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The Liebau effect generates a net flow without the need for valves. For the Liebau effect
pumping phenomenon to occur, the pump must have specific characteristics. It needs
tubes with different elastic properties and an actuator to provide energy to the fluid.
The actuator periodically compresses the more flexible element. Furthermore, asymmetry
is a crucial factor that differentiates between two pumping mechanisms: impedance
pumping and asymmetric pumping. In this work, a model based on the fluid dynamics
of an asymmetric valveless pump under resonant conditions is proposed to determine
which parameters influence the pumped flow rate. Experimental work is used to validate
the model, after which each of the parameters involved in the pump performance is
dimensionlessly analysed. This highlights the most significant parameters influencing the
pump performance such as the actuator period, length tube ratio and tube diameters. The
results point out ways to increase a valveless asymmetric pump’s net-propelled flow rate,
which has exciting applications in fields such as biomedicine. The model also allows
for predicting the resonance period, a fundamental operating parameter for asymmetric
pumping.

Key words: propulsion, peristaltic pumping

1. Introduction
The Liebau effect (Liebau 1954) creates a net flow without the use of valves. The
instantaneous pumped flow rate is bidirectional and pulsatile (Davtyan & Sarvazyan 2021).
For the phenomenon to take place, the pump needs to have particular characteristics:
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tubes of different mechanical properties (commonly a flexible and a rigid tube), a periodic
compression of the flexible element by an actuator and a condition of asymmetry either
in the pincher with respect to the flexible tube or in the circuit (Moser 1998; Kenner
et al. 2000; Kenner 2004; Anatol et al. 2022, 2024). Liebau effect pumps are simple
pumping devices. This feature makes them very suitable for integration when a non-
invasive, space-saving pumping system is required (Propst 2006). For these reasons,
valveless pumping with Liebau effect pumps is especially interesting for applications in
nanotechnology (Andersson et al. 2001), chemical analysis and control (Wen et al. 2006),
microengineering (Lee, Chang & Wen 2008), cooling systems (Wen et al. 2013), and in
biomedical engineering. In the latter field, Liebau-effect pumps are a good choice as they
work with small excitations, a condition that may be necessary in confined environments
(Loumes, Avrahami & Gharib 2008).

Asymmetry is a crucial factor that allows for the differentiation between two pumping
mechanisms: impedance pumping and asymmetric pumping (Pahlevan & Gharib 2013).
Depending on the mechanism generating the pumping, three types of pumps can be
distinguished: impedance pumps, asymmetric pumps and Liebau pumps, the latter
combining the two mechanisms. Without any asymmetry, no pumping effect occurs and
no net flow is generated, underscoring the significance of this condition (Hickerson 2005;
Wen & Chang 2009; Hiermeier & Männer 2017; Manopoulos, Tsangaris & Mathioulakis
2020; Davtyan & Sarvazyan 2021).

Impedance pumping occurs when the flexible tube’s compression occurs outside its
plane of symmetry. The flexible tube is connected to a rigid pipe at both ends, so the
circuit has a significant impedance difference at these points. Impedance can be defined as
the resistance imposed by a medium to a wave propagating through it (Wen & Chang
2009). The pumping cycle starts with the compression of the flexible tube. As it is
compressed, mechanical energy is added to the fluid, mainly in the form of pressure,
generating bidirectional waves that travel from the point of compression to the ends of
the flexible tube, where they are partially reflected due to the change in impedance at the
junction with the stiffer tube (Hickerson, Rinderknecht & Gharib 2005). The interaction
of the emitted and reflected waves can result in a net unidirectional flow (Loumes et al.
2008; Avrahami & Gharib 2008; Wen & Chang 2009; Wen et al. 2013).

Asymmetric pumping occurs when the compression of the flexible tube is in its plane of
symmetry, but there is an asymmetry in the adjacent circuit. The asymmetry may be due
to the difference in length, diameter or material of the rigid tubes. Kenner et al. (2000);
Kenner (2004) discussed this asymmetry regarding inertia and energy losses.

Finally, the so-called Liebau pump corresponds to mixed pumping as it combines
the two mechanisms: impedance pumping and asymmetric pumping. There is double
asymmetry: the flexible tube is compressed outside its plane of symmetry and the circuit
is asymmetric. The right combination of both effects has increased performance (Wen &
Chang 2009; Pahlevan & Gharib 2013).

