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Molecular Spectroscopy

3.1 Introduction

Interstellar molecules – to be precise, diatomic radicals – were first discovered through
their electronic transitions in the visual and near-UV regions of the spectrum in the 1930s.
The diffuse interstellar bands (DIBs) – a set of some 400 interstellar absorption lines in the
visible and far-red parts of the stellar spectra – date back even further. The DIBs also find
their origin in molecular electronic transitions. In the solar system, the spectra of comets
are dominated by emission bands due to simple molecular radicals and cations. Typically,
molecular bond strengths are some 5–10 eV and electronic transitions occur in the far-UV.
If there are low lying empty orbitals – as for radicals or ions – transitions shift toward
longer wavelengths.

Vibrational transitions involve motions of the atoms in the molecule. They shift therefore
by a factor

√
me/M toward lower frequencies. As this is the mid-IR range of the spectrum,

first observations of interstellar molecules in the infrared had to await the development of
sensitive detectors and the opening up of this window in 1970s. Ro-vibrational transitions
of molecules are routinely seen in absorption in the spectra of a wide variety of objects
including cool giants (later than spectral type K), brown dwarfs, (exo)planet atmospheres,
Hot cores associated with high mass protostars, and obscured galactic nuclei such as
UltraLuminous Infrared Galaxies. In emission, the ro-vibrational transitions of H2 pumped
by UV photons are prominent in the spectra of photodissociation regions. These spectra
also show strong emission bands due to vibrational fluorescence of UV-pumped polycyclic
aromatic hydrocarbon molecules. The mid infrared spectra of all star-forming galaxies
are dominated by these bands. Molecular vibrational emission bands are also present in
the spectra of comets, protoplanetary disks, and shocks in molecular clouds. Vibrational
transitions correspond to energies of typically a few hundred to a thousand degrees.

The discovery of (pure) rotational transitions due to interstellar molecules dates back
to the late 1960s. As detectors improved, telescopes grew in size, and the sub-millimeter
sky opened up, the list of molecules detected through their pure rotational transitions
steadily grew over the years. When ALMA entered its operational phase, the pace of
new molecular identifications increased manyfold. The energies associated with molecular
rotations are typically a few degrees, depending on the moment of inertia, and occur in the
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3.2 Rotational Spectroscopy 59

(sub)-millimeter to far-infrared. Rotational transitions dominate the cooling of molecular
clouds and in particular regions of star formation. The multitude of lines also provide
powerful probes of the physical conditions in the emitting gases.

This Chapter introduces various aspects of molecular spectroscopy including energy
levels, transition frequencies, selection rules, and transition strengths. There are separate
sections on pure rotational transitions, on vibrational and ro-vibrational transitions, and
on electronic spectra. Rotational spectroscopy has developed into a main staple of astron-
omy and a course would do well by discussing in depth the rotational spectra of linear
molecules (Section 3.2.2). Symmetric top molecules (Section 3.2.3) present “merely” vari-
ations on a theme, while the spectra of asymmetric top molecules (Section 3.2.4) are
too complex to be caught in simple rules (but are of great individual interest). These
sections can be left for background reading. That also holds for the sections on hyper-
fine splitting, �-doubling, nuclear spin, and partition function (Section 3.2.5–3.2.8). The
section on transitions strength (Section 3.2.9) is important for all students, though. In the
vibrational spectroscopy section, Hooke’s law and molecular identifications are important
for all astronomy students while partition function and gas phase ro-vibrational spectra
might be assigned to background reading. Electronic spectroscopy can also be left to the
individual students interested in this aspect. The chapter ends with a discussion of the
spectroscopy of three specific molecules, H2, CO, and H2CO (Section 3.5), and together
they serve well as a framework to introduce students to relevant concepts introduced in this
chapter. Finally, issues involving molecular excitation, emission intensities, and analysis of
molecular observations are presented in Chapter 4.

3.2 Rotational Spectroscopy

3.2.1 Energy Levels

Rotational transitions arise from the rotation of the permanent dipole interacting with an
oscillating electromagnetic field. Typically, this occurs in the microwave region of the
spectrum. Rotational transitions are – to first order – set by the moments of inertia of the
molecule. Working in the center of mass frame, we can define three orthogonal axes at the
center of mass of the molecule, a, b, and c. The moments of inertia are then,

Ij =
∑
i

mir
2
i j = a, b, c (3.1)

where mi is the mass of atom i at distance ri from the center of mass and the summation
is over all atoms. By convention Ic ≥ Ib ≥ Ia . As an example, for a diatomic molecule,
the moment of inertia is I = μR2 with μ the reduced mass and R the distance between the
atoms. For a rigid rotor,1 the rotational structure is set by the symmetry of the molecule.

1 No distortion under rotation.
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Table 3.1 Classification of rotors

Moment of inertia Symmetry Rotational constants Example

Ia = Ib = Ic Spherical top A = B = C CH4
a , SF6

a

Ia = 0,Ib = Ic Linear molecule A = ∞,B = C CO, CO2
a

Ia < Ib = Ic Prolate symmetric top A > B = C C2H6
Ia = Ib < Ic Oblate symmetric top A = B > C C6H6
Ia < Ib < Ic Asymmetric top A > B > C H2O

aThese symetric molecules have no permanent dipole and therefore no pure rotational
spectrum.

Table 3.1 summarizes the classification. For a rigidly rotating molecule, the rotational
energy levels can be described classically by the rotations of a rigid body,

Er = 1

2

(
Iaω

2
a + Ibω

2
b + Icω

2
c

)
= 1

2

(
J 2

a

Ia
+ J 2

b

Ib
+ J 2

c

Ic

)
, (3.2)

with ωj the rotational frequency and Jj the angular momentum (= Ijωi).

3.2.2 Linear Molecules

We will start with a simple system, a linear molecule. The quantum mechanical analog is
then, J = √

J (J + 1)h̄ with J (= 0,1,2, . . . ), the rotational quantum number, and we
have,

Er = J (J + 1) h̄2

2I
. (3.3)

We can write this in terms of the rotational constant, Be,

Be = h

8π2cI
(3.4)

in wavenumbers, as,

Er

hc
= Be J (J + 1) . (3.5)

As a guide,

Be � 17

I
(
amu Å2

) cm−1 � 500

I
(
amu Å2

) GHz. (3.6)

Radiative rotational transitions are allowed for �J = ±1, and the spectrum consists of a
set of evenly spaced lines in frequency space (Figure 3.1); viz.,

ν (J + 1 → J ) = E (J + 1) − E (J )

hc
= 2B (J + 1) . (3.7)
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Figure 3.1 Left: Schematic rotational energy level diagram for a linear molecule. Energy – in units
of the rotational constant, B – increases upward. The individual levels have been labeled with their
J -value. Allowed transitions correspond to �J = ±1. Right: To first order, the spectrum of a linear
molecule consists of a set of equidistant lines. Frequency is in units of the rotational constant.

As Be decreases with 1/I , molecules consisting of heavier atoms will have transitions
at lower frequencies. So, the lowest frequencies for CS and CO are at aproximately
49 and 115 GHz, respectively (cf. Table 3.3). Transitions of light hydrides occur in the
far-infrared (e.g. HF at 1.2 THz), while the groundstate pure rotational transition of H2

falls at 10.6 THz (28 μm).
A rotating molecule will pull apart and the moment of inertia will increase with increas-

ing rotation. Allowing for this centrifugal stretching, the energy levels become

Er

hc
= Be J (J + 1) − De J

2 (J + 1)2 , (3.8)

with De the centrifugal distortion constant. The line frequencies are then,

ν (J + 1 → J ) = 2B (J + 1) − 4De (J + 1)3 (3.9)

= 2B (J + 1)

(
1 − 2De

B
(J + 1)2

)
. (3.10)

Centrifugal distortion will thus destroy the constant separation of rotational transitions in
the spectrum of a rigid rotor. The way it is written above, centrifugal distortion represents
a correction factor on B and this correction depends on the magnitude of the angular
momentum. Obviously, for faster spinning molecules, the bond will lengthen more and
the increased moment of inertia results in a decreased rotational constant. For a harmonic
oscillator, De = 4B3

e /ν
2
e with νe the vibrational frequency (in cm−1). Centrifugal distor-

tion is, thus, a “small” correction factor to the frequency of the rotation; i.e. De/Be =
4 (Be/νe)

2 � 1. Consider CO with νe = 2170 cm−1 and Be = 1.93 cm−1; the correction
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factor is 8.5 × 10−7. In astronomy, for pure rotational transitions, this clearly has to be
taken into account (�v �0.26 (J + 1)2 km/s). And even for ro-vibrational transitions (see
Section 3.3.4), this correction factor amounts to 0.1 cm−1 on a level separation of 1 cm−1

at J = 10.
Anharmonic effects can be included as higher order correction terms. Vibrational

motions occur at much higher frequency than rotations and hence a molecule will vibrate
many, many times during one rotation. As rotations depend on the average of 1/R2, even
for harmonic oscillators, the rotational constant will vary with vibrational excitation. For
anharmonic oscillators, the rotational constant will decrease with increasing vibrational
excitation as the average separation between the atoms increases. The dependence of the
spectrum on the vibrational state is captured in small correction factors on the rotational
constant as well as on the centrifugal distortion constant that depend on the vibrational
quantum number of the modes involved,

Bv = Be − αe

(
v + 1

2

)
+ · · · (3.11)

Dv = De + βe

(
v + 1

2

)
+ · · · . (3.12)

These are small correction factors. If we include the cubic term in the potential expansion,
we have

αe = 24B3
e R

3
e g

ω3
e

− 6B2
e

ωe

, (3.13)

where g is the coefficient of the cubic term in the expansion (in units of cm−1) and the fun-
damental vibrational frequency, νe, and the anharmonicity parameter, xeνe, are described
in Section 3.3.1. Often this parameter is expressed using a Morse potential,

αe = −6

(
Be

νe

) (
Be −

√
xeνeBe

)
. (3.14)

As the Morse potential is fully described by the bond energy, νe and xeνe, no new parameter
is introduced and differences of this expression with measurements are then an indication
of the deviation of the actual potential from the Morse potential. Expanding the potential
again to cubic terms, we have for βe,

βe = De

(
8ωexe

ωe

− 5αe

Be

− α2
eωe

24B3
e

)
. (3.15)

However, βe is a small correction on a small correction and is often neglected.
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3.2.3 Symmetric Top Molecules

Let’s now consider a symmetric top molecule (Table 3.1). Two moments of inertia are the
same – say, Ib = Ic (a prolate symmetric top) – so we can write,

Er = J 2
a

2Ia
+ J 2

b + J 2
c

2Ib
, (3.16)

with J 2 = J 2
a + J 2

b + J 2
c , we then have,

Er = J 2

2Ib
+ J 2

a

(
1

2Ia
− 1

2Ib

)
. (3.17)

We again make the classical to quantum mechanics transformation, J 2 → J 2 (J + 1) h̄2.
As there are two main directions of rotation, there are two quantum numbers. Introducing
K as the projection on the molecular axis – e.g. a for prolate molecules (and c for oblate
species; Table 3.1) – we have Ja = Kh̄. As Ja is quantized, the total angular momentum
J can only take a few specific directions. With this, we arrive at,

Er

hc
= BJ (J + 1) + (A − B)K2, (3.18)

where A and B are the rotational constants, A = h/8π2cIa and B = h/8π2cIb. Again, the
units for these rotational constants are wavenumbers. For an oblate symmetric top, we have
to replace A by C (= h/8π2cIc). The rotational quantum number, J , is J = 0,1,2, . . . . As
K is the projection of J , it can attain the values, K = 0, ± 1, ± 2, . . . , ± J . Note that the
energy is independent of the sign of K and each J -level has a 2J + 1 fold degeneracy.

