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Summary

Increasingly researchers are conducting quantitative trait locus (QTL) mapping in metabolomics and
proteomics studies. These data often are distributed as a point-mass mixture, consisting of a spike at
zero in combination with continuous non-negative measurements. Composite interval mapping
(CIM) is a common method used to map QTL that has been developed only for normally
distributed or binary data. Here we propose a two-part CIM method for identifying QTLs when the
phenotype is distributed as a point-mass mixture. We compare our new method with existing normal
and binary CIM methods through an analysis of metabolomics data from Arabidopsis thaliana. We
then conduct a simulation study to further understand the power and error rate of our two-part
CIM method relative to normal and binary CIM methods. Our results show that the two-part CIM
has greater power and a lower false positive rate than the other methods when a continuous

phenotype is measured with many zero observations.

1. Introduction

Quantitative trait loci (QTL) mapping is the process
of identifying genetic loci that contribute to variation
in a trait and estimating the individual allelic effects.
Lander & Botstein’s (1989) interval method for map-
ping QTL greatly improved the estimation of QTL
locations and effects over the earlier single-marker
methods and laid the foundation for most modern
statistical QTL mapping methods. In their approach,
the observed phenotype is modelled as a mixture of
normal distributions (one for each genotype) with the
mixing proportions corresponding to the probability
of each genotype at locations between two markers.
At specified positions throughout the genome, com-
monly every 1 centiMorgan (cM), a LOD score is
used to test the null hypothesis of no QTL present
versus the alternative that a QTL is present. Regions
where the LOD score exceeds a specified significance
threshold are regarded as indicating the presence
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of a QTL. The location of the candidate QTL in a
significant region is estimated by the location of the
peak LOD score.

While still widely used, interval mapping can yield
biased estimates of the location and effect of a QTL
when there are multiple linked QTL (Knott & Haley,
1992; Martinez & Curnow, 1992). Several methods
have been implemented to improve upon interval
mapping. These include (1) composite interval map-
ping (CIM) (Zeng, 1994) and (2) multiple interval
mapping (MIM) (Kao et al., 1999). Both approaches
seek to account for phenotype variation caused by
other linked QTL.

CIM extends the interval mapping method by using
additional markers (beyond the two that flank the
interval of interest) as covariates in the linear model
underlying the LOD score calculation. The additional
markers are intended to account for the influence of
QTLs not located in the interval being evaluated
but that may be linked to the hypothetical QTL. By
accounting for linked QTLs, CIM increases the power
to detect a QTL and increases precision of the esti-
mated location relative to interval mapping (Jensen,
1993; Zeng, 1994). In MIM, multiple QTLs are
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modelled jointly. A selection procedure is used (for-
ward, backward or stepwise) to add and delete QTL
from the model. A final model is identified based on a
selection criterion such as Akaike information cri-
terion or Bayesian information criterion. In addition
to modelling multiple QTLs, epistasis also can be
modelled with MIM (Kao et al., 1999).

As originally proposed, interval mapping, CIM
and MIM all assume that the phenotype is normally
distributed. Subsequently, interval mapping was ex-
tended to analyse phenotypes with a wide variety
distributions, including binary traits (Xu & Atchley,
1996; Deng et al., 2006), ordinal traits (Hackett &
Weller, 1995), counts (Thomson, 2003), phenotypes
with spikes (Broman, 2003) and censored data (Diao
et al., 2004). All of these methods use parametric
likelihood approaches. Non-parametric (Kruglyack
& Lander, 1995; Fine et al., 2004), semi-parametric
(Zou et al., 2002) and empirical likelihood (Huang
et al., 2007) methods also have been implemented.
Extensions of CIM and MIM to traits that are
not normally distributed have received less attention.
Xu & Atchley (1996) extended CIM to binary
traits, and Li & Chen (2009) recently adapted MIM
to analyse phenotypes with a spike in their distribu-
tions.