The impedance pumping mechanism has been studied experimentally (Moser 1998;
Hickerson et al. 2005; Bringley et al. 2008; Wen et al. 2013; Manopoulos et al. 2020;
Davtyan & Sarvazyan 2021), and by numerical and analytical models (Hickerson & Gharib
2006; Bringley et al. 2008; Loumes et al. 2008; Avrahami & Gharib 2008). However, there
are fewer experimental (Takagi 1983,1985; Anatol et al. 2022, 2023, 2024) and numerical
(Takagi 1983,1985; Propst 2006; Jung & Kim 2012) works related to asymmetric pumping.
The most well-known models presented to date for asymmetric pumping are presented
below.

Takagi (1983) analysed analytically and experimentally the behaviour of an asymmetric
pump in a circuit consisting of a horizontal pipe connecting two tanks and a piston
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operating in a T-junction that divides the pipe into two sections. The piston was located
in a non-equidistant location from both tanks. They developed a mathematical model
from the equations of continuity and quantity of motion that could predict the pumping
effect, which agreed with the experimental data. Takagi (1985) continued this work.
They observed that the pumping effect increases with the difference between the velocity
amplitudes in each horizontal pipe section. Finally, they obtained information on the
resonant frequency and found that the pump performance was higher at this frequency.

Propst (2006) described numerically the theoretical foundations of asymmetric pumping
using the time-averaged energy equation. He considered different circuit configurations
consisting of tanks connected by rigid pipes. From his analysis, he deduced that pumping
is caused by the difference in kinetic energy between the two pipe sections and that the
difference in tank levels is proportional to the difference in kinetic energy between the two
branches. The magnitude of the net flux generated increases with the degree of asymmetry.

Jung & Kim (2012) proposed a mathematical model of an asymmetric valveless
pump consisting of two tanks connected with a horizontal pipe. They used an
energy conservation model applied to consecutive control volumes, which they called
compartments, in one or more of which the mechanical actuation on a piece of pipe
could be modelled. They confirmed that the direction and magnitude of the net flow
depend on the compression frequency and confirmed that the resonant frequency is
the optimal frequency for working with asymmetric pumps. At this frequency, time-
phase synchronisation is obtained between the fluid pressure difference and the external
compression force, allowing energy storage in the discharge tank.

In the two works by Takagi and the one by Propst, pumps with a similar set-up of
elements to that presented in this paper have been analysed, although they do not have the
flexible pipe typical of Liebau pumps. Regarding Jung’s work, a model with an identical
distribution of elements to that employed in this study has been developed, although
validation is lacking. To our knowledge, there is little work published in the open literature
regarding validation of mathematical models of asymmetric pumping.

This work proposes a semiempirical model using continuity and momentum equations
to describe the flow mechanism of an asymmetric valveless pump under resonant
conditions. The resonant conditions are those in which the flow rate is maximised, so
this is the operating point at which the pump must work. This model allows to determine
which parameters influence the pumped flow rate. Experimental work by Anatol et al.
(2023) is used to validate the model, after which each of the parameters involved in
the pump performance is analysed dimensionlessly. The work is structured as follows:
in § 2, on materials and methods, the test rig is described and the flow equations are
detailed. After that, the pumping mechanism, the model used and the utmost flow rate
the pump could provide under ideal conditions are explained. Section 3, on discussion,
is divided into two main parts, the validation and the parametric study. In the validation
part, experiments under resonant conditions for different test rig geometries are used to
validate the model. Once the model is validated, the parametric study analyses the effect
of both geometrical and operational parameters. In addition, the parametric study proposes
an adimensionalisation that highlights the parameters influencing the pump performance.

2. Materials and methods

2.1. Experimental test rig
The experimental set-up will be the same as that of Anatol et al. (2023). Figure 1 shows the
geometrical parameters taken into account in the analysis carried out in this paper. From
now on, the flexible tube will be called a compliant tube and the actuator will be called
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ls lct ll

ps pl

h

Qs Ql

drt
dct

pb pb

h

Subscript notation:
  s - short side
  l - long side
  rt - rigid tube
  ct - compliant tube
  b - border

Figure 1. Experimental test rig of Anatol et al. (2023). The nomenclature of this work is different from that
used in that paper.

a pincher. The experimental set-up comprises six parts: the short-side tank, short rigid
pipe, compliant tube, long rigid pipe, long-side tank and return pipe connecting the two
tanks. To facilitate the follow-up of the work, the nomenclature has been modified from
that of Anatol et al. (2023). In addition, the flow rates will be positive in this work when
leaving the compliant tube, as shown in figure 1. In the discussion section, the values of
the dimensions and operating conditions tested will be given. The working fluid is water.

