced in Newtonian
fluids (Boulafentis et al. 2023), transitions to well-known modes but triggered by elastic
or elasto-inertial mechanisms (Larson, Shaqfeh & Muller 1990) or ultimately transitions
to a form of chaos resembling turbulence at much lower (Dutcher & Muller 2013;
Boulafentis et al. 2023) or even negligible inertia (elastic turbulence, Groisman &
Steinberg 1998, 2000, 2004). The flow control parameter for such behaviours is the
Weissenberg number W = λγ̇ , with λ the relaxation time of the viscoelastic solution.
Here, W compares elastic to viscous forces. Additionally, it is worth defining the
elastic number E , which quantifies the importance of the elastic behaviour in the given
Taylor–Couette geometry:

E = W
R = λμ

ρδ2 (1.2)

In this work, emphasis is placed on fluids of moderate to high elasticity (E � 10−2,
Dutcher & Muller 2013) flowing at commensurate inertia for which viscoelastic properties
give rise to elasto-inertial transitions: instabilities that are either due to elastic mechanisms
but arising at non-negligible R values or inertial but modified by elasticity. There,
transition to a chaotic flow state labelled elasto-inertial turbulence (EIT) is observed
(Groisman & Steinberg 1996; Boulafentis et al. 2023; Lin et al. 2023). The onset and the
pathway towards EIT, as well as its final structure, have been found to depend on various
parameters, among which the nature, conformation and concentration of the additives
(most of the time polymers) confer viscoelastic properties to the fluid. In particular, the
dynamic properties of EIT differ from those of inertial turbulence both in terms of friction
scaling and spectral distribution (Boulafentis et al. 2023, 2024; Moazzen et al. 2023).

The aim of the present paper is to investigate the behaviour of fluids combining both
complex features, particles and elasticity, and to characterize elasto-inertial transitions in
such systems. A first experimental study on this topic in a Taylor–Couette configuration
(Lacassagne et al. 2021) indicated that a low particle volume fraction may promote faster
transition to EIT in terms of R, whereas higher particle volume fractions (more than 5 %)
were found to delay transition to EIT. This former study employed visualization to detect
transitions and characterize EIT properties for a single moderately elastic base fluid (E =
O(10−1), one polymer concentration) and four particle volume fractions. The present work
sets at pushing the investigation further and unravel physical mechanisms by: (1) coupling
flow visualization with torque measurements to get information on the friction dynamics
during transitions and flow states; (2) extending the approach to more elastic base fluids
(E = O(101)) for which direct transition from the base laminar state to fully chaotic EIT
is evidenced (Groisman & Steinberg 1996; Moazzen et al. 2023); and (3) covering a wider
range of particle concentrations (Φ = 0, 2, 6, 10, 14 %).

2. Materials and methods

2.1. Experimental set-up
The experimental set-up is similar to that used by Moazzen et al. (2022, 2023), and its
geometrical parameters are represented in figure 1.

With the outer cylinder was kept at rest, the inner cylinder was rotated with angular
velocity Ω , controlled by the rheometer’s motor. The maximum inner cylinder rotation
frequency achievable bounded the maximum respective R and W experimentally
accessible to values Rmax and Wmax reported in table 1, depending on each working
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C̃ (ppm) Φ (%) μ (Pa s) λN1 (s) λe (s) E0 E Wc Wmax Rc Rmax Rmax
p

300 0 0.0508 0.1092 0.482 2.07 2.1 93.8 153.5 45.3 74.2 0.0190
2 0.0503 0.0332 0.122 0.6 26.5 46.7 42.5 74.9 0.0192
6 0.0484 0.0456 0.142 1.1 29.1 64.1 27.5 60.4 0.0155
10 0.0566 0.0217 0.121 0.5 13.0 30.5 28.4 66.6 0.0170
14 0.0782 0.0713 0.108 2.1 50.7 100.1 24.4 48.2 0.0123

400 0 0.0584 0.1971 0.795 4.28 4.3 197.3 276.9 46.0 64.6 0.0165
2 0.0599 0.1538 0.579 3.4 134.0 216.0 39.0 62.9 0.0161
6 0.0743 0.1647 0.485 4.6 145.1 231.4 31.8 50.7 0.0130
10 0.0756 0.1282 0.412 3.6 137.0 180.1 37.9 49.9 0.0128
14 0.0694 0.1169 0.324 3.0 99.0 164.2 32.7 54.3 0.0139