As for linear molecules, a correction term for centrifugal distortion can be included,

Er

hc
= BJ (J + 1) + (A − B)K2 − DJJ

2 (J + 1)2 − DJKJ (J + 1)K2 − DKK4,

(3.19)

(cf. Eq. (3.8)).
The selection rules are �J = 1 and, as there is no dipole moment along the symmetry

axis (a), the angular momentum along the symmetry axis cannot change due to radiation,
and we have �K = 0. The rotational frequencies are,

νJK = 2B (J + 1) − 4DJ (J + 1)3 − 2DJK (J + 1)K2. (3.20)

If we write this as,

νJK =
(

2B − 4DJ (J + 1)2 − 2DJKK2
)
(J + 1) (3.21)

then we recognize again that the centrifugal distortion is a correction factor to B that
depends on K . This represents a small change in the moment of inertia, IB .

Figure 3.2 illustrates the energy level diagrams for prolate and oblate symmetric
tops. We can consider two extremes: K = J with rotation around the molecular axis
and EJ,K=J /hc�AJ 2 and K = 0 with rotation perpendicular to the molecular axis and
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64 Molecular Spectroscopy

Figure 3.2 Schematic rotational energy level diagram for a prolate (left) and oblate (right) symmetric
top molecule. Energy increases upward. The individual levels have been labeled with their J -value.
The K-ladders have been shifted horizontally. Allowed transitions occur within each K-ladder.
Because K is the projection of J on the molecular symmetry axis, we have K ≤ J .

EJ,K=0/hc = BJ (J + 1). In general, for a given K , we recognize the energy level
distribution for a linear rotor except that they start with J = K rather than J = 0. Note,
again, that the energy does not depend on the sign of K and hence, except for K = 0, each
level is degenerate. Given the selection rule, �K = 0, the spectrum is that of a linear rotor.
Ignoring the centrifugal distortion, the different K-ladders would coincide but, in reality,
transitions will split up. Also, an excited molecule will relax radiatively along its K-ladder
and excitation will tend to bottle up in the meta-stable J = K level.

3.2.4 Asymmetric Top Molecules

For asymmetric top molecules, all three moments of inertia are different and there is no
simple general formula describing the energy levels. Specifically, J and its projection
on a fixed space axis are constants of motion and J as well as M are good quantum
numbers. However, the projection of J on any of the molecular axes is not conserved
and hence none of the molecular axes carries out a simple rotation around J . As a result
K is no longer a good quantum number and there is no set of quantum numbers with a
simple physical meaning that can be used to describe states. The energy of level, JKaKb

, is
generally written as,

Er

hc
=
(
A + C

2

)
J (J + 1) +

(
A − C

2

)
f (κ,Ka,Kb) , (3.22)

where the asymmetry parameter, κ is given by

κ = 2B − A − C

A − C
. (3.23)

For a prolate top κ = −1 while for an oblate top κ = 1. Extensive tabulations for the
function f exist. The spectrum of an asymmetric rotor is thus extremely complex. In
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Figure 3.3 Energy level diagram for H2CO, a near-prolate molecule. Note that formaldehyde has
para (KaKb are ee or eo) and ortho (KaKb are oe or oo, where e=even and o=odd) levels. Figure
reproduced with permission from [6]

addition to the irregular distribution of energy levels, the selection rules and transition
probabilities between these levels are complicated as the dipole moment may lie in any
arbitrary direction with respect to the principal axes of inertia.

When Ib �Ic � Ia (prolate), the levels can be represented by JKaKb
, where Ka and

Kb are approximate quantum numbers. An analogous approach can be followed for an
oblate-like case (Ib �Ia � Ic). As an example, formaldehyde is a near-prolate molecule
(κ = −0.96). The energy levels show the characteristic pattern of the prolate case
(Figure 3.3). The slight deviation from the pure prolate symmetric top case lifts the
degeneracy of the levels with K > 0 and each level is now split into two. Nevertheless,
for the lowest levels, transitions between the different K-ladders are still not allowed.
Formaldehyde has para and ortho states, characterized by antiparallel and parallel nuclear
spins of the H atoms. These nuclear spin states combine with the rotational states (Section
3.2.7) and para states have K=even while ortho states have K=odd.

H2O is another example of an asymmetric top molecule (κ = −0.44). The energy levels
are labeled by JKaKc , where the total angular momentum, J , is a good quantum number
while the indices, Ka and Kc, refer to the corresponding prolate and oblate symmetric
tops. Sometimes, the pseudo quantum number τ = Ka − Kb is introduced for labeling
convenience. The index τ runs from J, . . . ,0, · · · − J (c.f. K for a symmetric top) and
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Figure 3.4 Energy level diagram for H2O. Energies in cm−1. Figure courtesy of F. Helmich

labels the levels in order of decreasing energy. The H2O energy levels (Figure 3.4) can still
be described by JKaKc . From the symmetry, we have for the selection rules �J = 0, ± 1,
�Ka = ±1, ± 3 . . . and �Kb = ±1, ± 3 . . . . Hence, transitions between K-ladders are
now allowed. Water also has para and ortho states, characterized by antiparallel and parallel
nuclear spins. The nuclear para states have either Ka or Kc odd while the ortho states have
Ka and Kc either both even or both odd.

3.2.5 Hyperfine Transitions

The rotational spectra of many astrophysically relevant molecules contain hyperfine split-
tings due to electric quadrupole and magnetic dipole interactions with atoms with nonzero
nuclear spin, such as 13C, 14N, and 17O. The nuclear spin, 
I , will couple with the rotational
angular momentum, 
J to 
F = 
I+ 
J . The number of hyperfine levels is the smaller of 2J+1
and 2I + 1. This is most relevant for nitrogen-bearing molecules and levels with J > 0 are
split in to three hyperfine transitions. The relative intensities of the hyperfine transitions of
a molecular transition can be calculated and the reader should consult a specialized book
on this topic.

3.2.6 � Doubling

Some species have nonzero electronic angular momentum and this can couple to the rota-
tions of the molecule. This has an effect on the molecular spectrum. We will focus here on
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Figure 3.5 �-doubling of rotational levels in diatomic molecules. 
N is the nuclear rotational vector.

� is the projection of the orbital angular momentum on the internuclear axis. 
� is the projection of 
S
on the internuclear axis. 
� is the vectorial sum of the latter two. When � � 0, the net current creates
a magnetic field that can couple with the spinning electrons, splitting the energy levels.

a diatomic molecule with weak spin–orbit coupling and nonzero electron spin S. As dis-
cussed in Section 3.4.2, the term symbol for diatomic molecules is given by 2S+1�� with 
S
the total electron spin, 
� the projection of the orbital angular momentum on the internuclear
axis, 
� the projection of 
S on the internuclear axis, and 
� = 
� + 
� (Figure 3.5). The
whole electronic shell can be considered to rotate around the molecular z axis. For a
rotating molecule, we have the angular momentum of the rotation perpendicular to the
z-axis, 
N , and the total angular momentum of the electrons – composed of the orbital
angular momentum, 
L, and the spin angular momentum, 
S – precessing around the z-axis.
The projections of the electronic components add to the total value (which is conserved),
�h̄ = (� + Ms) h̄. As � is not zero, the total angular momentum of the molecule, J , is
no longer perpendicular to the z-axis and the molecule will rotate around the space-fixed
direction of 
J .

The rotating molecule is then a symmetric top with the two moments of inertia, Ie, of
the electrons rotating around the z-axis and Im of atoms and electrons rotating around an
axis perpendicular to the z-axis, with Ie � Im. The rotational energy is then,

Erot = J 2
x

2Ix
+ J 2

y

2Iy
+ J 2

z

2Iz
. (3.24)

We have J 2
z = �2h̄2 and J 2

x +J 2
y = J 2 −J 2

z = (J (J + 1) − �2
)
h̄2 where we have made

the classical to quantum replacement. This results in,

Erot

hc
= Be

(
J (J + 1) − �2

)
+ A�2, (3.25)

with the molecular rotational constant, Be = h/
(
8π2cIm

)
, and the electronic rotational

constant, A = h/
(
8π2cIe

)
. The latter term in the expression for the rotational energy does

not depend on the rotation itself and is added to the electronic energy of the state �.
Generally, ground states of diatomic molecules are 1� states with � = 0 and we

recover expression (3.5). But, as an example, consider OH with the electronic ground state
2� (L = 1 and S = 1) (Figure 3.6). Spin–orbit coupling provides then two sets of states
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Figure 3.6 The rotational ladder of OH is split into two (2�1/2 and 2�3/2) by spin–orbit coupling.
Lambda doubling splits each level into half of opposite parity and hyperfine splitting results then in
a total of four levels per J , labeled by the quantum number F . Splittings are not to scale. Known
maser transitions (see Chapter 11) are indicated by solid arrows and labeled in MHz while relevant,
pumping IR transitions are in μm. Figure taken from [10]

characterized by the electron orbital angular momentum, 1/2 and 3/2 (
−→
J ′ = −→

L + −→
S ),

each containing a set of rotational ladders characterized by the rotational motion of the
nuclei, J . Weak coupling between the electronic angular momentum and molecular angular
momentum leads to lambda doubling of the rotational levels, depending on whether both
are rotating in the same or in opposite sense. These �-doubles are then further split by
coupling between the spin of the unpaired electron and the proton. These hyperfine levels
have either parallel or antiparallel spins and are described by the total angular momentum
quantum number, F = J ± I . Each �-doublet can thus generate four lines; the transitions
in which F does not change are called main lines. The other two are the satellite lines.
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A magnetic field will split the 2F + 1 states of each hyperfine level further, leading to a
set of complex transitons with different polarization characteristics. Allowed transitions
require a parity change and �F = 0, ± 1 but F = 0 → 0 is forbidden.

In summary, for OH, the two possible orientations of the spin angular momentum rel-
ative to the internuclear axis give rise to multiplet splitting into 2�3/2 and 2�1/2 sys-
tems separated by approximately 140 cm−1. The interaction between the electronic orbital
motion and the nuclear rotation splits each rotational level into two spin doublet levels and
this lambda doubling is of order 0.1−1 cm−1. Finally, each lambda-doublet component is
doubled due to the contribution of the nuclear spin in its interaction with the electronic plus
rotational motion with a separation of approximately 10−3 cm−1 (Figure 3.6).