2.2. Equations
We start from the Navier–Stokes equations for incompressible flow:

∇ · v = 0, (2.1)

ρ
Dv

Dt
+ ∇ p = μ�v + ρ fm. (2.2)

In the present work, we will apply the above equations to the asymmetric pump’s short
and long pipes. A cylindrical coordinate system will be used, where z is axial to the
pipes. If it is particularised for the horizontal pipes (so fm = 0) and unidirectional flow
is assumed (then, v ≈ vzez), we obtain

ρ
∂vz

∂t
+ ∂p

∂z
≈μ

(
∂2vz

∂r2 + 1
r

∂vz

∂r

)
. (2.3)

The axial pressure gradient can be calculated from the pressure difference between the
ends of each pipe, �p = pct − pb, and their respective length, l. Here, pct is the pressure
in the compliant tube and pb is the hydrostatic pressure at the edge of the pipe. Therefore,
∂p/∂z = −�p/ l, where the negative sign is introduced for convenience.

Concerning the effect of viscosity, if we assume it plays a negligible role, this implies
that the order of the transient term in (2.3) is dominant over the term associated with
viscous stresses. This will be verified through an order of magnitude analysis of these
terms in a rigid pipe. If the transient term dominates over that associated with viscous
stresses, it implies that ρ(vc/tc) � μ(vc/drt

2), where tc and vc are the characteristic time
and velocity in the rigid pipes, and drt is the diameter of those pipes. With these two terms,
the Womersley number (W o) is obtained, which must be much greater than 1 to disregard
the effect of viscosity,

W o2 = ρ/tc
μ/d2

r t
� 1. (2.4)
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To calculate this number, it is necessary to determine the characteristic time. If the
order of the transient term is equated with that of the term associated with pressures, it
is obtained that ρ(vc/tc) ∼ �p/ l. If vc ≈ l/tc and �p ≈ pb, then tc ∼ (ρl2/pb)

1/2. In the
experiments analysed in this work, with the dimensions detailed in § 3, W o2 is always
greater than 100, which allows us to eliminate the term associated with viscous stresses
from (2.3). If this term were not removed from the equation, the model presented in this
work could be resolved by considering the velocity profiles defined by Womersley (1955)
in his study on pulsatile laminar flow.

It is convenient to rewrite the above equation in terms of flow rate by the simple
expression Q = vz Art , where Art is the cross-sectional area of the rigid pipes Art =
πdrt

2/4. With the above assumptions, we arrive at

ρl

Art

∂ Q

∂t
= �p. (2.5)

Finally, it is helpful to have an expression that relates the volume flowing through the
pipe cross-section as a function of time. This can be calculated from expression (2.5) using
the definition Q = dV /dt . This leads to

ρl

Art

∂2V

∂t2 = �p. (2.6)

2.3. Pumping cycle under resonant conditions
Resonant conditions are those at which the flow rate is maximised (Takagi 1985).
Experimentally, it has been observed that these conditions occur when the volume in the
tube that varies as shown in figure 2(a). This section will deal with the analytical procedure
to obtain the resonant period and the theoretical flow rate that the pump provides under
these conditions. To do this, at first, we describe the pumping mechanism and then the
mathematical model used.

2.3.1. Pumping mechanism
The pumping mechanism is elucidated using the cycle detailed by Anatol et al. (2023),
depicted in figure 2(b–d). This cycle occurs under resonance conditions. To enable readers
to closely observe the evolution of the compliant tube under these conditions, a slow-
motion video has been included in the supplementary material of the paper. The video
experiment employs the same set-up as Anatol et al. (2023), with the exception that the
pincher has been replaced by a mechanical one. To further clarify the pumping mechanism,
the most significant moments of the cycle have been selected and illustrated in figure 2(a).