Data with spikes are a mixture of two components,
a point-mass at one value and quantitative observa-
tions at values other than the point-mass value. The
point-mass value is commonly the smallest value (e.g.
zeros that reflect the absence of a compound or con-
centrations below a detection limit) or largest value
(e.g. survival time of animals that survived to the
end of an experiment). The distribution of data
with spikes can be characterized by (i) the proportion
of point-mass values and (ii) the distribution of
the continuous component. We refer to such data-
generating distributions as point-mass mixtures. These
distributions arise in many different settings including
high-throughput genomic experiments and cancer
studies. A common feature of data from all of these
applications is that there is information in both the
continuous and the discrete components.

Point-mass mixture data present a challenge for
QTL mapping methods that assume the phenotype is
normally distributed and identify QTL based on a
difference in phenotype means among the genotypes.
Treating the point-mass as part of the continuous
distribution violates the underlying assumptions of
the method (i.e. normally distributed phenotypes).
Alternatively, the point-mass observations could be
dropped and only continuous observations analysed,
but this approach discards meaningful information
and reduces power. Thus, it is important to employ
methods specific to point-mass mixture data that ac-
count for the separate contributions of each com-
ponent of the mixture.
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Several researchers have addressed QTL mapping
for point-mass mixtures. Broman (2003) proposed a
two-part interval mapping procedure for point-mass
mixtures that jointly tests for differences between
genotypes in the proportion of observations in the
point-mass and in the means of the continuous
component. Through simulations, he found this
procedure to perform better than binary interval
mapping and normal interval mapping methods that
used only the observations not in the point-mass.
However, a non-parametric, rank-based method
generally was more powerful than the two-part in-
terval mapping method. Jin et al. (2007) presented a
framework for analysing QTL based on a semi-
parametric, exponential tilt model and showed that
this model could be used to analyse point-mass
mixtures. Finally, Li & Chen (2009) recently ex-
tended MIM to accommodate point-mass mixtures.
They showed that their two-part MIM model is
more effective at identifying QTL than Broman’s
two-part interval mapping method when the trait’s
heritability is moderate or high, while the two-part
interval mapping method is superior at low herita-
bility.

Here, we develop and evaluate a CIM method for
identifying QTLs when the phenotype is distributed as
a point-mass mixture. In the first section, we present
our two-part CIM procedure. We then demonstrate
its use and compare it to existing normal and binary
CIM methods through an analysis of metabolomics
data from recombinant inbred lines (RILs) of
Arabidopsis thaliana. Finally, we conduct a simulation
study to further understand the method’s power
and error rate relative to normal and binary CIM
methods.

2. Methods
(1) Two-part CIM

Data for mapping QTLs consist of a set of markers on
a known genetic map and quantitative phenotype
values for n individuals. Let y; represent the quanti-
tative phenotype value and M; the set of marker gen-
otypes at known locations for individual i, with m;,
the genotype of individual i at marker k. Without loss
of generality, we assume a point-mass at zero and let
ZI'=0 1fy,=0 and zZi= 1 1fy,>0

Consider a putative QTL located at a fixed chro-
mosome position. For simplicity, we consider an ex-
perimental population consisting of two genotypes
(e.g. backcross and RIL), but the method can be di-
rectly extended to other experimental populations. In
this setting, each individual has one of two genotypes
at each location. Let g;={0, 1} signify the genotype
of individual i at the putative QTL. The g; are
unknown, but we assume that the QTL genotype
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probabilities, p{j)=Pr(g;=j|M;), where j={0, 1} sig-
nifies the genotype of individual 7, can be calculated
from the observed marker data at any position using
the estimated recombination fraction.

Point-mass mixture data consist of two parts (1) a
binary component representing the proportion of
observations in the point-mass and (2) a continuous
component consisting of observations not at the
point-mass. For the binary component of the pheno-
type, represented by z;, let & (j)=Pr(z;=1|g;=)). We
assume the continuous component of the phenotype
is normally distributed with mean u; and variance o,
i.e. y{(g;=J, zz=1) ~Normal(y;, 0*). Then, for our two
genotype set up, the likelihood function of the ob-
served data is

L= H (DI =)} (D)}
+p0){(1 =70} {7(0)fi(0)} 1.