3.2.7 Nuclear Spin: Statistical Weight and Ortho and Para Species

The rotational degeneracy factor, gJ , reflects the possible projections of the angu-
lar momentum vector on a spatial axis and equals, gJ = 2J + 1 (as mj ranges from
−J, . . . , 0, . . . , J ). In addition, the statistical weight of rotational levels includes the
statistical weight of the nuclei, gn, given by

gn = 1

σ

∏
n

(In + 1) , (3.26)

where In is the spin of nucleus n and the product runs over all nuclei. The factor σ – part
of the rotational partition function – takes the symmetry of the molecule into account (c.f.
Section 3.2.8). Nucleons are fermions and have an intrinsic spin, 1/2. The statistical weight
of the nucleus can then be determined from the number of protons and neutrons. If the
number of protons and neutrons are both even then the nucleus has no spin. If they are both
odd then the nucleus has integer spin. If the number of protons plus the number of neutrons
is odd, then the nuclear spin is 1/2. So, H, N, C, O have In = 1/2, 1, 0, 0, respectively.
For relevant isotopes, we have D, 15N, 13C, 17O, 18O, equals In = 1, 1/2, 1/2, 5/2, 0. The
statistical weight is then given by,

g (J ) = gn (2J + 1) . (3.27)

Many molecular species come in para and ortho species, which differ in their nuclear
spins (para with antiparallel nuclear spins and ortho with parallel nuclear spins). The
presence of separate para and ortho species is a direct consequence of the generalized
Pauli principle: Wavefunctions have to be antisymmetric with respect to the exchange of
two fermions (particles with half-integral spin) and symmetric with respect to exchange
of two bosons (particles with integral spin). The total wavefunction is (approximately)
the product of the electronic, vibrational, rotational, and nuclear wavefunctions, ψtot =
ψeψvψrψn. As an example, consider H2 with a ground electronic state 1�+

g , which is
symmetric with respect to the exchange of the nuclei. The vibrational wave function
depends only on the internuclear distance and is thus symmetric as well. This implies that
product of the rotational and nuclear spin wavefunctions has to be antisymmetric.
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Consider first the nuclear spin wavefunction. H atoms are fermions with ms = ±1/2
(e.g. α and β). We have then four possible combinations for the two nuclei, 1 and 2:
α (1) α (2) and β (1) β (2) and the two linear combinations, (α (1) β (2) + α (2) β (1)) /

√
2

and (α (1) β (2) − α (2) β (1)) /
√

2. The first three of these wavefunctions are symmetric
with respect to exchange of the two nuclei. The latter is antisymmetric.

As mentioned above, we have to combine the symmetry of these states with those
of the rotational states. The rotational wavefunction boils down to spherical harmonics,
YJ,MJ (θ,φ), with J and MJ the rotational quantum numbers. Exchange of the two nuclei
corresponds to a rotation by π and the symmetry properties of associated Legendre polyno-
mials are given by P (π − θ) = (−1)J P (θ). Thus, even-J levels are symmetric and have
to combine with antisymmetric nuclear spin states, while odd-J levels are antisymmetric
and have to combine with symmetric nuclear spin states to yield overall antisymmet-
ric states.

This is also reflected in the statistical weight. Thus, for homonuclear diatomic molecules,
with atomic spins, In, we have two sequences of statistical weights for rotational levels
with J values differing in parity. The nuclear spin function is then given by, gn = gn (i),
according to Table 3.2, and,

gn (1) = 1

2
[(2In + 1)2 − (2In + 1)] (3.28)

gn (2) = 1

2
[(2In + 1)2 + (2In + 1)] (3.29)

Thus, for H2 (1�+
g ), we have In = 1/2 and for even (para) states, we have gn = 1 while,

for odd (ortho) states, we have gn = 3. Half of the rotational states belong to the ortho form
and half belong to the para form. The sum of the gn’s equals (2In + 1)2.

Transitions between para and ortho states involve a change in nuclear spin and are
thus forbidden. In terms of electro-magnetic allowed transitions, ortho and para forms
are therefore “separate” species and, in space, exchange between them requires chemical
reactions (e.g. H2 + H+

3 → H2 + H+
3 ) or interaction with paramagnetic impurities (e.g. the

lone electron pair on an oxygen atom) on a grain surface.

Table 3.2 Nuclear spin statistical weighta

+ − − +
Electronic state Indices g u g u

Even J gn (1) gn (1) gn (2) gn (2)
Odd J gn (2) gn (2) gn (1) gn (1)

aFor Fermi-Dirac statistics. For Bose-Einstein statistics, the entries for even and odd
J in the same column are interchanged. The first two rows specify the symmetry of
the electronic states (see Section 3.4). The last two rows indicate which function
to use for even and odd J with the electronic state specified in the same column
(Eq. (3.28)).
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As another example, consider molecular oxygen, 16O2, where each atom is a boson with
In = 0. The electronic wavefunction of the ground state is asymmetric (3�−

g ). Hence,
the even J rotational states (and asymmetric nuclear spin states) have a weight equal to
0 and are missing in the spectra. The odd J states have a weight 1. In contrast, C16O2

has a symmetric ground electronic state (1�+
g ). And now the symmetric rotational states

couple with the symmetric nuclear spin states and have weight 1 while the asymmetric
rotational states couple with the asymmetric spin states and have weight 0 and hence do
not appear in the rotational spectra. Some other examples are, C2H2 with even (para) states
and gn = 1 and odd (ortho) states and gn = 3. For water and formaldehyde, ortho and para
states also have a ratio of the nuclear spin degeneracies of 3. For ammonia, we have two
distinct species with ortho states with K = 3n (n = 0, 1, 2, . . . ) and all spins parallel
(3/2) and para states with K � 3n and all spins not parallel (1/2). The ratio of the nuclear
spin degeneracy factors is then 1.

3.2.8 Partition Function

Level populations are often expressed in terms of an excitation temperature (c.f. Sections
4.1.3, 4.2.1, and 4.2.2). In local thermodynamic equilibrium, we have for the level popula-
tion, n (J ),

n (J )

n
= gJ

Zr (T )
exp
[−E (J ) /kT

]
, (3.30)

with T the temperature, E (J ) and gJ the energy and statistical weight of level J , and n the
total density of the species. The rotational partition function, Zr (T ), is given by,

Zr (T ) =
∑
J

gJ exp
[−E (J ) /kT

]
. (3.31)

In this, the statistical weight factor includes the nuclear spin and hyperfine splitting factors.
The rotational degeneracy factor reflects the projection on a spatial axis and equals, 2J + 1
(cf. Section 3.2.7). For symmetric top molecules, the K states (except for K = 0) are
doubly degenerate and hence have a factor gK = 2 in their rotational statistical weight.

For high temperatures, the summation can be replaced by an integral. These can be
evaluated for rigid rotors. For a linear molecule, the partition function becomes,

Zr (T ) = 1

σ

kT

hcB
. (3.32)

Nonlinear molecules can rotate around three major axes and the partition function is,

Zr (T ) =
√
π

σ

(
1

ABC

)1/2 (
kT

hc

)3/2

. (3.33)

These approximations are only valid if kT /A, kT /B, kT /c � 1. In these expressions, σ
is a molecule-dependent symmetry factor. To understand this factor, consider a homonu-
clear diatomic molecule. Rotation by 180◦ does not change the molecule. Hence, we are
overcounting the number of states by a factor 2. In general, we have to correct the partition

https://doi.org/10.1017/9781316718490.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316718490.004


72 Molecular Spectroscopy

Table 3.3 Characteristics of molecular rotational transitions

νul Eu Aul ncr

Species Transition [GHz] [K] [s−1] [cm−3]

CO 1–0 115.3 5.5 7.2 × 10−8 1.1 × 103

2–1 230.8 16.6 6.9 × 10−7 6.7 × 103

3–2 346.0 33.2 2.5 × 10−6 2.1 × 104

4–3 461.5 55.4 6.1 × 10−6 4.4 × 104

5–4 576.9 83.0 1.2 × 10−5 7.8 × 104

6–5 691.2 116.3 2.1 × 10−5 1.3 × 105

7–6 806.5 155.0 3.4 × 10−5 2.0 × 105

CS 1–0 49.0 2.4 1.8 × 10−6 4.6 × 104

2–1 98.0 7.1 1.7 × 10−5 3.0 × 105

3–2 147.0 14 6.6 × 10−5 1.3 × 106

5–4 244.9 35 3.1 × 10−4 8.8 × 106

7–6 342.9 66 1.0 × 10−3 2.8 × 107

10–9 489.8 129 2.6 × 10−3 1.2 × 108

HCO+ 1–0 89.2 4.3 3.0 × 10−5 1.7 × 105

3–2 267.6 26 1.0 × 10−3 4.2 × 106

4–3 356.7 43 2.5 × 10−3 9.7 × 106

HCN 1–0 88.6 4.3 2.4 × 10−5 2.6 × 106

3–2 265.9 26 8.4 × 10−4 7.8 × 107

4–3 354.5 43 2.1 × 10−3 1.5 × 108

H2CO 212–111 140.8 6.8 5.4 × 10−5 1.1 × 106

313–212 211.2 17 2.3 × 10−4 5.6 × 106

414–313 281.5 30 6.0 × 10−4 9.7 × 106

515–414 351.8 47 1.2 × 10−3 2.6 × 107

NH3 (1,1) inversion 23.7 1.1 1.7 × 10−7 1.8 × 103

(2,2) inversion 23.7 42 2.3 × 10−7 2.1 × 103

H2 2–0 1.06E4a 510 2.9 × 10−11 10
3–1 1.76E4b 1015 4.8 × 10−10 300

a λ = 28.2 μm. b λ = 17.0 μm.

function by the (symmetry) factor equal to the distinct number of ways in which rotation
brings a molecule into equivalent configurations. These symmetry factors can be evaluated
through group theory but that is beyond the scope of this book. Simple symmetry consid-
erations often suffice to show that, e.g., CH4 has σ = 12.

We can define characteristic rotational temperature, θr = hcB/k, and values for some
astrophysically interesting species are summarized in Table 3.4.