The beginning of the cycle (instant t1 figure 2a) comes when the compliant tube has
its maximum volume, Vct,1 (figure 2d). This instant coincides experimentally when the
short-side flow rate, Qs , is almost zero (figure 2c). As the volume of the compliant tube is
greater than at rest, the walls are stretched and exert an overpressure on the fluid. This
overpressure causes the pressure in the compliant tube to be higher than in the tanks
(figure 2b). Moreover, under resonance conditions, the actuator pinches the compliant tube
just after this moment, further stretching the walls. From this moment on, if the pincher is
positioned in the centre of the compliant tube, it displaces half of the volume on each side
of the compliant tube (Kenner et al. 2000). If we allow time to elapse, the outflow on the
short side increases as a result of the pressure difference between the compliant tube and
the tank, as shown in (2.5)), where �ps = ps − pb is positive. This flow rate causes the
volume of the compliant tube to decay.
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Figure 2. (a) Schematic representation of stages of a pumping cycle in resonant conditions. (b) Gauge pressure
on the short-side ps (red line) and long-side pl (blue line); (c) flow rate on the short-side Qs (red line) and
long-side Ql (blue line) and (d) volume of the compliant tube dimensioned V/V ct as a function of time over
one cycle. The experiment is from Anatol et al. (2023).

The instant t2 is marked by the moment when the pressure in the short-side half of the
compliant tube is equalised with the pressure in the tanks. This approximately coincides
when the volume of the short-side compliant tube is half the volume of the compliant
tube at rest, Vct/2. This volume can be calculated using the formula Vct = lctπdct

2/4.
From t2 onwards, the pressure in the short-side compliant tube half, ps , falls below that
of the tank, even to negative values. Because of this, the pressure difference between the
compliant tube and the tank �ps is negative, and the outlet flow rate decreases.

On the long side, the same process happens, as explained so far, but with a lower flow
rate. Analytically, an explanation can be given from (2.5) considering the level of the two
tanks to be similar. If it is also considered a uniform pressure throughout the compliant
tube, �p will be the same for both pipes. By analysing the order of the transient term of
(2.5), we arrive at the expression (2.7), where it is observed that the flow rate on the short
side will be higher than on the long side with a relationship marked by the proportion
between the lengths of the pipes. From now on, this relationship will be called λ. The
parameter λ should be high, as seen in § 3, so the flow rate on the long side will be of a
lower magnitude than on the short side,

Qs

Ql
≈ ll

ls
= λ. (2.7)

The moment at which the flow rate on the short side returns to zero marks the instant t3.
In that instant, the volume in the short-side compliant tube half is almost zero. The pressure
in this half is still lower than the pressure in the tank (negative �ps), which causes fluid
to enter the compliant tube from the short side. From this point on, the pincher must be
removed so that it does not prevent the filling of the compliant tube from the short side.
Sometime after t3, the flow rate into the short side will exceed the flow out of the long
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side, and the compliant tube will start to fill again. In figure 2(c), this happens at 0.22 s,
where V/Vct ≈ 0.2.

The last instant of the cycle, t4, is marked by the moment at which the pressure in
the compliant tube becomes equal again to the pressure in the tanks. It approximately
coincides when the total volume of the compliant tube is the rest volume, Vct . It means
that the walls of the compliant tube are not stretched. After this, it will be stretched again
and the pressure exerted by the compliant tube will be higher than the pressure in the tanks.
Once its maximum volume is reached, the cycle will repeat.

Between the instant t1 and t3, half of the volume Vct,1 has been expelled from the
short side. While this is happening, a volume of less than half has been emptied from
the long side due to its lower flow rate, according to the ratio (2.7). The rest of the time,
the compliant tube is filled with fluid from the short side with a volume more significant
than that expelled from the short side between t1 and t3. This excess volume on the short
side (or shortfall on the long side) is the cause of the net flow from the short to the long
side.

2.3.2. Model
Having described the pumping mechanism under resonant conditions, the volumes and
flow rates described above will be used to develop a model to predict the pump’s behaviour.
The model is sensitive to the set-up, and parameters both upstream and downstream are
needed for obtaining a prediction. The significant assumption of the model is that there are
only two possible values of pressures inside the compliant tube: pm when the compliant
tube has an excess volume concerning its volume at rest, Vct ; and zero gauge pressure
when the volume of the compliant tube is less than Vct . In this work, the pressure at the
ends of the rigid tubes in contact with the tank, pb, it does not vary throughout the cycle.
This has been chosen to replicate the conditions of the experiments conducted by Anatol
et al. (2023); however, a generic pressure could be used.

The dimensions of the test rig ls , ll , lct , dct , drt are assumed to be known. Here, Vct can
be calculated from these dimensions, but not its maximum volume, Vct,1. This volume is
essential for the model. For its calculation, the short side will be analysed when the pincher
is acting, which causes the compliant tube to split into two independent parts.