(D

If the genotype at the putative QTL were known, the
likelihood would be

L= H [pA(D)(1 — (1))~ {a(1)fi(1)}7]
x [p0)(1 —7(0))! ~* {7(0)£:(0)} 7],

where f,(1) and f;(0) are normal density functions for
the random variable y; with mean u, and u,, respect-
ively, and common variance o

We extend the two-part interval mapping method
to CIM by adding markers as covariates in the likeli-
hood function used to estimate 7(j), u; and o. We
estimate these parameters with maximum likelihood
estimates (MLEs) via an Expectation—Maximization
(EM) algorithm as follows. Because the likelihood
(2) factors, it can be maximized separately for the
binary component parameter, 7(j), and the con-
tinuous component parameters, #; and ¢. Following
Zeng (1994), we model the continuous component as

(@)

vil(gi=j,zi=1)=bo+b*g;i+ > bumy+e;, (3)

k#L1+1

where b* is the effect of the putative QTL, g; is the
genotype of individual 7 at the putative QTL, by is the
effect of the kth marker outside the interval ([, /+ 1),
my, is the genotype of individual i at the kth marker
and b, is the intercept. The ¢; are assumed to be in-
dependent and identically distributed normal random
variables with mean 0 and standard deviation o2
Thus,

lLtl = bo +b* + Z bkm,;k, (4)
k#L1+1
o =bo+ Z brm. ®)
k#L1+1
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Maximizing the likelihood with respect to b,, b*, by
and o yields the following estimators:

b*=(Y—MB)P/¢, (6)
B=(M'M) "'M/(Y —Ph¥), (7)
6*=[(Y —MB) (Y —MB)— ¢6**/n,. ®)

where n. is the number of individuals with non-
zero phenotypes, Y is an n.x 1 vector of non-zero
phenotype values, M is a (n.x(t—1)) matrix of
t covariate markers (my), P is an n.x1 vector
specifying the posterior probabilities (f’l-) of gi=1
and ¢=Y" P(1).

For the binary component of the likelihood, we
model the probability that z;=1 conditional on the
marker data with a logistic model. Estimates for 7z( j)
are obtained through solving

eXp{V0+V*+ Y Vkmik}
(1) = e , ©)
1+exp{y0+y*+ y ykm,-k}
k#LI+1
ol 3 ]
.71'(0)= k#L1+1 (10)

L+exp v+ Y Vi
k#ALI+1

where y* is the effect of the putative QTL, yy is the
effect of the kth marker outside the interval (/, /+1),
my, 1s the genotype of the kth marker and y, is the
intercept. The Newton—Raphson algorithm is used to
estimate y,, v* and y, as detailed in Xu & Atchley
(1996).

Results from the two maximization procedures are
combined in the E-step of the EM algorithm to esti-
mate the posterior probabilities that g;=1 at the
putative QTL by

pi(1 —a(1))

f i 0,
5 _ ) pOI=a0)+pOa—ao)’ "
’ P R
POADAD) +p(OF0)/(0)” ’
(1)

To summarize, the EM algorithm is initiated by
setting P, =p;. Next, we obtain estimates for 7(j), u;
and o through equations (4)—(10). Then, posterior
probabilities are calculated via equation (11) using
updated parameter estimates. The last two steps are
iterated until the log likelihood converges.

Based on the EM-estimated likelihood, we calcu-
late a LOD score to test the joint null hypothesis,
H,: m=myNuy=u, as follows. First, we need a se-
cond set of parameter estimates under a null model
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with no QTL. The MLEs for m,, u, and o are
estimated directly with the following equations from
Zeng (1994) and Xu & Atchley (1996):

luo:b0+ Z bkmika (12)
k#L1+1

B=MM) MY, (13)

6*=[(Y —MB)(Y —MB)]/n,, (14)