3.2.9 Transition Strength

The excitation and deexcitation of molecular levels is described by the Einstein coefficients:
The Einstein Aul is the rate of spontaneous emission between an upper (u) and lower (l)
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Table 3.4 Characteristic rotational and vibrational temperatures1

θv θr θv θr

Species Mode [K] [K] Species Mode [K] [K]

H2 ν1 6330 88 CO2 ν1 3360 0.561
CH4 ν1 4170 7.54 ν2 954 (2)

ν2 2180 (2) 7.54 ν3 1890
ν3 4320 (3) 7.54 CH3OH ν1 5297 6.125
ν4 1870 (3) ν2 4315 1.185

NH3 ν1 4800 13.6 ν3 4092 1.141
ν2 1360 13.6 ν4 2125
ν3 4880 (2) 8.92 ν5 2093
ν4 2330 (2) ν6 1928

H2O ν1 5360 40.1 ν7 1546
ν2 2290 20.9 ν8 1487
ν3 5160 13.4 ν9 2834

H2CO ν1 4003 13.53 ν10 2108
ν2 2512 1.864 ν11 1647
ν3 2158 1.632 ν12 389
ν4 4091 CO ν1 3122 2.78
ν5 1797
ν6 1679

1Temperatures θ are expressed as hν/k and hcB/k. Numbers in brackets indicate the degeneracy of
the mode.

level. The Einstein Blu coefficient is the absorption rate between these two levels while
the Bul coefficient is the rate of stimulated emission. For a two-level system controlled by
radiation, the level populations are given by,

BluJulnl = (Aul + BulJul) nu. (3.34)

In thermodynamic equilibrium, the level populations are given by the Boltzmann equa-
tion, nu/nl = (gu/gl) exp

[−Eul/kT
]

while the radiation field is given by Planck’s law,

Jul = B (νul) = 2hν3
ul/c

2
(
exp
[
hνul/kT

]− 1
)−1 where Eul = hνul . Combining these

equations gives rise to the well-known relationships between the Einstein coefficients,

guBul = glBlu (3.35)

Aul = (2hν3
ul/c

2) Bul . (3.36)

As the Einstein coefficients are properties of the species involved, they must be valid even
when the system is not in thermodynamic equilibrium. In terms of the Einstein coefficients,
the energy emitted is given by jul =Aulnuhνul/4π and the energy absorbed from a pen-
cil ray, corrected for stimulated emission, is given by, κlu = (nlBlu − nuBul) hνul/4π . In
terms of the oscillator strength, f , the Einstein B coefficient is given by,

https://doi.org/10.1017/9781316718490.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316718490.004


74 Molecular Spectroscopy

Blu = 4π

hνul

πe2

mec
flu, (3.37)

with me the mass of the electron.
Let us consider now the transition strength. A rotating dipole will emit an electromag-

netic wave and the average power radiated is given by Larmor’s formula,

〈P 〉 = 64π4

3c3
ν4 |μul |2 , (3.38)

with μul the mean electric dipole moment associated with the transition. The Einstein Aul

is then,

Aul = 64π4

3hc3
ν3 |μul |2 (3.39)

For a rotational transition, the dipole moment can be expressed as,

|μul |2 = μ2
z

Sul

gu

, (3.40)

with μz the electric dipole moment along the molecular symmetry axis. The distribution of
the line intensity over the different rotational bands is represented by the line strength of
the transition, Sul , the so-called Hönl–London factor. The calculation of the line strength
can be quite complex. For linear molecules in the ground vibrational state, we have,

|μul |2 = μ2
d

J + 1

2J + 3
, (3.41)

with μd the molecule’s permanent dipole moment. For symmetric top molecules, we have,

|μul |2 = μ2
d

J 2 − K2

2J + 3
. (3.42)

The 2J + 3 factor in these expressions is the statistical weight of the upper level. Hence,
when J � 1, we have |μul |2 �μ2

d . The transition probability increases rapidly with ν and
hence with J ; for a linear molecule, A ∝ (J + 1)4 / (2J + 3). Which for large J simplifies
to ∝ J 3.

Recapping these results. The Einstein A scales with ν3 times the transition dipole
moment. The Einstein B scales with the transition dipole moment. The oscillator strength
and absorption coefficient scale with the transition dipole moment times ν. In addition to
these frequency dependencies, we also have to recognize the effect of mass of the particles
on the intrinsic strength of transitions alluded to in Section 3.1. Finally, independent of this,
when transitions are dipole forbidden, electric quadrupole or magnetic dipole transitions
are a factor α2 weaker with α the fine-structure constant (1/137).

Table 3.3 summarizes the characteristics of rotational transitions of some astrophysically
relevant molecules. We note that homonuclear diatomic molecules (e.g. H2, O2, N2), some
symmetric, linear, heteronuclear molecules (e.g. CO2, CS2), some symmetric top molecules
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(e.g. C6H6), and spherical top molecules (e.g. CH4) have no permanent dipole and,
hence, no allowed rotational transitions. These species can still have magnetic dipole
allowed transitions.

3.3 Vibrational Spectroscopy

3.3.1 Energy Levels

When a molecule vibrates, it may undergo a change in dipole moment and it will, then, cou-
ple to an electromagnetic field. Consider a diatomic molecule and small vibrations around
an equilibrium position. The potential energy is then a quadratic function of the vibrational
coordinates, and the essence of vibrational spectroscopy is then contained within Hooke’s
law for a harmonic oscillator,

ν = 1

2π c

√
κ

μ
, (3.43)

with ν the fundamental frequency, κ the force constant, μ the reduced mass of the molecular
units vibrating, and the factor c is included to transform the unit to wavenumbers (cm−1)
for cgs units, commonly used in spectroscopy. Molecular bond strengths are, of course,
very similar to binding energies of electrons to an atom. However, the frequencies of the
transitions of molecular vibrational levels are, thus, shifted to lower energies by

√
me/M ,

with me and M the mass of the electron and atom, respectively, and occur in the near- and
mid-IR.

Real molecules are not harmonic oscillators and, as a result of anharmonicity of the
bonding, hot bands (e.g. 2-1, 3-2) are generally shifted to lower frequencies. A Morse
potential is a convenient description of the interaction of a diatomic molecule,

V (R) = De (exp [−2a (R − Re)] − 2 exp [−a (R − Re)]) , (3.44)

where R and Re are the internuclear distance and equilibrium distance, and De is the
dissociation energy, and a equals,

a = νe
√
μ/2De, (3.45)

with νe the fundamental frequency. We recognize the short range repulsive and long range
attractive forces in equation (3.44). The Schrödinger equation can be solved exactly for the
Morse potential, and the energy levels are,

E (v) = hνe (v + 1/2) − hνexe (v + 1/2)2 , (3.46)

with xeνe = ν2
e /4De the anharmonicity constant. The 1/2 term accounts for the zero-

point energy and implies that even when the molecule has no vibrational excitation, the
atoms are still vibrating, in accordance with Heisenberg’s uncertainty principle. The Morse
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potential has a maximum number of levels, vmax � 2De/νe. The frequencies of vibrational
transitions are then,

ν (v) = νe − 2νexe (v + 1) . (3.47)

Now consider a polyatomic molecule and again study small vibrations around an equi-
librium position that are represented by quadratic potentials. This results in a set of uncou-
pled harmonic oscillators. The total energy is then given by,

E = E0 +
∑
k

vkhνk, (3.48)

with vk and νk the vibrational quantum number and frequency of mode k. The zero-point
energy, E0, is given by,

E0 = 1

2

∑
k

hνk . (3.49)

Anharmonicity – due to electronic repulsion at short distances, and dissociation at large
distances – will play an important role. In polyatomic molecules, diagonal terms depend
on the coordinates of a single oscillator while off-diagonal terms will link different oscil-
lators and the energy (Eq. (3.48)) will contain cross terms. In principle, there are then
Nm (Nm + 1) /2 anharmonicity constants for a molecule with Nm normal modes.

For a molecule, translational degrees of freedom have been converted into vibrational
and rotational degrees of freedom. In the harmonic approximation, the motions of the atoms
in the molecule can be decomposed into the normal modes of vibration, which are linearly
independent motions (i.e. mutually orthogonal). A molecule with N atoms will have 3N
degrees of freedom, but three of those are associated with translational motion and three
(two for linear molecules) with rotations, leaving 3N − 6 (3N − 5) vibrational modes.
These modes will differ in their force constants and reduced mass and, hence, will occur
at different frequencies. Some of the 3N − 6 modes may occur at the same frequency and
hence these modes are degenerate. For Ndg degenerate modes, we have nv = 3N −5−Ndg

for linear molecules and nv = 3N − 6 −∑k=Ndg

k=1 (dn − 1) for nonlinear molecules with dn

the degeneracy of the nth mode. In principle, all atoms are moving for a given normal mode.
However, it is sometimes advantageous to “classify” these modes as stretching (symmetric
and asymmetric) and bending (scissoring, rocking, wagging, and twisting) vibrations of
specific atoms (or groups of atoms) in the molecule. This can be particularly advantageous
for CH stretching modes as these are relatively isolated. Thinking in terms of local modes
can also be insightful when considering vibrations near the dissociation limit.

Modes will be infrared-active if the dipole moment changes during the vibration.
Conversely, some vibrations can be infrared inactive; e.g. the symmetric stretching
vibrations in C2H2. The symmetry of a mode is described using group theory and this
is used to determine whether a mode is IR and/or raman active. Group theory is beyond
the scope of this book. In general, the absorption strength will be stronger for more
polar bonds.
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Numbering of vibrational modes is governed by symmetry type set by group theory:
Start with the completely symmetric modes and sort them by wavenumber. This yields
the numbering of these modes. Do the same with subsequent symmetry types. In this,
nondegenerate modes are numbered before degenerate modes. Degenerate modes receive
the same number but are recognized by a superscript.2 There is one (historical) exception:
the bending modes of linear triatomic molecules is always labeled, ν2. As an example,
methane has nine fundamental modes: the symmetric stretch (ν1 = 2917 cm−1), the
doubly degenerate deformation mode (ν2 = 1534 cm−1), the triply degenerate stretch
(ν3 = 3019 cm−1), and the triply degenerate deformation mode (ν4 = 1306 cm−1). Only
the ν3 and the ν4 modes are IR active. Vibrations in homonuclear molecules do not lead to
changes in the dipole moment and hence are infrared inactive. Mixing of isotopes in such
species will lead to infrared absorptions as the center of mass and the center of charge no
longer coincide. Likewise, interactions with the environment in a solid will introduce weak
infrared activity.

Anharmonicity introduces small shifts in the frequencies of the species. In addition,
overtones (�v> 1) become allowed. Besides these fundamentals, we can also expect com-
bination bands (i.e. νi + νj with �vi = �vj = 1 or 2νi + νj with �vi = 2, �vj = 1,
etc.) and difference bands (i.e. νi − νj with �vi = ±1 and �vj = ∓1). In general, funda-
mental bands are much stronger than overtones or combination/difference bands. However,
this can change due to resonance interaction. The near (accidental) resonances between a
fundamental and an overtone/combination/difference band of the same symmetry will lead
to mixing of the states. This will shift the frequencies of the modes away from each other
and the weaker mode will borrow intensity from the stronger mode.