For obtaining Vct,1, the expressions to calculate the short pipe instantaneous flow rate
(Qs) at a certain time t and dispaced volume (Vs,i f ) between two instants (ti and t f ) are
introduced. Here, Qs is obtained by integrating (2.8) between the initial instant ti and an
arbitrary t :

∂ Qs

∂t
= �ps

Art

ρls
=⇒

∫ Qs

Qs,i

dQs =
∫ t

ti

�ps Art

ρls
dt =⇒ Qs = Qs,i + �ps Art

ρls
(t − ti ).

(2.8)
Thus, Vs,i f could be obtained by the following expression:

∂Vs

∂t
= Qs =⇒

∫ Vs, f

Vs,i

dVs =
∫ t f

ti
Qsdt =⇒

=⇒ Vs,i f = Vs, f − Vs,i = �ps Art

ρls

(t f − ti )2

2
+ Qs,i (t f − ti ). (2.9)

For obtaining the volume Vct,1, the time interval �t2,3 = t3 − t2 must be computed.
Between instant t2 and t3, it is known that half of the short-side compliant tube has lost a
volume of Vct/2 (figure 2a), so the volume flowing through the pipe cross-section will be
Vs,23 = Vct/2 by using (2.9). If ti is t3 and t f is t2, it is possible to know �t2,3 assuming
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that the pressure in the compliant tube is approximately zero (figure 2c) and, therefore,
�ps = −pb = −ρgh. At t3, the flow rate in the short pipe is almost zero (Qs,3 = 0),
and between t3 to t2, the ejected volume is Vs,32 = −Vs,23 = −Vct/2. This leads to the
following expression:

Vs,32 = −Vct

2
= −gh Art

ls

(t2 − t3)2

2
=⇒ �t2,3 =

√
Vct ls

gh Art
. (2.10)

Once this time interval is known, it is possible to calculate the flow rate on the short side
at instant t2, Qs,2, from (2.8), obtaining Qs,2 = Art gh�t2,3/ ls . With this flow rate and
that at the instant t1 (which is zero on the short side), we can calculate the time between
instant t1 and t2 (�t1,2) from (2.8), assuming that the pressure in the compliant tube will
be of constant value pm , due to between t1 and t2, the compliant tube is stretched. As
indicated, keeping this pressure constant is the significant assumption introduced in the
model. In reality, the pressure in the compliant tube is neither uniform nor constant, and
depends on its shape and the action of the pincher. To calculate its shape, a fluid–structure
simulation or experiments of at least the compliant tube part is necessary, which is not
done in this paper. This value of pressure could be related to the instantaneous volume of
each compliant tube half and the elastic properties of the material. If this were achieved,
the problem could be closed, moving it away from being semi-empirical.

The pressure pm will be essential in the model since, together with the level of the
tanks, they are the only parameters that depend on the operating conditions and not on
the dimensions of the test rig. Therefore, between instant t1 and t2, the pressure difference
between both ends of the short rigid pipe will then be �ps = ps − pb = pm − ρgh. So the
time between both instants is calculated with the expression:

Qs,2 = (pm − ρgh) Art

ρls
(t2 − t1) =⇒ �t1,2 = Qs,2ρls

Art (pm − ρgh)
. (2.11)

After this, Vct,1 can be calculated from (2.9). This is the result of adding the volume of
the static compliant tube and twice the volume that passes through the short side between
t1 and t2. Assuming these conditions, we arrive at the following expression:

Vct,1 = Vct + 2Vs,12 = Vct + (pm − ρgh)Art

ρls
(t2 − t1)

2 = Vct + Qs,2�t1,2. (2.12)

So, the maximum volume of the compliant tube (Vct,1) can be computed as a function
of the first part of the experimental cycle. Once volume Vct,1 is known, the model is
based on the integration of (2.5) and (2.6) using a classic Runge–Kutta 4–5 ordinary
differential equation (ODE) solver, and the time series of pressure, volume and flow rate
can be reconstructed, as seen in figure 3, where the model predictions are compared
with the experimental data from Anatol et al. (2023). The pressure in the short-side
compliant tube half is pm between t1 and t2. In figure 3, t1 is t = 0 s, and t2 occurs
when the fluid volume passing through the short side, Vs , is (Vct,1 − Vct )/2. The
same is assumed for half of the long side. Here, pm in this experiment is calculated
with the mean value of the experimental pressure in the compliant tube when it is
stretched.