500 0 0.0680 0.3793 1.020 9.61 9.6 398.5 532.9 41.4 55.4 0.0142
2 0.0674 0.1199 0.486 3.0 147.1 168.5 48.8 55.9 0.0143
6 0.0768 0.1973 0.435 5.7 144.6 277.1 25.59 49.0 0.0126
10 0.0910 0.1971 0.485 6.7 170.1 277.0 25.45 41.4 0.0106
14 0.1006 0.2309 0.422 8.7 263.2 324.4 30.40 37.5 0.0096

Table 1. Rheological viscoelastic suspensions properties and associated dimensionless numbers. Wc = λN1 ×
γ̇c, Rc = ρδ2γ̇c/μ and γ̇c are the respective critical Wiessenberg number, Reynolds number and shear-rate for
the onset of EIT for Φ = 0 or 2 %, or new elasto-inertial dissipative (EID) mechanisms (in italics, for Φ ≥
6 %). Superscript 0 indicates quantities computed using the base fluid relaxation time λ0 = λN1 (Φ = 0 %).
Apparent relaxation time scales λ = λN1 (Φ, C̃) are used otherwise. The maximum particle Reynolds number
is Rmax

p = ργ̇max dp2/4μ.

fluid viscosity and elasticity. Experiments were performed using slow acceleration (or
ramp-up) protocol (see figure 1). The difference maximum shear rate was kept constant at
γ̇total = 750 s−1 and γ̇ was increased in steps of 2 s−1. At each step, the shear rate was
held constant for a period of t = 30 s. This resulted in non-dimensional acceleration rates
of order (10−4) at most, well into the quasi-steady assumption (Dutcher & Muller 2013;
Boulafentis et al. 2023).

Experiments were conducted with viscoelastic base fluids made of HPAM (partially
hydrolized polyacrylamide; molecular weight Mw = 15 − 20 × 106 g mol−1) at
concentrations of C̃ = 300, 400, 500 ppm, dissolved in a solution of distilled water (31 %
in volume), glycerol (69 % in volume) and sodium chloride (2 % in mass), and loaded
with mono-disperse spherical PMMA (polymethyl methacrylate) particles of diameter of
dp = 50 μm at volume fractions Φ = 0, 2, 6, 10, 14 %. The particle Reynolds number
Rp = ργ̇ dp2/4μ was such that Rp < 0.02 for all fluids and experiments. The density
of solid particles and viscoelastic base fluid were matched (ρ = 1192 kg m−3), resulting
in neutrally buoyant particle suspensions.

2.2. Rheological characterization
The shear-viscosity of the working fluids was measured as a function of the shear rate γ̇ ,
using an MCR302 Anton Paar rheometer with a 50 mm diameter parallel-plate geometry
(chosen over the conventional cone-plate one to limit inertial and centrifugal effects on
particle loaded samples) at a 0.5 mm gap. Measurements confirmed that the working
fluids could be considered as Boger fluids (Boger 1977; James 2009), their viscosity being
shear-rate independent in the considered range (almost two order of magnitudes of γ̇ ). This
implies that the Reynolds number increased linearly as a function of the applied shear-rate
in the Taylor–Couette set-up. Averaged viscosity values are reported in figure 2(a) and in
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Figure 2. (a) Constant shear viscosity (averaged on a 10–100 s−1 shear-rate range) for all polymer and particle
concentrations. An MCR302 rheometer with parallel-plate 50 mm geometry with a 0.5 mm gap was used.
(b) Elastic time scale λ for all fluid samples, normalized by the particle-free measured value, obtained from
first normal stress differences (empty markers, same rheometer) or extensional measurements (full markers –
bespoke extensional rheometer set-up).

table 1. As expected, the apparent viscosity of the fluid increased with increasing polymer
concentration, but most importantly with particle volume fraction (Zhang & Shaqfeh
2023).