3.3.2 Partition Function

In general, the statistical weight of vibrational levels is gv = 1 but, for degenerate modes,
this has to be modified. The total vibrational statistical weight, including degeneracy, of the
state, {v1,v2,v3, . . . }, is given by

gv1,v2,v3,... =
k=nv∑
k=1

(vn + dn − 1) !

vn! (dn − 1) !
, (3.50)

where each term represents the different way vn quanta can be distributed over dn (degen-
erate) modes. For a doubly degenerate vibration, this becomes vn + 1, while for a triply
degenerate vibration, we have (vn + 1) (vn + 2) /2.

For a single mode, the vibrational partition function is given by,

Zvib (T ) =
∑
v

exp
[−Evib (v) /kT

]
, (3.51)

2 The bending mode of a linear polyatomic molecule is degenerate as the molecule can bend in the x − z and/or y − z plane.
The two oscillators in the x and y direction are combined to yield circular motion and � is the quantum number associated with
this vibrational angular momentum. Level, v, in this mode has degeneracy v + 1 (|�| = v, v − 2, . . . 0 or 1; + and − signs
correspond to clockwise and anticlockwise rotation).
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with Evib (v) the vibrational energy of level v of this mode. Ignoring anharmonic inter-
action, the partition function of a polyatomic molecule is given by the product of the
vibrational partition function of each normal mode. For a single harmonic oscillator and
measuring the energy relative to the zero-point energy, we have, Evib = vhνe, and

Zvib (T ) =
∑
v

(
exp
[−hνe/kT

])v = (1 − exp
[−hνe/kT

])−1 . (3.52)

Including degeneracy, this becomes,

Zn (T ) = (1 − exp
[−hνe/kT

])−dn . (3.53)

The total vibrational partition frunction is then,

Zvib (T ) =
nv∏
k=1

(
1 − exp

[−hνe/kT
])−dn . (3.54)

We can define characteristic vibrational temperatures as θv = hνe/k and values for some
astrophysically relevant species are summarized in Table 3.4. Typically, θv/T � 1 and
Zvib �1 for a mode and hence, in essence, only the ground state is populated. However,
large molecules have many, many modes and even if for each mode the vibrational par-
tition function is close to 1, the product is still a large factor. Moreover, when excitation
temperatures are high, partition functions can quickly become astronomically large. We
will return to this in Chapter 8.3, where we discuss the excitation of large molecules.

3.3.3 Molecular Identification

Vibrational transitions are very characteristic for the motions of the atoms in the molecular
group directly involved in the vibration but much less sensitive to the structure of the rest
of the molecule. Characteristic band positions of various molecular groups are illustrated
in Figure 3.7 and summarized in Table 3.5. Modes involving motions of hydrogen occur

Figure 3.7 Summary of the vibrational frequencies of various molecular groups. The boxes indicate
the range over which specific molecular groups absorb. The vibrations of these groups are schemati-
cally indicated in the linked boxes. Figure kindly provided by D. Hudgins
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Table 3.5 Characteristic vibrational band positions

Frequency range
Group Mode [cm−1] Note

OH stretch
Free OH 3,610–3,645a Sharp
Intramolecularb 3,450–3,600 Sharp
Intermolecularc 3,200–3,550 Broad
Chelatedd 2,500–3,200 Very broad

NH stretch
Free NH 3,300–3,500 Sharp
H-bonded NH 3,070–3,350 Broad

CH stretch
≡C–H 3,280–3,340
=C–H 3,000–3,100
CO–CH3 2,900–3,000 Ketones
C–CH3 2,865–2,885 Symmetric

2,950–2,975 Asymmetric
O–CH3 2,815–2,835 Symmetric

2,955–2,995 Asymmetric
N–CH3 2,780–2,805 Aliphatic amines
N–CH3 2,810–2,820 Aromatic amines
CH2 2,840–2,870 Symmetric

2,915–2,940 Asymmetric
CH 2,880–2,900

C≡C stretch
C≡C 2,100–2,140 Terminal group
C–C≡C–C 2,190–2,260
C–C≡C–C–C≡C– 2,040–2,200

C≡N stretch
Saturated aliphatic 2,240–2,260
Aryl 2,215–2,240

C=O stretch
Non-conjugated 1,700–1,900
Conjugatede 1,590–1,750
Amides 1,630–1,680

C=C stretch
–HC=C=CH2 1,945–1,980
–HC=C=CH– 1,915–1,930

CH bend
CH3 1,370–1,390 Symmetric

1,440–1,465 Asymmetric
CH2 1,440–1,480
CH 1,340

Continued
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Table 3.5 Continued

Frequency range
Group Mode [cm−1] Note

CO–O–C stretch
Formates ∼1,190
Acetates ∼1,245

C–O–C stretch
Saturated aliphatic 1,060–1,150 Asymmetric
Alkyl,aryl ethers 1,230–1,277
Vinyl ethers 1,200–1,225

Aromatic modes
C–H stretch ∼3,030
C–H deformation ∼1,160 In plane
C–H deformation 900–740 Out of planef

C=C stretch 1,590–1,625, 1,280–1,315

aThe OH frequency of free water occurs at 3756 cm−1. bH-bonded as dimer or polymer. cIn a fully
H-bonded network such as ice. dThe OH is H-bonded to an adjacent C=O group. eTwo double bonds
separated by a single bond. f Pattern of bands whose position depends on number of adjacent C-atoms
with H.

at considerably higher frequencies than modes involving similar motions of heavier atoms
(again, Hooke’s law, Eq. (3.43)). Thus, H-stretching vibrations occur in the 3 μm region,
while stretching motions among (single bonded) C, N, and O atoms are located around
10 μm. Likewise, when the bond strength increases, the vibration shifts to higher fre-
quencies and singly, doubly, and triply bonded CC vibrations shift from about 1000 to
2000 cm−1 (Figure 3.7).

Vibrational spectra can be used as fingerprints for the identification of the molecular
groups of a species and, hence, provide a powerful tool to determine the class of molecules
present (e.g. alkanes versus aldehydes). However, as a rule, vibrational spectra cannot
easily distinguish the specific molecule within a class. The smallest molecule within a
class often forms an exception to this rule. For example, the C–H stretching vibration of
methane (3019 cm−1) is shifted from that of other alkanes (2840–2975 cm−1). For a pure
substance, subtleties within the spectra can be used to identify the compound present. Thus,
the spectrum of n-hexane (C6H14) will show absorptions at the positions of the stretching
and bending vibrations of methyl (CH3) and methylene (CH2) groups in a relative strength
commensurate with the intrinsic strength of the modes of these molecular groups and the
relative number of CH3 and CH2 groups present in the molecule (2 versus 4 groups).
The isomer isohexane (2-methylpentane with an additional methyl group replacing one of
the H’s on the second C-atom of the pentane molecule) will also show methyl and methy-
lene absorptions but in a different relative strength (3 versus 3 groups). Furthermore, the
methyl bands will be split due to interaction between the adjacent CH3 groups. In the gas
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Figure 3.8 Ro-vibrational spectra of a diatomic rigid rotating harmonic oscillator. Left: Energy level
diagram including the ground and first excited vibrational state and their associated rotational states.
P-branch (�J = −1) and R-branch (�J = +1) transitions are indicated by full and dashed arrows.
Q-branch (�J = 0) transitions are missing. Right: The resulting spectrum consists of equidistant
lines separated by 2B and centered around the fundamental frequency, ν. Q-branch transitions would
pile up at ν. P and R branch transitions are labeled by the rotational quantum number from the level
in the lower vibrational state. The relative strength of the transitions largely reflects the population
distribution of the states involved. This will be discussed in Section 4.1.1.

phase, identification can be considerably aided by resolved P, Q, and R-branches (Section
3.3.4). In the solid state, when a mixture of species is present, identification of specific
molecular species present within a class is often daunting.

3.3.4 Gas Phase Ro-vibrational Spectra

Molecules can vibrate and rotate simultaneously and that is reflected in the energy levels.
For a diatomic molecule, we can write for the energy levels,

E

hc
= νe

(
v + 1

2

)
− νexe

(
v + 1

2

)2

(3.55)

+ BeJ (J + 1) − DeJ
2 (J + 1)2 − αe

(
v + 1

2

)
J (J + 1) (3.56)

where the subscript e implies that the quantity is evaluated at the equilibrium position of the
nuclei. The first two terms refer to vibrational energy levels of an anharmonic oscillator.
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The next two are the rigid rotor plus the centrifugal distortion. The last term gives the
vibration–rotation interaction. The first four terms have been described in Sections 3.2
and 3.3. For a Morse potential, we can write for the rotation–vibration interaction constant,

αe = 6

√
xeB3

e

νe
− 6

B2
e

νe
. (3.57)

Ignoring for the moment the rotation–vibrational interaction, we recognize that the total
energy is the sum of the rotational and vibrational energy. The selection rules are the same
as for the individual motions, �v = ±1, �J = ±1. Now consider the transition from
v = 1 ← 0. Simple algebra shows that the transition frequency is

νv=0→1,J→J ′ = νe (1 − 2xe) + Be

(
J − J ′) (J + J ′ + 1

)
(3.58)

− De

(
J 2 (J + 1)2 − J ′2 (J ′ + 1

)2)
, (3.59)

where we have assumed the same rotational constants in the upper and lower state and
indicated the rotational levels as J ′ and J ′′ for v = 1 and v = 0, respectively. For �J = 1 –
the so-called R-branch3 – we now have J ′ − J ′′ = 1 and,

νv=0→1,J→J+1 = νe (1 − 2xe) + 2Be (J + 1) − 4De (J + 1)3 (3.60)

and for �J = −1 – the so-called P-branch3,

νv=0→1,J→J−1 = νe (1 − 2xe) − 2BeJ − 4DeJ
3. (3.61)

Note that in these expressions, J stands for the rotational quantum number in the lower
vibrational state. There is no line at the band center, ν = νe (1 − 2xe). When the centrifugal
distortion is small, we can ignore the De terms and we have two branches of equally spaced
lines separated by 2Be appearing on either side of the line center with the P-branch on the
lower frequency side. Note that for, e.g., H2 the selection rules are �J = ±2 and these
transitions are labeled as O(J ) and S(J ).

The ro-vibrational coupling expresses that as the bond length increases in a higher
vibrational state, the moment of inertia also increases. As a consequence, the rotational
constant will be smaller (i.e. Bv → Be − αe (v + 1/2)). We can write,

νR
(
J ′′) = ν

(
v′′)

0 + 2B ′
v + (3B ′

v − B ′′
v

)
J ′′ + (B ′

v − B ′′
v

)
J ′′2 (3.62)

νP
(
J ′′) = ν

(
v′′)

0 − (B ′
v + B ′′

v

)
J ′′ + (B ′

v − B ′′
v

)
J ′′2, (3.63)

where the double prime refers to the ground state and the single prime to the upper state.
Note that B ′

v − B ′′
v < 0 and the spacing in the P-branch will be larger than in R branch.