After t2, the pressure in the compliant tube will be zero, which is also valid for the long
side. The maximum volume that can come out of each side is Vct,1/2. After this, filling
begins on the short side. At this time, there is no physical separation due to the pincher
(it has been displaced), so the pressure of the compliant tube is determined by the total
volume of it, not of each half. Therefore, when the total volume of the compliant tube has
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Figure 3. (a) Gauge pressure on the short (ps ) and long side (pl ), (b) flow rate in the short (Qs ) and long
pipe (Ql ), (c) volume through the short (Vs ) and long side (Vl ), and (d) total volume of the compliant tube
dimensioned with the volume at rest (V/Vct ) as a function of time over one cycle. A solid line shows the
experimental results and a dashed line shows the model with pm = 14 166 Pa. Red shows the data for the short
side, blue for the long side and black for the compliant tube. The dark lines in panel (b) represent the integration
of (2.5) using the experimental pressure signal. The experiment is from Anatol et al. (2023).

values greater than the idle volume, Vct , it is assumed that the pressure in the compliant
tube returns to pm . Finally, the cycle is finished when the derivative of the volume of
the compliant tube over time is zero, indicating that it has been refilled. Once the cycle
has been finished, the flow rate at resonant conditions, Qr , is obtained by dividing the
negative value of the volume that has passed through the short side at the end of the cycle
(Vr in figure 3) and the time at the end of the cycle, Tr , which will be called the resonant
period.

Slight differences between the model predictions and the experimental reality are found
due to the simple choice of a constant value of pm for the whole time series. Despite
this very simple assumption, the model is able to predict the experimental time series of
pressure, volume and flow rate very satisfactorily. Finally, figure 3(b) shows that viscosity
is subdominant thanks to the integration of (2.5) using the experimental pressure signal
to obtain the instantaneous flow rate. As can be seen, there are small differences between
the experimental flow rate signal and the integrated one. These differences arise from the
integration of an experimental signal, where any lack of precision by the experimental
equipment amplifies the error. This comparison definitively validates the assumptions of
non-viscous unidirectional flow.
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2.3.3. Pincher duty cycle
The pincher is necessary to keep the cycle pumping so that the flow rate does not drop due
to dissipative effects. However, it should only work in certain parts of the cycle. To be as
efficient as possible, it must start to act at instant t1 and be active at least until instant t3,
to provide enough pressure for half the volume of the compliant tube to go down the short
side. However, it must cease exerting pressure before it impairs the flow returning from the
short side. It is considered that it must stop exerting pressure before the volume coming
from the short side fills half of the compliant tube, and this period coincides with �t2,3.
Considering all this, the duty cycle range (γ ), the percentage of time when the pincher is
working, can be obtained with the following expression:

�t1,2 + �t2,3

Tr
· 100 < γ <

�t1,2 + 2 �t2,3

Tr
· 100. (2.13)

2.4. Ideal conditions
In this section, the utmost flow rate of the pump is going to be calculated using
assumptions. The primary assumption is that the flow rate on the long side is assumed
to be of a lower order of magnitude than the flow on the short side and is, therefore,
not considered in the analysis. As a second assumption, it is considered that pm � ρgh,
which implies that �t1,2 and �t4,1 can be neglected regarding �t2,4. Considering the two
previous hypotheses, we consider only the short side and the total time of the cycle will be
�t2,4. The cycle period under these conditions, Tic, will be calculated assuming a pressure
difference �p = −ρgh when the compliant tube is filled, reaching a volume Vct . We will
obtain Tic by the integration of (2.5) with the above conditions:

Tic =
√

2 V ct ls
Art gh

. (2.14)

In this period, the short-side compliant tube has lost half its volume through the short
side and recovered it completely, so the total volume displaced is Vct/2. Considering this,
the utmost flow rate, Qic, can be calculated using

Qic = Vct/2
Tic

=
√

Vct Art gh

8 ls
. (2.15)

The period and utmost flow rate will be used to adimensionalise the results in the
parametric study.

3. Discussion
As indicated, the model set-up is the same as that of Anatol et al. (2023). The dimensions
involved in the problem are drt = 16 mm, dct = 20 mm, lct = 0.1 m and Vct = 31.4 ml.
Here, ls and ll will vary throughout this section. The model is first validated and then used
to perform a parametric sweep.