€Xp { Yot z YiMik }
k#L1+1 ) ( 1 5)
Z ViMik }

k#LI1+1

Iy =

1+exp{y0+

Then, the LOD score for testing the null hypothesis
at a putative QTL position is LOD = log,, [L(7(1),
f[(o)a /215 /205 6)/L(ﬁ0’ ﬂoa 6)]

(i1) Covariate selection

Zeng (1994) evaluated an approach to selecting
covariates from the set of all markers other than
those directly flanking the interval of interest. He
compared this method to one that uses all unlinked
markers. In practice, a user-specified number of
markers (7) is commonly used, typically three to
six [see e.g., R/qtl (Broman et al., 2003) and QTL
Cartographer (Basten et al., 2005)]. In these pro-
grammes, covariate markers are selected through a
step-wise selection procedure and the ¢ most sig-
nificant markers for explaining phenotypic variation
are retained as covariates.

We use a forward step-wise selection process based
on deviance tests to rank markers. First, the signifi-
cance of each marker for explaining the phenotypic
variation is tested individually as follows. We use
logistic regression to model logit(z,) = a, + aim + i,
where ay is the effect of genotype at the kth marker.
Similarly, simple linear regression is used to model
vi(zi=1) =B + fimiy + €. The full model deviance is
the sum of the deviances from the logistic regression
and linear regression components. For the null model,
we model logit(z)=a,+¢&; and yil(z;=1)=p,+ €.
The null deviance is again the sum of the deviances
from these two models. The significance of marker k is
evaluated using the null deviance minus the full model
deviance, which follows a chi-square distribution with
two degrees of freedom when the null hypothesis is
true. We proceed by adding the most significant
marker to both the full and null models and repeat
the testing procedure. The procedure is terminated
once the user-specified number of markers has been
identified. This selection process is conducted gen-
ome-wide and is not prohibitively computationally
intensive.
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3. Example

To determine if the two-part CIM can improve
detection of QTLs when data are distributed as point-
mass mixtures, we applied the method to metabo-
lomics data from the model plant A. thaliana. We
used metabolite concentration measurements from
Rowe et al.’s (2008) study on RIL of A. thaliana. The
210 RILs were created from crossing the Bayreuth-0
(Bay) and Shahdara (Sha) inbred lines of A. thalina
(Loudet et al., 2002). Each RIL was genotyped at 95
markers on five chromosomes with an established
genetic map (Loudet er al., 2002). Gas chromato-
graphy time-of-flight mass spectrometry was used to
obtain the concentrations of 557 metabolites in each
RIL. The concentration of each metabolite is a
quantitative trait for which we seek to identify QTLs.
Of the 557 metabolites, 121 had no point-mass ob-
servations and were excluded from this analysis. In
addition, we dropped five RILs with large numbers
of missing phenotype values from the analysis. Thus,
436 metabolites were analysed based on observations
from 205 RILs.

The proportion of observations at zero was highly
variable across metabolites, ranging from less than
1% to more than 95%. On average, the proportion of
observations at zero was 48 %. The distribution of the
continuous observations tended to be strongly right-
skewed suggesting the use of a logarithmic trans-
formation to meet the normality assumption of the
two-part CIM method. However, zero values pose a
challenge when applying a logarithmic transform-
ation. We employed a commonly used approach to
address this problem that enabled us to use a log
transformation with the normal CIM. Specifically, we
substituted 0-001 for all zero values before trans-
forming the data. This substitution was only used for
analysing data with the normal CIM. Zero values
were retained for analysis with the two-part and bi-
nary CIM methods. We compared this approach to
an alternative method in which we treated zero values
as missing and analysed only continuous observations
with the normal CIM.