Also, the P-branch spreads out while the R-branch bunches up with increasing rotational
quantum number. The bunching up of the R branch leads to the formation of a bandhead,
which we can quantify,

3 For the P-, Q-, and R-branches, transitions are labeled as P(J ), QP(J ), R(J ), respectively, with J the rotational quantum
number of the level in the lower vibrational state.
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dνR
(
J ′′)

dJ
= (3B ′

v − B ′′
v

)+ (B ′
v − B ′′

v

)
J ′′ = 0. (3.64)

This results in J ′′ (bandhead) �Be/αe. For CO, this is about 100.
Linear polyatomic molecules can be treated similar to diatomic molecules and their

spectral patterns are the same. We can now recognize parallel bands where the vibration
introduces a change in dipole moment along the molecular axis and perpendicular bands
where the change in dipole moment is perpendicular to the molecular axis. For parallel
bands, the selection rules are �v = 1 and �J = ±1 and transitions will show P and R
branches. For perpendicular bands, the selection rules are �v = 1 and �J = 0, ± 1.
As the rotation–vibration constant is small, Q-branch3 (�J = 0) will occur at almost the
same frequency but there is a small red shading as αe < 0. The amount of red shading is a
function of the temperature.

For a symmetric top molecule, we have two rotational quantum numbers and two rota-
tional constants. We can again recognize parallel and perpendicular bands now according
to whether the change in dipole moment is parallel or perpendicular to the main axis
of rotation of the molecule. The energy levels are (ignoring centrifugal distortion and
rotational–vibrational coupling),

E

hc
= νe

(
v + 1

2

)
− νexe

(
v + 1

2

)2

+ BeJ (J + 1) + (A − B)K2. (3.65)

The selection rules are �v = 1, �J = ±1, 0, and �K = 0 (except for K = 0 where
�J = ±1) and there are P, Q, and R branches. For K = 0, the spectrum is that of a linear
molecule without a Q-branch. In general, as IA/IB decreases, the intensity of the Q branch
decreases. Consider first the parallel modes, which will have simple P, Q, and R branches
except that – as for the pure rotational transitions – these split up into J + 1 K-components
at high spectral resolution. The perpendicular transitions are complicated by strong coriolis
interaction. For a prolate and oblate top, the rotational energy levels are given as,

E

hc
= BJ (J + 1) + (A − B)K2

A ∓ 2AζKA (3.66a)

E

hc
= BJ (J + 1) + (C − B)K2

C ∓ 2CζKC (3.66b)

where ζ is the coriolis coupling constant.4 The selection rules are �v = 1, �J = ±1, 0,
and �K = ±1. This large coriolis splitting shifts the K-structure and results in separate
subbands (K ′ ← K ′′ transitions), where each subband has a P, Q, and R branch. The
subbands’ origins are approximately separated by 2 (A (1 − ζ ) − B). Depending on the
magnitudes of A, B, and ζ these perpendicular subbands can be well separated or result in
a massive congested spectra.

4 The coriolis coupling constant, ζ , is the vibrational angular momentum but unlike for a linear molecule, ζ (−1 ≤ ζ ≤ 1) is not
necessarily an integer.
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Furthermore, the P and R branch will split because of a difference in A − B between
the upper and lower vibrational levels and the Q branch will split because of a difference
between B in the upper and lower vibrational levels. For perpendicular bands, the selection
rules are �v = 1, �J = ±1, 0, and �K = ±1 and there are P, Q, and R branches. For the
R branch, we have �J = +1, �K = ±1, and νR = νo + 2B(J + 1) + (A − B)(1 ± 2K);
for the P branch, we have �J = −1, �K = ±1, and νP = νo − 2BJ + (A−B)(1 ± 2K);
for the Q branch, we have �J = 0, �K = ±1, and νQ = νo + (A − B)(1 ± 2K). Note
that there are two sets of P, Q, and R branches for each lower state value of K .

For asymmetric top molecules, the spectra become very complex and have to be calcu-
lated numerically.

3.3.5 Accurate Line Lists

The potential of a molecule can be expanded into a Taylor series around the equilibrium
position, which for a diatomic molecule reads as,

E (R) =
∑
n

1

n!

(
∂nE

∂Rn

)
Re

(R − Re)
n . (3.67)

Such an approach can be the basis for the reproduction of the rotational–vibrational spec-
trum. The Dunham expansion is then often used for the term expansion,

E (v,J ) =
∑
k,l

Yk,l (v + 1/2)k (J (J + 1))l . (3.68)

The coefficients, Yk,l , in this expansion are then determined by comparison to experimental
data. The first terms are readily assigned to νe & −νexe and Be & De, and −αe (cf. Eq.
(3.46)) and can be linked to the coefficients in the expansion of the potential energy surface
(Eq. (3.67)).

For many applications accurate line lists are a prerequisite for detailed modeling of
terrestrial, (exo)planet, brown dwarf, or stellar atmospheres. Ab-initio potential energy
surfaces – calculated, say, with coupled cluster methods – are used to predict line strengths
and frequencies of transitions. These are then compared to high resolution spectroscopic
measurements to establish their accuracies and, most importantly, assist in spectral assign-
ments as well as make prediction for higher frequency regimes that are not as amenable to
experimental study.

3.3.6 Solid State Vibrational Spectroscopy

Vibrational spectra of molecules frozen into an ice differ in several regards from gas phase
spectra. In the solid state, rotations are generally suppressed and hence the rotational–
vibrational bands collapse to one absorption band near the band origin. The precise band
position will differ from that of the free (gas phase) species due to dispersive, electrostatic,
induced, and repulsive interactions with neighboring molecules. For species that can form a
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Table 3.6 Integrated strength of ice bands

ν �ν A

Species [cm−1] [cm−1] [cm molecule−1]

H2O 3275 310 2.0 (−16)
H2O 1670 160 1.0 (−17)
H2O 750 240 2.8 (−17)
CO 2138 2.5 1.1 (−17)
CO2 2340 18 7.6 (−17)a

CO2 656 18 1.1 (−17)
CO2 3708 12 1.4 (−18)
CO2 3600 19 4.5 (−19)
CH4 3010 7 1.0 (−17)
CH4 1300 8 7.3 (−18)
NH3 3375 45 1.3 (−17)
NH3 1070 68 1.3 (−17)
CH3OH 3250 235 1.3 (−16)
CH3OH 2982 100 2.1 (−17)
CH3OH 2828 30 5.4 (−18)
CH3OH 1450 90 1.2 (−17)
CH3OH 1026 29 1.9 (−17)
OCS 2042 45 1.5 (−16)
OCN− 2160 25 1.3 (−16)b

aThis band can be strongly affected by small particle scattering effects,
which enhance its intrinsic strength (cf. Section 5.2.1). bUncertain.
Depends on the assumed efficiency of the production of this species in UV
irradiation experiments.

hydrogen-bonded network such as – notably, H2O but also CH3OH and NH3 – these shifts
can be up to hundreds wavenumbers. The width of solid state absorption bands likewise
depends on the matrix environment. For traces of weakly bonded species in an inert matrix,
the width can be as narrow as 0.2 cm−1. An amorphous ice will possess a distribution of
binding sites. Variations in the interaction will then broaden the absorption features and
width of 2–50 cm−1 are expected, denpeding on the mixture. For strong interactions – e.g.
species in a H-bonding network – the width can be up to 300 cm−1. For completeness, the
far-IR spectral window is home to the phonon modes of solids and these can be used to
study interstellar ices as well.

Despite these differences, the general rules for vibrational spectroscopy still hold and
IR vibrational spectra provide convenient fingerprints for molecular identification (Figure
3.7, Table 3.5, Section 3.3.3). The absorption properties of some astronomically relevant
ices are summarized in Table 3.6. These data refer to pure ices and there is an extensive
literature on the effects of matrix variations.
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3.4 Electronic Spectroscopy

Here, we will discuss the electronic spectra of simple molecules, with the emphasis
on diatomic molecules. The resulting photodissociation cross sections are discussed in
Chapter 6.3. The electronic spectra and photophysics of large molecules are discussed in
Chapter 8.2.

3.4.1 Energy Levels and Notation

As discussed in Chapter 2, we can classify electrons according to the binding type involved
(Figure 3.9): σ -electrons are localized between two atoms and are tightly bound. Transi-
tions involving σ electrons occur therefore at short wavelength (1000–2000 Å). Delocalized
π electrons are less strongly bound then σ -electrons and transitions for nonconjugated
species are in the far-UV (1500–2500 Å). The energy levels of nonbonding electrons –
say associated with lone pair electrons of O or N atoms or nonbonding π electrons –
lie typically between those of bonding and antibonding orbitals. According to the Hund’s
rule, when there are degenerate orbitals, an electron will occupy an empty orbital before
it starts to pair up. Typically, excitation of an electron does not affect the spin and, e.g., a
singlet ground state (with S = 0, see Section 3.4.2) couples with a singlet excited state.
For the excited electron, a spin flip can occur, converting, e.g., a singlet state in a triplet
state (with S = 1). Following Hund’s rule, these triplet states are at lower energy than the

Figure 3.9 Schematic energy diagram for formaldehyde with the various types of electron molecular
orbitals and relevant electronic transitions. The left-hand side illustrates the ground state while
possible excitations of the different electrons are shown to the right. HOMO stands for highest
occupied molecular orbital and LUMO for lowest unoccupied molecular orbital. Figure taken
from [16]
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corresponding singlet state. Triplet states can connect radiatively with singlet states through
spin–orbit coupling,5 but such transitions have small Einstein A’s.

3.4.2 Diatomic Molecules

For atoms, the electronic states are labeled as 2S+1LJ with L the orbital angular momen-
tum of the electrons (the vector sum of the orbital angular momentum of the individual
electrons), S the electron spin angular momentum (the sum of the spins of the individual
electrons), and J the total angular momentum (the vector sum of the orbital and spin
angular momenta). All of these are in units of h̄. The different values for the total orbital
angular momentum, L = 0, 1, 2, . . . , are denoted by roman capitals, S, P, D, . . . . The
electronic states of diatomic molecules are dealt with analoguously but now classified by
the projection of their orbital angular momentum on the internuclear axis, � =∑ λi , their
spin multiplicity, S, and the sum of projection of the orbital angular momentum and the
spin on the internuclear axis, |�| = |� + �|: e.g. 2S+1�� with � the projection of S

on the internuclear axis. The different values for the projected orbital angular momentum,
� = 0, 1, 2, . . . , are labeled as, �, �, �, . . . . Electronic states of diatomic molecules are
also labeled with letters. The ground state is labeled X and excited states with the same
multiplicity are labeled A, B, C, . . . while excited states with different multiplicity are
labeled a, b, c, . . . ; both are in order of increasing energy. The Pauli exclusion principle
requires an overall antisymmetry of the total wavefunction under exchange. The σ states
of diatomics are labeled with superscript + or − to indicate symmetry with respect to
reflection in a plane containing the internuclear axis. For homonuclear molecules, molec-
ular orbitals are also labeled according to symmetry with respect to inversion through the
center of symmetry and the electronic wavefunction is either even (labeled as subscript g
for gerade) or odd (labeled as subscript u for ungerade) upon inversion.