The elasticity of the working fluids was measured using first normal stress differences
N1 (Lin, Phan-Thien & Cheong Khoo 2014; Schäfer, Morozov & Wagner 2018; Moazzen
et al. 2023), with the same parallel-plate geometry. For a Boger fluid, it is known that

N1 = 2μpλN1 γ̇
2 (2.1)

with μp the polymer viscosity contribution (μp = μ − μsol, with μsol = 33.3 mPa.s the
solvent viscosity), and λN1 the relaxation time. Here, λN1 was estimated for all fluids
inverting the previous equation and averaging on the range of γ̇ over which the power 2
scaling is valid. The nominal elastic number of each base working fluid E0 was computed
using the apparent overall suspension viscosity μ (reported in table 1) and the elastic time
scale of the corresponding particle-free fluid (each fluid at the same polymer concentration
displays the same E0, reported in table 1, regardless of particle addition). Apparent elastic
number values E were computed for each fluid using directly measured λN1 and μ.
Additionally, measurements of apparent extensional time scales λe were performed using
a slow retraction capillary thinning protocol (Campo-Deaño & Clasen 2010) on a bespoke
set-up (analogue to Boulafentis et al. 2024). Thread thinning dynamics of a fluid filament
created between two plates slowly separating was fitted in the exponential-thinning regime
such that

λe = −t

3 ln
(

d
dmax

) (2.2)

with d(t) the filament diameter evolving with time (t) and dmax the maximum (initial)
diameter. All rheological data (shear and extension) were consolidated by averaging over
at least three and up to six repeated tests. The evolution of apparent time scale normalized
by that of particle-free samples for both normal stress and extensional methods is plotted
as a function of Φ in figure 2.
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Figure 3. Coupling of flow visualization with (a,d) space–time diagrams, (b,e) frequency maps where fmax =
2π/Ωmax correspond to maximal inner cylinder frequency and (c, f ) torque measurements, applied to samples
with C̃ = 300 ppm, (a–c) Φ = 2 % and (d–f ) Φ = 6 %. Vertical dashed red lines indicate the critical Rc value
for the onset of EIT when this flow state is evidenced in panels (a–c), or a new regime discussed hereinafter in
panels (d–f ), also indicated by a red circle. Linear ridges visible in frequency maps in panels (b,e) correspond
to the rotation frequency of the inner cylinder detected by the method.

2.3. Measurement techniques

2.3.1. Flow visualization
The flow behaviour was probed using a coupling of direct visualization an torque
measurement on the inner cylinder (using the built-in torque sensor of the rheometer).
Flow visualization was achieved by seeding the flow with anisotropic reflective mica
flakes, which enable the monitoring of the flow spatial structure (Boulafentis et al. 2023).
The light reflected by the mica flakes was recorded using a camera at a frame rate of 70
images per second (see figure 1). From the reflected light signal along a vertical column
of the test section, two types of visualization tools were constructed. First, space–time
diagrams were built by stacking the intensity signal obtained for this vertical at various
inner cylinder rotation speeds and thus R values. The change in flow structure, due for
example to a transition to EIT, (see figure 3 and also represented in the supplementary
movie) is clearly visible on such graph: the laminar base flow, called circular Couette flow
(CCF), is expressed by a uniform grey colour while EIT regime’s signature is a highly
chaotic spatial signal. Second, the temporal fast Fourier transform (FFT) of intensity
signals was computed according to a protocol detailed by Lacassagne et al. (2021) and
Moazzen et al. (2023), and resulting spectra were stacked vertically as a function of control
parameters (frequency map). This allows to distinguish between stationary flow states
with no specific spectral signatures (such as CCF) and a flow state with characteristic
frequencies or energy spectra, such as EIT, and thus detect the onset of the latter in an
even more accurate way (see figure 3). In such figures, the straight darker lines correspond
to the inner cylinder rotation frequency, which is captured by the method. Frequency axes
are scaled by the maximal inner cylinder frequency fmax = 2π/Ωmax.