We analysed the A. thaliana metabolomics data
using normal CIM, binary CIM and our new two-part
CIM method. All analyses were conducted in R ver-
sion 2.7.2 (R Development Team, 2008). Normal
CIM was implemented through the R package R/qtl
(Broman et al., 2003). We modified functions from the
R/qtl package to implement the binary CIM. We used
t=35 covariate markers, excluding markers within
10 cM the markers flanking the interval of interest.
Significance thresholds for identifying QTL were de-
termined based on a permutation null distribution.
For each metabolite, we generated the null distri-
bution by permuting phenotype values 1000 times
relative to the matrix of RIL genotypes. This is a
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common method for determining significance in
quantitative genetics studies (Broman et al., 2003;
Basten et al., 2005). QTLs were identified as peaks
in the LOD score profile that exceeded the 95th
percentile of the permutation distribution. For sig-
nificant peaks, 1:5 LOD support intervals were de-
termined.

(1) Results

Of the 436 metabolites, no method detected a QTL for
306 metabolites and all methods predicted at least one
QTL for 38 metabolites. The two-part CIM method
identified at least one QTL for the most metabolites
(92), while the binary CIM method identified the
fewest metabolites with QTLs (66). The normal CIM
identified 75 metabolites with at least one QTL. For
38 metabolites, only the two-part CIM method
identified a QTL. Binary and normal CIM methods
were the only methods to detect QTLs in 15 and 12
metabolites, respectively.

To better understand the characteristics of the me-
tabolites and the performance of the three methods,
we calculated the means of the continuous compo-
nents and proportions of point-mass observations for
Bay and Sha alleles at the marker closest to predicted
QTLs for each method. Metabolites for which all
methods predicted QTLs tended to have large differ-
ences in proportions of point-mass observations.
Metabolites with QTLs predicted only by the binary
CIM either had large point-mass proportions
(>80%) or large differences between the point-mass
proportions of the two alleles (>40%) but similar
means for the continuous observations. For these
metabolites, the difference in proportions was not
large enough to result in a rejection of the null
hypothesis with the two-part CIM given the small
difference in means.

Metabolites for which only the normal CIM pre-
dicted QTLs (15 QTLs for 12 metabolites) had vari-
able characteristics. For two predicted QTLs, one
of the alleles had no continuous observations at the
closest marker; thus precluding an assessment of the
differences between the alleles. Three predicted QTLs
had dissonant differences with very large point-mass
proportions (>80 %). Based on the simulation results
(see below), some of these predicted QTLs could be
false positives. Dissonant differences occur when the
genotype with the larger mean has a larger proportion
of zero values so that the binary and continuous ef-
fects are in opposite directions. One additional QTL
showed dissonant differences but had very small point
mass proportions (<5%). The remaining nine QTLs
were for traits with consonant differences, meaning
that the genotype with the larger mean has a smaller
proportion of zero values. For these QTLs, the means
of the continuous components were similar between

https://doi.org/10.1017/5S0016672310000042 Published online by Cambridge University Press

43

alleles but the point-mass proportions differed. The
simulation study (see below) showed the normal CIM
to have slightly greater power in this situation com-
pared to the two-part CIM.

Metabolites for which only the two-part CIM de-
tected QTLs tended to have moderate differences in
means and point-mass proportions. The two-part
CIM detected more QTLs resulting from dissonant
differences than the normal CIM. Of the 41 QTLs
detected for 38 metabolites, 16 showed dissonant dif-
ferences and 25 showed consonant differences.

When zero values were treated as missing values for
analysis with the normal CIM, slightly fewer meta-
bolites were identified as having QTLs than when
0-001 was substituted for the zero values (72 versus
75). However, more metabolites had QTLs only
identified by the normal CIM (22 versus 12). These
metabolites had small differences in the point-mass
proportions between the two alleles. By dropping the
zero values, differences in the means between the al-
leles were enhanced since the zero observations were
not included in estimating the means and standard
deviation. Because the point-mass proportions dif-
fered by only a small amount; the binary CIM did not
predict any QTLs. The two-part CIM uses infor-
mation about the means and the point-mass propor-
tions to determine if the two groups differ. In this
case, for these metabolites, the difference in means
was not large enough to reject the null hypothesis
given the small difference in point-mass proportions.

4. Simulations

We conducted two simulation studies to evaluate and
compare the two-part CIM method to normal and
binary CIM methods when applied to data distributed
as point-mass mixtures. The first study consisted of
simulating a single QTL, while the second considered
multiple QTLs. The focus of the simulation studies
was to characterize the power and error rates of these
methods.