3.4.3 Intensity and Franck–Condon Factors

Electronic transitions take place on timescales of femtoseconds (�t ∼�r/v with �r ∼10−7

cm and v �108 cm/s). The fastest atomic vibration is associated with CH stretching vibra-
tions and occurs on a timescale of �10−13 s. Hence, essentially, the nuclei are frozen during
an electronic transition. This is the basis of the Born–Oppenheimer approximation. The
wave function can then be expanded in its electronic (ψ), spin (S), and vibrational (χ )
components. The transition probability is then governed by the oscillator strengths,

fefsofv ∼〈ψ |He|ψ〉 〈S|Hso|S〉 〈χ |χ〉 , (3.69)

where the first two terms describe the action of the electronic and spin–orbit coupling
Hamiltonians on the wave functions and express the selection rules. The last term is

5 In a mechanistic view, the magnetic moment associated with the orbital motion of the electron couples with the magnetic
moment of the electron spin.
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Figure 3.10 Schematic potential energy diagram with wavefunctions, χ , for the various vibrational
levels in the ground and excited electronic state. Note that, for excited states, these have highest
density near the turning points. Left: The bonding character does not change much between the two
electronic states and overlap is largest for the 0–0 transition. Right: The bonding character changes
much between the two electronic states and overlap is largest for the 0–2 transition. These two cases
will give rise to very different vibrational progressions.

the vibrational overlap and, as there is no electronic action, there are no selection rules
for vibrational transitions accompanying electronic transitions. However, the transition
strength is governed by the overlap of the vibrational wave functions (Figure 3.10). If
the bonding character between the two states is very similar, transitions in the vibrational
ground state have the best overlap with the vibrational ground state in the excited electronic
state. On the other hand, if the bonding character is very different, the potential energy
curves are shifted and the ground vibrational state in the lower electronic state will couple
best to an excited vibrational state in the upper electronic state through a vertical transition.
Table 3.7 summarizes typical values for longest wavelength electronic transitions of
molecular chromophores.

3.5 Specific Examples

Molecular Hydrogen

Following the discussion in Chapter 2, the two 1s orbitals of the H atoms combine into two
molecular orbitals. Constructive interference between the two wave functions leads to the
highest electron density between the two nuclei and an attractive bonding orbital, which is
lower in energy than either atomic orbital. Destructive interference of the wave functions
leads to a node (zero electron density) between the two nuclei. This antibonding orbital
exceeds the energy of the atomic orbitals. The potential energy diagram of H2 is shown
in Figure 3.11. The configuration of the electronic ground state of H2 molecule is

(
1σg

)2.
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Table 3.7 Long wavelength absorption bands of typical chromophoresa

λ Absorption strength
Chromophore [Å] [cm2/mol] Transition

C–C <1800 1000 σ, σ	

C–H <1800 1000 σ, σ	

C=C 1800 10,000 π, π	

C=C–C=C 2200 20,000 π, π	

Benzene 2600 200 π, π	

Naphthalene 3100 200 π, π	

Anthracene 380 10,000 π, π	

C=O 2800 20 n, π	

N=N 3500 100 n, π	

N=O 6600 200 n, π	

C=C–C=O 3500 20 n, π	

C=C–C=O 2200 20,000 π, π	

aThese correspond to the HOMO → LUMO transition.

Figure 3.11 Energy level diagram for H2. The horizontal dashed lines correspond to the energy of
the atoms at “infinite” distance (1s and 1s or 1s and 2s). Figure taken from [25]
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For both electrons, λ = 0 and hence � = 0, resulting in a � state. The electron spin is either
S = 0 (singlet) or S = 1 (triplet). These are antisymmetric and symmetric under exchange.
In the ground state, following the Pauli exclusion principle, the electrons will have opposite
spins and S = 0. As the atomic orbitals are g, the ground state6 is g. Thus, the ground state
is X 1�+

g followed by the triplet state, b 3�+
u . Higher electronic states couple two H-atoms

with n = 1 and n = 2, for example. The electronic states of H+
2 are at even higher energies.

The ground electronic state of H2 has 14 bound vibrational states and each of those has an
“infinite” number of rotational states. As the nuclei are identical, the combined proton spin
is either 0 or 1; e.g. antisymmetric and symmetric under exchange. Molecular hydrogen
has para and ortho states (cf. Section 3.2.7). The odd rotational states are ortho (I = 1), the
even ones are para (I = 0), and the statistical weights are 3 and 1 (Section 3.2.7). Selection
rules are �� = 0, ± 1. �S = 0, g states couple only to u states and vice versa, and
parity is preserved. The change in vibrational quantum number is governed by the Franck–
Condon overlap. Within the ground electronic state, there is no restriction on �v. The pure
rotational transitions have to preserve symmetry and occur either fully within the ortho or
the para levels. In many ways, ortho and para H2 behave therefore as separate chemical
species that only exchange through chemical reactions (Section 3.2.7).

The B 1�+
g and C 1�+

u are the next highest singlet states that can couple to the ground
electronic state through allowed transitions (the Lyman and Werner band) with typical
oscillator strengths of 10−2. Figure 3.12 shows the rich spectrum of H2 absorption in the
Lyman and Werner bands observed toward a star in the Large Magellanic Cloud. Absorp-
tions originate in the various rotational levels of the ground vibrational state in the ground
electronic state and connect to ro-vibrational levels of the excited states according to the
selection rules.

The vibrational frequency of H2 in its ground electronic state is at νe = 4400 cm−1.
As a very light hydride, anharmonicity is relatively important; viz., νexe = 121 cm−1.
As H2 is a homonuclear molecule, ro-vibrational and pure rotational transitions are dipole
forbidden. The vibrational levels in the ground electronic state are still connected through
weak quadrupole transitions with �J = 0 ± 2. These transitions are labeled by O(J ′′),
Q(J ′′), and S(J ′′), with J ′′ the lower level rotational quantum number (i.e. 1 − 0 S(1)
corresponds to the transition v′ = 1 J ′ = 3 to v′′ = 0 J ′′ = 1). The vibrational lev-
els can be pumped by UV absorption in the Lyman–Werner bands followed by radiative
decay as well as by collisions in warm gas. The former is important in diffuse clouds and
in photodissociation regions associated with massive stars, planetary nebulae, or galactic
nuclei (Section 11.6). The latter can be important in strong shock waves in molecular
clouds (Section 11.7). Figure 3.13 shows the near-infrared spectrum observed toward the
reflection nebulae, NGC 2023, illuminated by the B0.5 star, HD 37097, revealing strong ro-
vibrational H2 transitions. Because H2 is such a light hydride, its pure rotational transitions
occur at very high frequencies with ground state para (J = 2−0) and ortho (3−1) transitions
at 28 and 17 μm, respectively.

6 g × g = g, u × u = u, and u × g = g × u = u.
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Figure 3.12 The 920–1120 Å absorption spectrum toward the star Sk -67◦166 in the Large
Magellanic Cloud measured by the Far Ultraviolet Spectroscopic Explorer, FUSE. Various Lyman
(black) and Werner (gray) bands are indicated. This rich spectrum shows both LMC and Milky Way
absorption components (bottom panel). Figure taken from [31]

Figure 3.13 The near-IR emission spectrum of the reflection nebula, NGC 2023, revealing H2
ro-vibrational emission lines associated with v = 1 − 0 and v = 2 − 1 transitions. Figure taken
from [19]

Carbon Monoxide

For CO, we have to mix the atomic orbitals, which we will treat simplistically as one orbital
from each center. The orbitals that we mix have to have the same symmetry and need to
be close in energy. Thus, 2pC mixes with 2pO and 2sC with 2sO creating bonding and
antibonding states (Figure 3.14). Also, s and pz orbitals mix into σ orbitals (the z-axis is
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Figure 3.14 Left: Molecular orbitals of CO and their relationship to the atomic orbitals of C and O.
As O is more electronegative than C, its orbitals are lower in energy. Right: Energy level diagram for
CO. Figure courtesy of [13]

the bond axis) while the px and py orbitals mix into π orbitals. These states have to be filled
and create the electron configuration, (1σ)2(2σ)2(1πx)

2(1πy)
2(3σ)2. The wavefunctions

of the electrons in the more stable orbits will have the highest electron density near the atom
with the highest electron negativity (O). While the higher energy antibonding molecular
orbitals will be closer to the less electronegative atoms (C). Thus, reactivity of CO will be
concentrated on the C-atom. The total angular momentum and the total spin are both 0 and
the ground state is X 1�+. The energy level diagram of CO is shown in Figure 3.14.

Interstellar CO has been studied in the UV through the specific ro-vibrational transitions
between the X 1�+ and A 1�, B 1�+, C 1�+, andE 1� states. Photodissociation of CO
occurs, amongst others, through absorption into the E states – coupling to C(3P ) and
O(3P ) – which predissociate because of an avoided crossing with the W state (Figure 3.14).
UV transitions of CO occur in the far ultraviolet and have been measured using spectro-
graphs on, e.g., HST and FUSE in diffuse clouds (Figure 3.15). These and comparable data
has been analyzed through a curve of growth-type anaysis (c.f. Section 4.3.2).

The CO v = 1 − 0 fundamental vibration occurs at 2170 cm−1 (4.61 μm) and has only
a modest anharmonicity (13.3 cm−1). The ro-vibrational transitions of CO and its isotopes
can be observed through the M-band window in the mid-IR (Figure 3.16) if measured at
the right “time” to allow the interstellar transitions to shift out of the atmospheric bands by
the Doppler effect due to the Earth’s orbital motion. Solid CO is an important component
of interstellar ices and its vibrational band is widely detected in absorption in sight lines
traversing dense cold molecular clouds (Figure 3.16; see also Section 10.6). Overtone
transitions, �v = 2 of the CO fundamental are accessible in the K-band.
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Figure 3.15 UV absorption spectrum measured toward the stars, HD 147683 & 122879, showing
absorption lines due to the A−X system. [24]

Figure 3.16 Ro-vibrational transitions of CO isotopes in the spectrum of the protostar Reipurth 50.
Note also the broad solid CO band [26]

The pure rotational ladder of CO falls in the sub-millimeter and CO transitions are
generally observed through the atmospheric windows at high spectral resolution (sub-km/s)
and high sensitivity (at the quantum noise level) using heterodyne techniques on single dish
telescopes (e.g. IRAM, APEX) or interferometers (e.g. plateau de Bure, ALMA). These
instruments typically measure one CO line at a time (albeit that transitions from many
other molecules may occur in the same spectral bandpass). Figure 3.18, actually, shows
several transitions measured by the SPIRE Fourier Transform Spectrometer on board the
Herschel Space Observatory. These observations lack the spectral resolution and have only
limited sensitivity but they do obtain a large portion of the CO ladder. Observations of
the rotational transitions of CO are widely used to study molecular clouds (Sections 10.1
and 10.2).
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Figure 3.17 The near infrared spectrum of the massive protostar IRAS 08576-4334 reveals the
v = 2 − 0 transition of CO. Positions of the individual ro-vibrational transitions – shifted to account
for the Doppler effect – are indicated below. The dashed trace above the spectrum is a model fit of
thee transitions convolved with the adopted line profile shown in the inset. Near the bandhead, the
transitions pile up and that allows for an “easy” detection of this feature. Figure courtesy of [14]