2.3.2. Torque measurement
Simultaneously, the rheometer allowed to measure the torque needed to rotate the
inner cylinder (Dash et al. 2020; Moazzen et al. 2022, 2023), providing insight into
the friction dynamics and making it possible to evidence transitions to other friction
regime, independently of any visual signature. This is further illustrated in figure 4. In
the CCF (laminar) regime, the torque is expected to increase linearly with R with a
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Figure 4. Detection of critical conditions (here γ̇c) for the transition to non-laminar friction regimes, for C̃ =
300 ppm and Φ = 0, 6 and 14 %. Full line curves are measured torque signals, dotted lines are laminar trends
and dashed lines are the norm of the difference between measured torque and laminar trend. All values are
scaled by the maximum torque measured at the end of the run τmax. Black circles and vertical dashed lines
represent detected critical γ̇ where laminar trend and torque curve diverge. The colour scheme for particle
concentrations is the same as in figure 2. (a) Φ = 0 %, (b) Φ = 6 %, (c) Φ = 14 %.

slope proportional to the fluid viscosity (Couette 1890; Dubrulle et al. 2005; Eckhardt,
Grossmann & Lohse 2007). Any departure of the torque measurements (figure 4 full
lines) from this linear trend (figure 4 dotted lines), which becomes even more visible
when plotting the difference between the laminar prediction and the torque measurement
(figure 4 dashed lines), indicates a change in the friction regime.

For EIT, this corresponds to a sudden jump in measured torque (Martínez-Arias &
Peixinho 2017; Moazzen et al. 2023), followed by a gradual convergence towards a
similar laminar-like torque–R slope, yet shifted upwards (Moazzen et al. 2023, figure 3c,
figure 4a). The coupling of all three indicators (space–time diagram, frequency map,
torque dynamics) allows to detect the critical R value for the onset of EIT when it arises,
labelled Rc, as illustrated in figure 3(a–c), with a high degree of accuracy (less than 0.5 %
of variation on Rc obtained with the three methods, on all used fluids).

When no EIT is detected, no jump is reported. Yet, a change in trend is still observed.
This takes the form of a decrease in the slope of the measured torque–R curve at a given
critical R value (circle in figure 3f ) or shear rate (circles in figure 4b,c), corresponding to a
continuous increase in the measurement-to-laminar prediction difference (figure 4 dashed
lines).

It is remarkable that in pure Newtonian or particle loaded Newtonian fluids, primary
and higher order bifurcations are always accompanied by secondary flows and lead to
an increase in the torque–R curve slope (Ramesh et al. 2019; Dash et al. 2020; Kang &
Mirbod 2021; Moazzen et al. 2022). Here, the milder slope suggests that additional energy
dissipation may occur elsewhere in the flow reducing the friction dissipation at the inner
cylinder as compared to the laminar trend, as will be discussed later.

3. Results and discussions

Figure 3 illustrates the two types of results encountered. For particle-free fluids, the direct
transition from CCF to EIT as depicted by Groisman & Steinberg (1996), Moazzen et al.
(2023) and expected in this set-up from our previous study (Moazzen et al. 2023) is
indeed evidenced. A similar transition is also found in low particle volume fraction fluids
(2 %), as illustrated in figure 3(a–c) (C̃ = 300 ppm, Φ = 2 %). However, for all higher

997 A19-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

78
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.781


C. Carré, M. Moazzen, T. Lacassagne and S.A. Bahrani

Φ = 0 %

Φ (%)

Φ = 2 %

(b)(a) (c)

Moazzen et al. (2023)
Experimental data
Pakdel-McKinley criterion

Lacassagne et al. (2021)
Present work

Groisman &
Steinberg (1996)

20

100

Unexplored

101 101

101

102

103

10010–1

40

60

80

100

120

140

160

RcN
 in purely

Newtonian fluid

200

180

R c
, R

cN

R c
/
R c

N

W
c

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

300 400 500 0

2

4

6

8

10

12

14

E0 E0 C̃ (ppm)

Figure 5. (a) Critical value Rc for the onset of EIT as a function of the base fluid elastic number E0 compared
with (b) previous literature data. The horizontal dashed line in panel (a) represents the critical Reynolds number
RN

c for the onset of the primary instability in a Newtonian fluid in the same Couette geometry (Moazzen
et al. 2022). Errors bars are derived from uncertainty propagation from viscosity (dominant) and detection
(negligible) uncertainties. (c) Critical Wc for the onset of EIT (squares) compared with the purely elastic
instability threshold computed with the Pakdel–McKinely criterion adapted to the Taylor–Couette geometry
(plus signs, see (3.1) proposed by Schäfer et al. 2018). Empty squares are present work values for Φ = 0 % and
full ones for Φ = 2 %.

particle volume fractions, no such transition is observed in the investigated R range, as
illustrated in figure 3(d–f ) (C̃ = 300 ppm, Φ = 6 %): the space–time diagram displays no
clear sign of chaotic behaviour, the frequency maps no clear change in spectral signature
and the torque measurement no clear jump. The two types of behaviour will be discussed
separately in what follows.