3.1. Model validation
The validation will consist of two stages. First, it will be determined whether the model
adequately predicts the resonant period and flow rate. Second, it will be compared with
experiments that have varied the test rig’s dimensional properties. For both, we will rely
on the experiments developed by Anatol et al. (2023).
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Figure 4. Pumped flow rate (Q) as a function of pincher period (T ). The experimental results are shown in
blue and the model prediction in green. The dimensions of the pipes are ls = 0.7 m and ll = 3.2 m (λ = 4.57),
and the height of the water column in the tanks, h, is 0.4 m. The experiments are from Anatol et al. (2023).
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Figure 5. (a) Resonant period (Tr ) and (b) resonant flow rate (Qr ) as a function of the ratio of pipe lengths,
λ. The total length of pipes is ls + ll = 4 m, the pressure pm is 15 000 Pa and the height of the water column
in the tanks, h, is 0.4 m. The experiments are from Anatol et al. (2023).

At first, the model will be compared with frequency sweep performed to obtain the flow
rate provided by the pump at various periods (figure 4). The dimensions of the pipes are
fixed (ls = 0.7 m, ll = 3.2 m). In the figure, it can be seen how the model reliably predicts
the resonant flow rate. However, the period is 10 % higher. The reason for this is possibly
due to the fact that there are periods when the pressure in the compliant tube drops below
0, a behaviour that is not taken into account by the model (see figure 3a). The value of pm
is the average value of the experimental pressure in the compliant tube when it is stretched.

The validation of the model will be continued by comparing it with experiments under
resonant conditions. In this step, the length of the short and long pipes is varied, keeping
the total length constant, being ls + ll = 4 m. The ratio of pipe lengths, λ= ll / ls , will
be varied obtaining figure 5, where a good correlation between the experiments and the
model can be observed. The period obtained by the model remains 10 % higher than the
experimental. It can also be seen that the resonant period decreases with λ. The model
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Figure 6. (a) T̂r and (b) Q̂r as a function of λ for two long span lengths (l̂l ), two compliant tube volumes at
rest (V̂ct ), and two different diameters of rigid pipes (d̂r t ). p̂m is 3.8. l̂l and d̂r t are made dimensionless with
drt = 16 mm and V̂ct with Vct = 31.4 ml.

shows that a higher λ results in a higher flow rate driven by the pump. After these two
steps, the model is considered validated and will be used to perform a parametric sweep.

3.2. Parametric study
In this section, the period and flow rate calculated under ideal conditions (§ 2.4) are used
to adimensionalise, since they allow interesting conclusions to be drawn. First, we will test
the influence of all the dimensions of the test rig involved in the model (ls, ll , Vct , drt ).
Subsequently, a study is made both of the operating conditions pmand of the fluid height
in the tanks, h.

We begin by analysing the model for different ratios of λ= ll/ ls . The λ parameter
has been swept for two long pipe lengths, ll , two compliant tube volumes, Vct , and two
rigid pipe diameters, drt . All this is summarised in figure 6, where the cycle period
is adimensionalised with Tic, the net flow rate with Qic and pressures with pb = ρgh.
The dimensionless parameters will be accented with the caret symbol (̂ ). From now
on, dimensionless parameters will be used, since they allow interesting conclusions to
be drawn. However, the model has been solved dimensionally.

As can be seen in figure 6, all the curves overlap in a curve that has a maximum when
λ= λr = 4.5. It is in this region where it is of interest for the pump to operate, since
the flow rate is maximised. Finally, none of l̂l , v̂ct or d̂r t influence the dimensionless
relationships, which results in favour of the proposed dimensionless parameters and allows
the problem to be significantly simplified. From the graph, it can be seen that under these
operating conditions, to increase the flow rate provided by the pump, there must be a
relationship between the lengths of the pipes of λr = 4.5 and Qic should be as large as
possible by increasing Vct , Art or h, or by decreasing ls (2.15).

It can be observed that for low λ, the resonant period and flow rate are far from ideal
conditions. This is because the hypothesis that the long-side flow rate is of lower order
than that on the short side is broken since Qs ≈ λ Ql according to (2.7), which explains
that for higher λ, this correlation is better.

Finally, the influence of pmand h is analysed to see how the T̂r and Q̂r ratios change
(figure 7). It is obtained for λr = 4.5, as this is the value for which the flow rate
obtained in figure 6 is maximised. The abscissa axis represents the dimensionless variable
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Figure 7. (a) T̂r and (b) Q̂r as a function of p̂m for several heights of the water column in the tanks, (ĥ). ĥ is
made dimensionless with h = 0.4 m.

p̂m = pm/ρgh. The model is solved by sweeping pm for different tank heights. It can
be seen how all the curves converge in one that depends only of p̂m . The value of Q̂r is
approximately 0.6, except for values of p̂m lower than 2. This is a very interesting result
because it indicates that the flow rate cannot be increased through this parameter. However,
to achieve the indicated Q̂r , it is necessary for a value of T̂r that does depend on p̂m .