In the first study, we simulated a backcross popu-
lation consisting of 200 individuals with a single
chromosome, 100 cM long with 22 equally spaced
markers, which yielded a marker density similar to the
genetic map used in the A. thaliana analysis. To
simulate data from a point-mass mixture distribution,
first the number of observations in the point-mass was
determined by randomly sampling from a binomial
(n, p) distribution, where n is the number of in-
dividuals and p is the target (i.e. average) proportion
of observations in the point-mass. For the homo-
zygote, we simulated average point-mass proportions
of P=0-05, 0-30, 0-50, 0-70 and 0-95. Continuous
observations were then randomly generated for all
individuals not in the point-mass using a normal dis-
tribution with mean 6 and standard deviation 0-6.
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These values were motivated by the point-mass pro-
portions and means and standard deviations of the
log transformed continuous values observed in the
A. thalinana metabolomics data.

A single QTL with additive effects on the
mean and/or the proportion of observations in the
point-mass was simulated at 30 cM. We considered
additive effects on the mean of +0-6, +1-2 and +24
(i.e. 10, 20 and 40% of the mean value in homo-
zygotes). Similarly, we considered additive effects on
the point-mass proportions that were —10, —20 and
—40% of the homozygote proportion. We simulated
data for which only the proportion in the point-
masses differed, only the means of the continuous
components differed, and both the means and pro-
portions differed. For simulations in which both the
mean and point-mass proportions differed, we con-
sidered both consonant differences and dissonant
differences. To simulate null datasets (no QTL), we
generated data in which the point-mass proportions
and means of the continuous components were the
same for both genotypes. For each combination of
parameters, 1000 datasets were simulated.

Because CIM was developed specifically to analyse
data with multiple linked QTL, we also conducted
simulations with two QTLs on one or two chromo-
somes. We again simulated a backcross population of
200 individuals either with one or with two chromo-
somes, each 100cM long with 22 equally spaced
markers. We fixed the average proportion of ob-
servations in the point-mass for the homozygote
at 0-5. Continuous observations were randomly gen-
erated from a normal distribution with mean 6 and
standard deviation 0-6. The additive effect of one
QTL (QTL 1) on the mean and point-mass pro-
portion was set at +0-6 and +0-05, respectively, and
the additive effect of the second QTL (QTL 2) was
twice as large. We investigated various combinations
of effects of the two QTLs on the point-mass pro-
portion and mean of the continuous component. We
also varied the distance between the two QTLs as
summarized in Table 1. For each combination of
mean and proportion differences, 1000 datasets were
generated.

For both the one and two QTL simulations, we
applied the three CIM methods to each simulated
dataset and tested for QTLs every 1 cM. Zero values
were retained as zeros in applying the normal CIM,
because a log transformation was not used. In each
LOD score calculation, three markers selected
through our forward selection process (see above)
were used as covariates, with markers within 10 cM of
the markers flanking the interval being evaluated
dropped. Significance thresholds were derived by
simulating 1000 null datasets for each homozygote
point-mass proportion. The 95th percentile of the
maximum LOD scores from the permuted datasets
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was used as the QTL significance threshold for all
datasets with the same homozygote point-mass pro-
portion. Predicted QTLs were identified as peaks in
the LOD score profile that exceed the significance
threshold. For all predicted QTLs, 1-5 LOD support
intervals were defined for the estimated QTL location.

Because more than one QTL was predicted in some
datasets, we calculated power as the percentage of
datasets with at least one predicted QTL with a
LOD support interval that encompassed a true QTL
location. As a measure of the false positive rate, we
calculated the percentage of datasets with at least one
predicted QTL that also had at least one predicted
QTL whose LOD support interval did not cover the
true QTL location. Thus, a dataset with two predicted
QTLs, one with a LOD support interval covering
the true QTL location and one with a LOD sup-
port interval not covering the true QTL location, is
counted as identifying the true QTL for the power
measure but also contributes to the false positive cal-
culation.

