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Abstract. The induction and momentum equations of solar dynamo are simplified to a dynamic
system for the convective Root-Mean-Square (rms) velocity and the rms magnetic field in the
solar convection zone. The study of stable stationary points of this system gives a minor excess
of the critical level of the dynamo and, accordingly, moderate magnetic field typically about
1 T (10 kG). A significantly lower rms magnetic field may be possible at some parameters of
the system. The stable rms velocity is about 100 m/sec, and the characteristic magnetic times
are about the half-period of solar rotation or about an average lifetime of sunspots. Relative
magnetic energy is of order 5 kJ/kg that is about the kinetic energy. The unstable stationary
points could be near zero magnetic fields as in periods of very lower solar activity similar to the
Maunder minimum.
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1. Introduction

The complete system of solar magnetic dynamo equations [Gilman & Glatzmaier
(1981), Lantz & Fan (1999)] is extremely complex, since it includes the induction equa-
tion for the magnetic field vector, the momentum equation for the velocity vector field
of a conducting fluid, equation for entropy and equations of state. From the first decade
of this century [Ghizaru et al. (2010)] to the present [Guerrero et al. (2019), Hotta et al.
(2022)] some numerical models had been created that imitate the solar magnetic cycle
and differential rotation, starting from an almost complete system. However, the key
parameters (and, above all, the transport coefficients) of all such models differ by many
orders of magnitude from their true values, and extremely far extrapolations to real values
have to be made. Therefore, simplified models are very relevant, among which the mean
field models seem to be the most reliable [Krause & Redler (1980), Moffatt & Dormy
(2019), Charbonneau & Sokoloff (2023)]. But even they remain difficult enough for direct
analysis and, at the same time, rely on unproven hypotheses.
The purpose of this work is to create a reliable dynamic system for the rms velocity

and rms magnetic field in the interior of the solar or similar stellar convective zone with
an active MHD dynamo based on first principles and on the dynamo integral equations.
In this paper, I perform stability/instability analysis near the stationary points of this
original system for the Sun. Many other potentially much more important manifesta-
tions of the obtained system for the Sun and other stars are supposed to be devoted to
subsequent works.

© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical

Union.

https://doi.org/10.1017/S1743921323005252 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323005252
https://orcid.org/0009-0000-8989-1978
mailto:sstarchenko@mail.ru
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1743921323005252&domain=pdf
https://doi.org/10.1017/S1743921323005252


Levels of stabilization of velocity and magnetic induction 365

In the next section, the required system of equations is derived based on the magnetic
induction equation and the momentum equation. The energy and other equations of
the dynamo are simply approximated by the fact that the integral power of the work
of the Archimedes buoyancy force is given as, generally speaking, a function of time.
The momentum equation is multiplied scalarly by the velocity vector and this product
is integrated throughout the solar convection zone (CZ). This gives an evolutionary
equation for the total kinetic energy, which, after dividing by the mass of CZ, sets the
desired equation for the rms velocity, provided that each integral term appears to be
proportional to the corresponding powers of the velocity and magnetic field. In a similar
way, I multiply the induction equation by the magnetic field vector and integrate the
product over the entire volume of CZ. This gives an evolutionary equation for the total
magnetic energy, which, after dividing by the volume of CZ, sets the desired equation for
the rms magnetic field, provided that each integral term appears to be proportional to
the corresponding powers of the velocity and magnetic field.
The third, main section of this work is devoted to stable and unstable stationary points

of the resulting simplified system for convective velocity and magnetic field. The station-
ary points themselves are defined in a standard way - as places where derivatives vanish.
To assess the stability of these points, corresponding linear systems are constructed in
their small neighborhood. Solutions of such systems that stabilize near these points are
naturally considered stable, while those moving away (exponentially in time) from these
points are considered unstable. Accordingly, we consider the location of the dynamo near
stable points to be a more probable behavior. And placing dynamo near unstable points
is less probable behavior. For dynamo, various estimates of physical quantities result-
ing from derived here equations are given. They are in agreement with known modern
numerical, theoretical, and observational models of the magnetic and velocity fields. At
the same time, new original relations were obtained.
A section with results is absent because this work intended to be short. One could find

the major results in the abstract. For the same reason of the space shortage, I did not
present proofs of stability and instability of the different stationary points here.