The ratio of pipe lengths, λ, is 4.5.
The unique dependence of the results on the parameters λ and p̂m is explained by non-

dimensionalising (2.5) using Qic for the flow rate and Tic for the time for the short and
long pipes. If �p = pm − ρgh, the following equations are obtained:

∂ Q̂s

∂ t̂
= 4 ( p̂m − 1), (3.1)

∂ Q̂l

∂ t̂
= 4 ( p̂m − 1)

1
λ
. (3.2)

As can be seen in the equations, the evolution of the dimensionless flow rate in the short
and long pipes depends only on these two parameters. Moreover, �p = pm − ρgh only
occurs when the volume in the compliant tube is greater than the resting volume, which
happens only in a small part of the cycle. The duration of this part decreases if the value of
p̂m increases, having a smaller effect on the net ejected flow rate (figure 7b). In this case,
for most of the cycle, �p = −ρgh, and the evolution of the dimensionless flow rate will
mainly depend only on λ. In this scenario ( p̂m >> 1), the ejected flow rate will depend
exclusively on geometric conditions, thereby ceasing the model’s semi-empirical nature.

Summarising, for p̂m >> 1, the chosen adimensionalisation reduces the number of
parameters influencing the flow rate to only one, λ, significantly simplifying the problem.

4. Conclusions
This paper explains the pumping mechanism of an asymmetric valveless pump and
provides a model for calculating the resonant period and flow rate. The work draws some
conclusions. The first one is that the role of viscous dissipation in this type of pumping
is subdominant and can be eliminated from the analysis if the Womersley number is high
enough.
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The pumping mechanism has been described comprehensively. The model has been
validated with experiments published by Anatol et al. (2023), showing that it acceptably
predicts both the resonant period and flow rate. The fundamental role of the ratio between
short and long pipe lengths, represented by the parameter λ= ll / ls , has been determined.
The net flow rate under resonant conditions increases with this parameter. However, if the
flow rate is adimensioned, as proposed in this work, a maximum is obtained for a particular
value of λ, which indicates that to maximise the flow rate, the parameter Qicmust be
higher by increasing Vct , Art or h or decreasing ls . The model also allows for predicting
the resonance period, a fundamental operating parameter for pumping. The proposed adi-
mensionalisation simplifies the problem by reducing the parameters influencing to λ and
the ratio pm/ρgh. In fact, only λ intervenes in the dimensionless flow rate Q̂r for pm/ρgh
higher than 2. The pressure at the ends of the rigid pipes in contact with the tanks, pb, has
been assumed constant through the cycle in this work, but there is no limitation regarding
the use of a generic pressure, which would extend its applicability.

The model uses only two pressure values inside the compliant tube, pm and 0, which
is a simplification of reality; to calculate this accurately, fluid–structure simulations or
experiments are needed. The dependence of the pressure inside the compliant tube on its
volume would be necessary to close the problem. Currently, the parameter is obtained
semi-empirically, and therefore, at least one experiment is needed to determine its value.
However, in figure 5, it can be observed that the results are acceptable for the geometries
studied in this work using a single value of pm . This may be due to two reasons: either this
parameter does not change with geometry or it does not significantly influence the net flow
rate. The analysis of this parameter in figure 7 highlights the second option, indicating that
pm has little influence on the net flow rate as long as pm/ρgh is greater than 2.

As future work, the analysis of a Liebau pump is proposed, which incorporates
both pumping mechanisms: asymmetric and impedance. Furthermore, a fluid–structure
simulation will provide a detailed understanding of the pumping dynamics in the
compliant tube, helping to understand the influence of the material’s elastic properties.
Regarding the boundary condition pb, the model should be generalised by using different
pressure conditions. This will enhance understanding of the potential applications of
Liebau pumps.

The present work points out ways to understand the asymmetric pumping mechanisms
and thus being able to optimise pump performance. These pumps show great potential for
biomedical flow pumping, in which valveless systems are much better suited for the task,
since blood damage is highly minimised in comparison with traditional turbomachinery
systems. This could be a potential game changer for both extracorporeal and intracorporeal
blood flow assistance. Another application is the cooling of electronic systems with
valveless pumps.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2025.117.
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