(1) Results for single QTL simulations

The two-part CIM performed better than both nor-
mal and binary CIM methods, having the highest
power and lowest false positive rate for almost all si-
mulations. For most simulations, the binary CIM had
low power and a high percentage of false positives,
particularly when the additive effect on the proportion
was small (Supplemental Table 1). Because the binary
CIM performed poorly across the simulated condi-
tions, we focus on comparing the two-part and nor-
mal CIM methods. Detailed results are provided in
Supplemental Table 1 and summarized below.

The two-part CIM had the highest power and
lowest false positive rate for almost all simulations
with substantially better performance in some cases.
For many simulations, power of the two-part CIM
exceeded 80 % whereas power of the normal CIM was
usually less than 60 % (Figs 1 and 2). The two meth-
ods also differed in the percentage of false positives.
The percentage of false positives for the two-part
CIM was more stable, typically near 30%, and
usually much lower than for the normal CIM. The
percentage of false positives for the normal CIM
varied considerably among simulations and com-
monly exceeded 60% (Figs 1 and 2). The only situ-
ation for which the normal CIM performed somewhat
better than the two-part CIM was when only the
point-mass proportions differed (Supplemental
Table 1).

The power of both methods was influenced by the
proportion of observations in the point-mass, albeit in
different ways. When only the means differed, power
of the two-part CIM decreased as the point-mass
proportion increased. This pattern occurred because
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Table 1. Additive effects and locations of QTLs for simulations of two QTLs on one or two chromosomes

QTL QTL Mean Prop.

No. Chr. location effect effect Description

Two chromosomes

! ! 30 12 —01 QTLs on different chromosomes. Consonant differences
2 2 69 2:4 —02 ’

; ; 28 :;i :8; QTLs on different chromosomes. Dissonant differences
One chromosome

1 1 30 1-2 —0-1 QTLs far apart on same chromosome. Consonant

2 1 69 24 —02 differences. QTL effects in the same direction.

1 1 30 —12 —0-1 QTLs far apart on same chromosome. Dissonant

2 1 69 —24 —-02 differences QTL effects in the same direction.

1 1 30 —12 0-1 QTLs far apart on same chromosome. QTL effects in
2 1 69 2-4 —02 opposite directions

1 1 30 12 —0-1 QTLs far apart on same chromosome. QTL effects in
2 1 69 —2:4 0-2 opposite directions

1 1 30 1-2 —0-1 QTLs moderately distant on same chromosome.

2 1 53 24 —02 Consonant differences. QTL effects in the same direction.
1 1 30 —1-2 —0-1 QTLs moderately distant on same chromosome.

2 1 53 —24 —02 Dissonant differences QTL effects in the same direction.
1 1 30 —12 0-1 QTLs moderately distant on same chromosome. QTL
2 1 53 2:4 —02 effects in opposite directions

1 1 30 1-2 —0-1 QTLs moderately distant on same chromosome.

2 1 53 —2:4 0-2 QTL effects in opposite directions

1 1 30 1-2 —0-1 One interval between QTLs. Consonant differences.

2 1 40 24 —02 QTL effects in the same direction.

1 1 30 —12 —0-1 One interval between QTLs Dissonant differences.

2 1 40 —24 —-02 QTL effects in the same direction.

1 1 30 —12 0-1 One interval between QTLs. QTL effects in opposite

2 1 40 24 —0-2 directions

1 1 30 12 —0-1 One interval between QTLs. QTL effects in

2 1 40 —24 0-2 opposite directions

1 1 30 1-2 —01 QTLs in adjacent intervals. Consonant differences.

2 1 35 24 —02 QTL effects in the same direction.

1 1 30 —12 —0-1 QTLs in adjacent intervals. Dissonant differences.

2 1 35 —24 —-02 QTL effects in the same direction.