3.1. Particle-free and dilute cases: EIT
For all fluids where EIT has been evidenced (all polymer concentrations at Φ = 0 % and
Φ = 2 %), Rc values for the onset of EIT are represented in figure 5(a) as a function of
the base fluid E0 value. The E0 values are much higher than those reported in previous
literature for elasto-inertial TCF of particle loaded viscoelastic fluids (Lacassagne et al.
2021) and also significantly higher than our previous work (Moazzen et al. 2023) (mostly
owing to the difference in working fluids: increased solvent viscosity, high polymer
molecular weight, high polymer concentrations – see figure 5b). A reduction in Rc with
increasing E0 could have been expected from previous studies (Groisman & Steinberg
1996; Moazzen et al. 2023). It here appears that in the particle-free (Φ = 0 %) case,
increasing E0 (through an increase in polymer concentration) only leads to a weak
reduction of Rc (figure 5, full markers). From figure 5(c), it can clearly be seen that the
onset of EIT (square symbols) occurs at critical Wc values much higher than what would
have been expected from the Pakdel–McKinley criterion (plus symbols) for the onset of
purely elastic instability in curved streamline flows (Pakdel & McKinley 1996; Schäfer
et al. 2018). This criterion is expressed as

WPMcK
c = Mcrit√

2(1 − β)
× 1√

ε
, (3.1)
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Figure 6. (a) Torque measured on the inner cylinder as a function of W = γ̇ λN1 . Vertical dashed lines indicate
the Wc values for trend change. Dashed black linear trends correspond to the laminar flow state. Panels (b i)
and (b ii) are Rc as a function of Φ, and Wc as a function of E , respectively, with squares reporting the onset
of EIT and crosses the onset of EID, at approximately constant Rc values for each regime, indicated by dashed
lines. (c) Values of Wc (same symbols) scaled by the zero-particle value Wc(Φ = 0 %), as a function of the
particle-related viscosity increase (μΦ/μ). The grey area corresponds to EIT data points and the vertical dashed
black line a μΦ/μ = 0.1 limit from dilute to semi-dilute concentration regime.

where Mcrit = 1.8, β = μs/μ with μs is the solvent viscosity and ε = δ/ri (Pakdel &
McKinley 1996). Thus, the chaotic behaviour is confirmed to be elasto-inertial (and not
purely elastic) in nature, requiring both non-negligible inertia and elasticity to develop,
even at such high E0 values.

When considering dilute (Φ = 0 and 2 % here) particle loaded fluids for which EIT is
observed in the experimental range, it appears that this monotonic decrease in Rc with E
is no longer observed, confirming that particles do mitigate the transition to EIT (figure 5,
empty markers), as expected from Lacassagne et al. (2021). The Rc values are essentially
identical for the Φ = 0 % and Φ = 2 % cases for all three polymer concentrations, with
possibly a slight decrease of Rc upon particle addition for the two lower E values (C̃ = 300
and C̃ = 400 ppm fluids), but a slightly delayed transition at Φ = 2 % in the higher E
case. The 2 % particle addition yet causes a significant decrease of the critical W values,
as illustrated in figure 6(c), (still much higher than the purely elastic instability threshold)
which matches the trend observed when revisiting data from Lacassagne et al. (2021). It
thus implies that in the dilute Φ limit, the effect of particle addition is mostly to promote
elasto-inertial instabilities by reducing the amount of elasticity (W) needed at a given
inertia (R) for EIT to arise.