2. Derivation of equations

Here, I further derive the simplest dynamical system for the rms convective velocity
and the rms magnetic field.
To obtain the equation for the evolution of the rms velocity u(t), I integrate over the

entire volume of CZ the scalar product of the velocity vector U and the momentum
equation and, as a result of identical transformations and neglect of small terms (for
details, see, for example, [Gilman & Glatzmaier (1981), Priest (2014), Starchenko (2019)])
I get

d

dt

(∫ ro

ri

ρ
U2

2
dV

)
=

∫ ro

ri

(
ρA ·U− U×B · ∇×B

μ0
− ρν|∇×U|2

)
dV. (1)

Here, within the integrals, ri and ro denote the radius of the inner and outer boundary of
CZ, respectively, ρ is the average density, and ν is the coefficient of kinematic viscosity.
I would especially like to note A - the acceleration caused by the buoyancy force of
Archimedes. It generates convection, which, in turn, generates a magnetic field with
vector B.

Let us divide (1) by the mass of CZ M . We obtain on the left side of (1) directly
by definition udu/dt. The first term one on the right is the specific integral power of
the Archimedes buoyancy force a, which we consider being a given function of time.
Next comes the specific magnetic force (or more precisely, power) of Lorentz, which,
based on the degrees of velocity and magnetic field included in it, can naturally be
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estimated as ub2/(Lρμ0). Here L is the characteristic external scale, divided, based on
the corresponding vector product, by the typical sine of the angle between the velocity and
magnetic field vectors. The end of (1)/M is the specific integral power of the diffusion
force, which can naturally be estimated as u2/Tu. Thus, within the framework of the
developed approach, integrals are represented through their components, to which they
are directly proportional. Time Tu is the diffusion time and b is the rms magnetic field.
As a result, we obtain the evolutionary equation for velocity

udu/dt= a− ub2/(Lρμ0)− u2/Tu. (2)

In a similar way, I integrate over the volume the scalar product of the magnetic field
vector and the induction equation and obtain (σ - conductivity):

d

dt

(∫ ro

ri

B2

2μ0
dV

)
=

∫ ro

ri

(
U×B · ∇×B

μ0
− |∇×B|2

σμ2
0

)
dV. (3)

Now dividing expression (3) by the volume of CZ and based on the considerations
presented above, we finally obtain the evolutionary equation for the magnetic field (Tb
is the diffusion time for the magnetic field):

db/dt= ub/L− b/Tb. (4)

This equation (4) together with equation (2) constitutes the desired system.

3. Stationary points

The stationary points of the system obtained above from (2) and (4) are found by
zeroing the time derivatives and then solving the corresponding algebraic systems. In this
case, all the parameters considered below can, generally speaking, be time dependent,
but for the order of magnitude estimates given in this section, it is natural to consider
them constant.
Let’s start with the stable stationary points of the system (2, 4), corresponding to a

non-zero magnetic field (index - S):

uS =L/Tb, (5)

bS =±{ρμ0[Tba −L2/(TuTb)]}1/2. (6)

With a typical theoretical and practical value of the stationary velocity uS = 100
m/sec [Gilman & Glatzmaier (1981), Hotta et al. (2022), Moffatt & Dormy (2019), Priest
(2014)] and diffusion time Tb = 1 Msec [Moffatt & Dormy (2019), Priest (2014), Forgacs-
Dajka et al. (2021), Fan (2021)], we have L = 100 Mm, which is an order of magnitude of
the CZ half-depth, indicating a corresponding insignificant excess of the critical dynamo
level. With the given power about a = 10 mW/kg (ratio of the well-known solar luminos-
ity to mass of CZ), one obtains that for the generation, or rather, for the very existence
of a stationary magnetic field, it is necessary, following from (6) and the above estimates,
that the threshold condition be met

Tu >L
2/(T 2

b a) = 1Msec. (7)

The last time interval is approximately a half-month which is about an average solar spots
lifetime or half-period of the solar rotation rate [Moffatt & Dormy (2019), Priest (2014),
Forgacs-Dajka et al. (2021), Fan (2021)]. The corresponding kinetic scale or convective
cell size is uS(1Msec) =L. This is about the known estimates like uSTu for such a giant
cell scale.
If condition (7) is satisfied with a margin, then the rms field bS from (6) is about 1 T

(10 kG), which corresponds to the largest magnetic field value possible in this system.
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The relative magnetic energy b2/2ρμ0 is as well the largest about 5 kJ/kg, which is close
to the relative kinetic energy value u2/2. If condition (7) is satisfied almost without a
margin, then the rms magnetic field could be much lower than 1 T. This could be actually
the way to the following unstable stationary points.
Let’s finally study unstable stationary points approaching zero magnetic fields:

B0 = 0, u0 =±(Tua)
1/2. (8)

Those unstable stationary points may be associated with periods of very lower solar activ-
ity similar to the Maunder minimum, and possibly (although unlikely) with an extremely
rare catastrophic zeroing of the magnetic field that may produce as well catastrophic
super-flare.
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