Figure 3.18 The pure rotational spectrum of CO of the planetary nebula, NGC 7027, measured by
the SPIRE instrument on the Herschel Space Observatory. 12CO lines are labeled at the top. 13CO
lines are labeled at the bottom. Figure courtesy of [32]
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Polyatomic Molecules

The electron-level diagram for polyatomic molecules quickly becomes very complex. As an
example, consider H2CO (Figure 3.9). Following the discussion in Chapter 2 and ignoring
the 1s electrons, the electron configuration of C is (2s)2(px)(py), where the px and py

orbitals each have one electron with parallel spin and the 2pz orbital is empty. One of the 2s
electrons is promoted to the 2pz orbital. The 2s orbitals hybridize with the two 2p orbitals
to form three sp2 orbitals (each with one electron). Overlap between two sp2 hybridized
orbitals of C with the 1s orbitals of the two H’s gives rise to two σ bonds. The third sp2

orbital of C overlaps with the oxygen sp2 orbital, resulting in a σCO bond while overlap of
the pz orbitals on the C and O atoms gives rise to a πCO bond. In addition, oxygen has two
lone pairs of electrons, which are in nonbonding orbitals, nO . Because of the higher elec-
tronegativity of O versus C, the energies of the molecular orbitals increase as, 1sO < 1sC <

2sO < σCH < σCO < πCO < nO where the first three are essentially pure atomic orbitals,
and the others are the σ, π , and nonbonding orbitals. The ground state configuration is then,

(1sO)2(1sC)2(2sO)2(σCH )2(σ ′
CH )2(σCO)2(πCO)2(nO)2(π	

CO)0 (3.70)

In low-lying states, an n electron or a π electron can be promoted to a π	 orbital (Figure
3.9) and the electron spins can be parallel (triplet state) or antiparallel (singlet states). The
ground state is X 1A1 and excited states are A 1A2(n,π

	) and B 1A1(π,π	). These states
are labeled as S0 (1A1) and S1 (1A2) and T1 (3A2).7 Groundstate formaldehyde shows
strong π → π	 transitions around 1870 Å, while the n → π	 transitions are much weaker
(as there is little overlap between these essentially orthogonal orbitals) and occur around
2850 Å.

In the ISM, formaldehyde is observed through its pure rotational levels. The rotational
level diagram of this near-prolate molecule is shown in Figure 3.3 and discussed in Section
3.2.4. The rotational transitions of formaldehyde provide a good tool for studies of physical
conditions in dense molecular cloud cores (cf. Section 4.2.3) and are often used for this
purpose, particularly for star-forming cores (Section 10.1). Gaseous formaldehyde has also
been observed through its ν1 and ν5 symmetric and asymmetric CH2 stretching vibrations
around 3.6 μm in absorption in the spectrum of protostars and in emission in the spectrum
of comets.

3.6 Further Reading and Resources

There are many textbooks that deal with atomic and molecular structure and transitions. For
astrophysics, references [3, 22, 27, 30] provide comprehensive overviews. Conventions for
line strength are detailed in [33] and line strengths of molecules are conveniently tabulated
in appendix V of [30]. [1] provides a tutorial on the strength of (hyper)fine-structure lines.
[18] treats in detail the conversion of observed line intensities into molecular column
densities.

7 For large molecules, nomenclature changes and the ground state, if singlet as for formaldehyde, is labeled S0 while excited
singlet states are labeled, S1 . . . Sn and triplet states are labeled as T1, . . . Tn.
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The PGOPHER program simulates rotational, vibrational, and electronic spectra and
is accessible at http://pgopher.chm.bris.ac.uk/index.html. HITRAN (high-resolution trans-
mission) database (https://hitran.org) provides a compilation of spectroscopic parameters
that can be used to simulate infrared spectra. While HITRAN is developed for atmospheric
research, the database is also very useful for astronomical purposes. Reference [23] pro-
vides more details on developing line lists. The ExoMol database, http://exomol.com/,
provides accurate, evaluated line lists for relevant species. The field has been reviewed
by [4].

Information on spectroscopy and excitation of atoms and molecules can be found at
the website of the NIST (www.nist.gov/srd/atomic.htm) & https://physics.nist.gov/cgi-
bin/micro/table5/start.pl. Rotational spectra of molecules can also be accessed through
the website maintained by JPL (http://spec.jpl.nasa.gov/) and the Cologne Database for
Molecular Spectroscopy (www.ph1.uni-koeln.de/vorhersagen/).

References [7, 12] provide early studies on the characteristics of IR spectra of astro-
nomically relevant ice species. Studies on CO and CO2 are particularly relevant [2, 9, 29].
Far-infrared properties of relevant ices are rarer. An early review is [21] and a recent study
using THz timedomain spectroscopy is provided by [11]. Databases of laboratory spectra of
interstellar ice analogs are available at: http://icedb.strw.leidenuniv.nl/, https://science.gsfc
.nasa.gov/691/cosmicice/constants.html, and www.astrochem.org/databases.php.

3.7 Exercises

3.1 Transition frequencies

(a) Consider an electron in orbit around the nucleus. For a typical energy of 5 eV,
what is the photon frequency required to move the electron out by 1 Å?

(b) In a similar fashion, atoms in a molecule can be considered connected by springs.
Show that vibrational and electronic frequencies are then related roughly by√
me/M .

(c) Show that, for rotations, the relationship is me/M .

3.2 Explain the difference between the rotational frequencies of CO and CS.
3.3 The J = 2 → 1 rotational transition of 12C16O occurs at 230.538MHz. What is the

bond length? What would you predict the J = 2 → 1 transition of 13C16O to be?
3.4 Centrifugal distortion:

(a) A real molecule is not rigid and the contrifugal force will lead to an increased
bond length when the molecule rotates faster. Consider a harmonic vibration
where the restoring force is given by −κ (Re − R). The centrifugal force is given
by Mω2R. Balancing these two forces, use the quantized form of the angular
momentum, to show that

R = Re + J (J + 1) h̄2

MκR3
, (3.71)

and thus that the nuclear separation increases with increasing rotation.
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(b) Use Hooke’s law to show that R = Re (1 + δ), where the small correction factor
δ is given by,

δ = J (J + 1) h̄2

MκR4
e

. (3.72)

(c) The potential energy is then larger by κ (R − Re)
2 /2. Show that this results in,

Erot = J (J + 1) h̄2

2MR2
e

− J 2 (J + 1)2 h̄4

2M2κR6
e

. (3.73)

(d) Show that this implies that for harmonic vibrations, De is given by 4B3
e /ν

2
e .

(e) In this derivation, we have made the assumption that δ � 1. Show that this is
justified for CO.

3.5 Formaldehyde is a nearly prolate molecule with A = 281970.37, B = 38835.42558,
and C = 34005.73031 all in MHz. Calculate the energy level diagram for the prolate
molecule with A′ = A and B ′ = C′ = (B + C) /2 and compare with the energy
levels of H2CO.

3.6 Rotational partition function.

(a) Linear rigid rotor:

(i) Derive the expression for the partition function of a linear rigid rotor (Eq.
(3.32)) by making the transition from a summation to an integral, the sub-
stitution, x = E (J ) /kT , and assuming that T � hB/k.

(ii) Adopting T = 10K, B = 2 cm−1 compare this approximate expression with
the actual summed partition function. For what temperature is the approxi-
mation better than 10%?

(b) Derive the expression for the partition function of a rigid symmetric top following
these steps:

(i) Write the partition function as a summation over the J and K states.
(ii) The energy is a function of J and K where J runs from 0 to ∞ and K

from −J, . . . , 0 . . . , J but this can also be seen as K = 0, . . . ,∞ and
J = K, . . . ∞. Rewrite the equation for the partition function to reflect
this.

(iii) Make the transition to integrals.
(iv) Do the integral over J first (see above).
(v) Realize that K (K + 1) �K2. Do the integral over K .

(c) Consider the following intuitive derivation of the expression for the partition
function of a rigid asymmetric top:

(i) Consider the partition function as a sum over all angular momentum states,
La , Lb, and Lc, which we will assume, each, to run from −∞ to ∞. Convert
the summations to integrations, which yields for each axis,

√
2πIikT .
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(ii) This has to be multiplied by 8π2. For a chosen axis, the angular integration
yields a factor 2π . The integration over the orientation of this axis gives an
additional factor of 4π .

(iii) Make the transition from classical to quantum mechanics.

3.7 Symmetry factor:

(a) What is the symmetry factor for H2?
(b) What is the symmetry factor for H2O?
(c) What is the symmetry factor for NH3?
(d) What is the symmetry factor for CH4?
(e) What is the symmetry factor for C6H6?

3.8 Consider a harmonic oscillator. Combine Newton’s law with Hooke’s restoring force
and solve for a sinusoidal motion to derive the normal mode frequency.

3.9 The fundamental frequency of HCl is at 2886 cm−1. What is its force constant? For
CO, the fundamental frequency occurs at 2170 cm−1. What two factors play a role in
this difference with HCl?

3.10 The fundamental asymmetric stretching vibration of carbon monoxide occurs at
2143 cm−1. The first overtone is at 4260 cm−1.

(a) What are the harmonic vibrational frequency and the anharmonic constant?
(b) Predict the frequency of the second overtone.
(c) The second overtone occurs at 6350 cm−1. What could be the origin of the

discrepancy?
(d) Estimate the bond energy of this molecule.

3.11 The fundamental asymmetric CH stretching vibration of methane occurs at 3019 cm−1.
The first overtone is at 6006 cm−1.

(a) What are the harmonic vibrational frequency and the anharmonic constant?
(b) Predict the frequency of the second overtone.
(c) Estimate the CH bond energy.

3.12 The vibrational partition function:

(a) Water has three vibrational modes at 3657, 1595, and 3758 cm−1. Calculate the
vibrational partition function at 300 K and at 1500 K.

(b) Carbon dioxide has vibrational modes at 1388, 667, and 2349 cm−1 where the
667 cm−1 mode is doubly degenerate. Calculate the vibrational partition function
at 300 K and at 1500 K and compare to those of water.

(c) Consider now a 72-atom molecule (say, circumcoronene (C54H18)). Assume that
each of the vibrational modes in this species has the (geometric) average partition
function of a mode in the water molecule. Calculate the vibrational partition
function of this molecule at 300 and 1500 K.
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(d) Evaluate the partition function of this large molecule assuming the average CO2

vibrational partition function.
(e) Compare these partition functions – marvel – and then draw reasoned conclusions

on the importance of the temperature and the vibrational frequency spectrum.
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