3.2. Absence of EIT in the semi-diulte regime
A striking result though is that for particle volume fractions higher than 2 %, in what can
be referred to as a semi-dilute particle concentration regime (Moazzen et al. 2022), no
transition to EIT is observed in the investigated R range (see figure 3d–f ). The rheometer
limit is reached when γ̇ = 1405 s−1 for each sample, which, since viscosity increase
with particles concentration, leads to a decrease in the maximum attainable value Rmax
and Wmax. EIT not being observed here thus implies that it has been either delayed
beyond Rmax or Wmax, or completely suppressed, in such semi-dilute suspensions. The
question naturally arising is then: Could the effect of particle addition simply be to globally
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reduce the fluid’s elasticity, resulting in apparent E values low enough for elasto-inertial
instabilities no longer to be expected? At this point, it is thus worth focusing on the
effect of particle addition on the apparent viscoelastic time scales of particle loaded fluids.
Those are measured by two protocols, as detailed in § 2.3: normal stress differences and
elongational experiments. Results are reported in figure 2(b) (scaled by the Φ = 0 %
value, λ0) and in table 1. As a reminder, the apparent elastic numbers E are computed
for each fluid from λN1 values and also reported in table 1. It appears that 2 % particle
addition leads to a steep decrease of λ and thus of E . Although the elastic time scale
keeps a weakly decreasing trend with particle addition beyond 2 % (confirmed by both
measurement techniques), the simultaneous increase in fluid viscosity makes it so that E
remains in the same range on the whole set of Φ investigated. It means that all fluids
are still in the high elasticity regime (E ∼ O(100)), where direct transition from CCF to
EIT would be expected (Groisman & Steinberg 1996; Moazzen et al. 2023). Thus, the
suppression or delay of EIT upon particle addition beyond 6 % cannot solely be explained
by an apparent reduction of the fluid overall elasticity. Moreover, should that be the case,
the difference in behaviour would be expected between the 0 % and 2 % cases for which
the decrease in E is the more evident, and not between the 2 % and 6 % cases for which
E stay equivalent or even increase. The change in behaviour between 2 % and 6 % has to
be understood in light of local flow dynamics and fluid particle interactions, and in that
context, torque measurements provide insightful information.

Figure 6(a) displays the evolution of the torque measured as a function of W = λN1 γ̇

for the example of the C̃ = 300 ppm (E0 = 2.07) fluid in one dilute case where EIT is
observed (2 %, E = 0.62) and two semi-dilute cases for which it is not reported (6 %
– E = 1.06 and 10 % – E = 0.46). As a confirmation of the above statement on the
elasticity levels remaining high, it can be seen that the W range covered is similar in
all three cases. The transition to EIT in the dilute 2 % case is evidenced by a clear jump in
torque values (Martínez-Arias & Peixinho 2017; Moazzen et al. 2023). No such behaviour
is observed for the two other cases. However, as mentioned in § 2.3, close inspection
of the torque curves reveals a change in slope at W values (reported in table 1) close
to the critical one for the onset of EIT in the 2 % case, where the torque–R curve is
found to depart from its laminar, CCF trend (see figures 3f and 4b,c). Thus, although
there is neither visual nor dynamic (torque) evidence of EIT, the torque measurement
suggests that there is indeed a modification of the dynamics, in terms of friction. The latter
observation supports the assumption that EIT is not only delayed, but rather replaced by
another mechanism qualified here as EID, which, to the best of the authors knowledge, has
never been reported before. EID is not associated with observable flow structures and thus
contributes to an apparent relaminarization of the flow by suppression of the large-scale
chaotic patterns, but still corresponds to different friction dynamics than the initial laminar
CCF. Indeed, the fact that the torque increases with increasing inertia is milder than the
laminar prediction supports the hypothesis that additional energy dissipation is occurring
in the flow, reducing friction at the inner cylinder, hence the term ‘dissipative regime’.
It is expected that particle–particle and particle–polymer interactions are at the root of
such a mechanism, considering that EIT can only be observed in the semi-dilute range
(Φ > 6 %). This assumption will be discussed further. It should here be recalled that EIT
is instead characterized by a torque increase ( jump) and then convergence towards a linear
trend with similar slope as that found in CCF (see figure 3c) corresponding to a saturation
in the EIT dynamics as reported by Moazzen et al. (2023, figure 6). This is thus a first
fundamental difference between EIT and EID.
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3.3. Onset of EID and EIT
Further information can be gained on this new transition by plotting the evolution of all
Rc and Wc values (for the onset of EIT with squares or EID with crosses) as a function
of Φ and E in figures 6(b i) and 6(b ii), respectively. This shows that Rc is both quasi
Φ-independent and E-independent, although slightly lower for the onset of EID than for
EIT, suggesting that the EID mechanism is actually occurring sooner (in terms of R during
the ramp-up protocol) than EIT in semi-dilute particle loaded fluids, replacing it under
comparable elasto-inertial conditions. Figure 6(c) compiles the previous results by plotting
all Wc (EIT or EID) normalized by the Φ = 0 % pure viscoelastic fluid value, as a function
of the relative particle contribution to the overall viscosity μΦ/μ = (μ − μ(Φ = 0))/μ.
The graph splits up into two distinct regions. On the left-hand side, the viscosity increase
upon particle addition remains negligible (μΦ/μ < 0.1) and EIT is promoted, as discussed
earlier, with Wc < Wc(Φ = 0). On the right-hand side, particles significantly increase
the overall viscosity (μΦ/μ > 0.1) and, in the present work, EIT is replaced by EID. In
this second range, it appears that the critical W values for the onset of EID increase with
increasing Φ (and thus increasing μΦ/μ). The effect of particle addition in the semi-dilute
regime can thus be understood as follows. First, the significant increase in overall viscosity
μ leads to a stronger viscous dissipation mechanism, as illustrated by the steeper torque
slopes in the laminar regime in figure 6(a) and in figure 4. Further increasing the inner
cylinder rotational speed leads to an increase in W and R until the required elasto-inertial
conditions for the onset of EID are reached and, in particular, the constant critical R
number. However, this requires higher γ̇ and thus higher W in the most particle loaded
fluids, where the apparent increased viscosity promotes viscous dissipation and delays the
onset of EID. Interestingly, Lacassagne et al. (2021) observed the same trend in the same
μΦ/μ > 0.1 range for the delay of the EIT onset in non-dilute particle suspensions (see
figure 6c, diamonds).

Connection can be made with the recent work of Zhang & Shaqfeh (2023), who used
numerical simulations to show that under conditions of β = μs/μ � 0.5 and W � 1
similar to that of the present work, particle–particle interactions significantly affect the
viscoelastic stress hardening mechanisms known to arise in such suspensions by altering
the particle-induced fluid stresses, leading to an increased stresslet. Interestingly, this effect
was evidenced for Φ values of 2.5 % or 5 % quite close to the critical concentration
value reported here for the EIT–EID shift, suggesting a possible connection between this
semi-dilute mechanism and the observation of EID.

3.4. Pseudo-Nusselt number in EID
Additional insight into the EID regime developing after the transition can here only
be brought by the torque information, as no flow perturbation is observed from the
outer-cylinder perspective of flow visualization. It is yet worth mentioning that the direct
visualization method employed here only gives access to flow properties visible from the
flow periphery and the outer cylinder, while torque measurements probe the flow behaviour
closer to the inner cylinder. This suggests that the origin of EID could be spatially localized
either in the bulk of the flow or close to the inner cylinder with yet no associated large-scale
secondary flow structures, since they cause no apparent outer flow disturbance and no
increase in apparent torque on the inner cylinder as would many well-known inertial,
elastic or elasto-inertial Taylor–Couette instabilities (Moazzen et al. 2022, 2023).

A relevant parameter to infer radial energy transfer properties from torque measurements
is the pseudo-Nusselt number N as defined by Eckhardt, Grossmann & Lohse (2000) and
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Figure 7. (a) 
N = N − Nc as a function of 
R = R − Rc in the EID regime for a 300 ppm fluids with
Φ = 6, 10, 14 %. (b) Mean of the slope calculated as ∂
N /∂
R for all experiments where EID was reported.
Markers and colours are similar to those used in figures 2, 5 and 6.

used for example by Moazzen et al. (2022, 2023):

N = J
Jlam

=
τ

2πρh

2νr2
or2

i
Ω

r2
o − r2

i

. (3.2)

This quantity represents the flow capacity to transfer momentum in the radial direction,
J being the momentum transport term and Jlam its value in the laminar CCF state.

For all experiments in the EID regime, the critical pseudo-Nusselt value Nc = N (γ̇c)
is defined at the onset of EID, and the quantity 
N = N − Nc is plotted as a function of

R = R − Rc. The example of the C̃ = 300 ppm base fluid is illustrated in figure 7(a).
This represents the variations of radial momentum transfer from the laminar reference
within the EID regime, upon increasing inertia.

In most particle-loaded Newtonian fluids, this pseudo-Nusselt number is increased
compared with the laminar case by secondary flows at the primary bifurcation, showing an
improved radial momentum transfer ability (Ramesh et al. 2019; Dash et al. 2020; Kang
& Mirbod 2021; Moazzen et al. 2022). In EIT, one would also report 
N > 0 and a 
N
increase with increasing 
R (not shown here for the sake of plots’ clarity) consistent
with the observations of Moazzen et al. (2023). However, from Φ = 6 %, this quantity
decreases with increasing 
R, showing an opposite N behaviour between EIT and EID,
and supporting the fact that momentum radial transfer is reduced with EID. Figure 7(a)
also suggests that increasing Φ leads to an even steeper decrease of 
N .

To investigate this point, the slope (∂
N /∂
R)(
R) is locally computed for all
fluids (those represented in figure 7a and all the 400 and 500 ppm cases) and average
values over the full 
R range are represented in figure 7(b) (with the error bars obtained
from the standard deviation on the same range), as a function of the particle-to-polymer
concentration ratio Φ/C̃. A good collapse on a clear monotonic trend is observed
positioning the particle-to-polymer concentration ratio as a key parameter of the EID
behaviour. This is yet another indication of the possible connection to the mechanisms
reported by Zhang & Shaqfeh (2023). The more particles and subsequent particle–particle
interactions for a given number of polymer chains, the larger the stresslet increase and
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the stress hardening effects on a limited number of polymer chains, and thus the stronger
the resulting local energy dissipation, reducing the radial momentum transfer towards the
outer cylinder.

4. Conclusion

This study aimed at describing the influence of particle addition on the transition to EIT in
high elasticity base fluids. Spherical particles were added in concentration regimes ranging
from dilute to semi-dilute, in base fluids with high E values for which direct transition
from CCF to EIT upon R increase would be expected. Transitions were monitored
using a coupling of flow visualization and inner-cylinder torque measurements. Transition
to EIT in particle-free Boger fluids was indeed retrieved, at lower Rc and milder E0

dependency than in previous studies (Groisman & Steinberg 1996; Moazzen et al. 2023),
but still with a clear elasto-inertial nature. The addition particles at a low volume fraction
(Φ = 2 %) led to an earlier onset of EIT in terms of Wc (but not obvious in terms of Rc).
However, the most striking result was that particle addition at higher volume fractions
(Φ ≥ 6 %, semi-dilute regime) led to EIT being no longer observed in the R and W range
investigated, suggesting an apparent relaminarization of the flow with either a delay or a
replacement of EIT, which could not be ascribed to a reduction in apparent fluid elasticity.
Instead, a new dissipative mechanism, termed here elasto-inertial dissipative (EID), was
identified from the torque curves and friction properties. The critical conditions for the
onset of EID also seem elasto-inertial and quite similar to those for the onset of EIT in
pure fluids or dilute suspensions. It appears that the relative increase of fluid viscosity
upon particle addition is a key parameter in the onset of EIT or EID, as confirmed by
compiling results from the present work and Lacassagne et al. (2021): the dilute regime at
Φ ≤ 5 % corresponds to a minor increase in viscous dissipation (μΦ/μ ≤ 0.1) and earlier
onset of EIT, while increasing Φ in the semi-dilute regime sees significant increase in
viscous dissipation upon particle addition (μΦ/μ > 0.1) and a delay in EIT or delayed
onset of EID. The evolution of the pseudo-Nusselt number in the EID regime shows that
particle addition reduces radial momentum transfers, commensurate with the Φ/C̃ ratio.
In summary, EID is thus expected to be: (1) a local mechanism; (2) elasto-inertial in that
it requires non negligible values of both R and W ; and (3) driven by polymer–particle
interactions as it arises only in the semi-dilute regime. The accurate determination of the
critical conditions for the onset of EID (Φ,W,R and geometrical parameters) could be
the object of a future study. More generally, future studies should aim at providing local
quantitative information on flow velocity fields (Boulafentis et al. 2024) and possible
particle migration phenomena. This would allow to investigate local particle–polymer
interaction mechanisms and their effect on polymeric stress field in a semi-dilute context
(Zhang & Shaqfeh 2023), which would be of great interest to unravel the mechanisms
behind delayed EIT or EID in the Taylor–Couette flow of particle-loaded viscoelastic
fluids.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.781.
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