1 1 30 —12 0-1 QTLs in adjacent intervals. QTL effects in

2 1 35 24 —0-2 opposite directions

1 1 30 12 —0-1 QTLs in adjacent intervals. QTL effects in

2 1 35 —2:4 0-2 opposite directions

Chr=chromosome on which the QTL was located. QTL Location=position of the QTL. Mean Effect and Prop.
Effect =additive effects of the QTL on the mean of the continuous component of the distribution and the proportion of

observations in the point-mass at zero, respectively.

as the point-mass proportion increased, the number
of observations in the continuous component de-
creased; thus, the power to detect differences in the
mean based only on the continuous observations de-
creased. For the normal CIM, power also tended to
decrease with increasing point-mass proportions for
datasets in which the proportions do not differ. In this
case, the large number of zeros reduced the overall
mean differences. However, for consonant differences,
when the point-mass observations enhanced the dif-
ferences in means between the genotypes, the power
of normal CIM to detect a given mean difference in-
creased as the proportion of zeros increased. Inter-
estingly, power of the normal CIM could be high for
dissonant differences when the point-mass proportion
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and the difference between genotypes were large. At
large point-mass proportions, there were few con-
tinuous observations. A large difference in point-mass
proportions created a large difference in overall
means, often in the opposite direction to the difference
of the means of the continuous observations.

The greatest differences between the two-part and
normal methods occurred for simulated datasets with
dissonant differences. For these datasets, the genotype
with the larger proportion of observations in the
point-mass had a larger mean for observations greater
than zero. With dissonant differences, the overall
means of the two genotypes were brought closer to-
gether by the point-mass observations. Since the
normal CIM tests for a difference in the overall means
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Fig. 1. Results of applying normal CIM and two-part CIM to simulated point-mass mixture datasets for a backcross with
one QTL. The point-mass proportions did not differ between genotypes but the mean of the continuous component did.
The additive effect of the QTL on the mean was 10, 20 and 40 % of the mean of continuous observations in homozygotes.
Power, defined as the percentage of datasets for which the 1-5 LOD support interval of at least one predicted QTL covered
the true QTL, is shown in (A4). The percentage of false positives out of the total number of datasets for which at least one

QTL was predicted is shown in (B).

between the two genotypes, its power to detect QTLs
was reduced. This effect was most noticeable at in-
termediate point-mass proportions (Fig. 2). The nor-
mal CIM also had a much higher percentage of false
positives than the two-part CIM (Fig. 2).

(i1) Results for two QTL simulations

When we applied the three methods to simulated
datasets with two QTLs, the two-part CIM continued
to have the best performance, more frequently iden-
tifying at least one of the QTLs. As with the single-
QTL simulations, the binary CIM performed poorly
relative to the other two methods, never detecting ei-
ther of the QTLs in more than 60 % of the datasets for
each simulation scenario (Fig. 3). Because of the poor
performance of the binary CIM, we again focus on
comparing normal and two-part CIM methods.
Detailed results are provided in Supplemental Table 2
and summarized below.

The two-part CIM always had greater power than
the normal CIM when the two QTLs were located on
two different chromosomes (Supplemental Table 2).
This method correctly identified both QTLs in more
than 90 % of the datasets and at least one of the QTLs
in all datasets regardless of whether the QTL effects
were consonant or dissonant. In comparison, the
normal CIM detected both QTLs in only 24 % of the
datasets when both QTLs had consonant effects on
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the mean and point-mass proportions, and in only
1% of the datasets when the effects were dissonant.

When both QTLs were on the same chromosome,
the number of QTLs predicted by each method was
influenced by the distance between the QTLs and the
direction of the effects. The two-part CIM method
predicted two QTLs for most simulated datasets when
the QTLs were more than 20 cM apart (Fig 4). For
these simulations, the normal CIM commonly pre-
dicted only one QTL, but frequently failed to predict
any QTLs when the QTL effects were dissonant. As
the distance between the QTLs decreased, the two-
part CIM method predicted only one QTL in more of
the simulated datasets. The normal CIM continued to
predict one QTL in most datasets when both QTLs
had consonant differences, but often did not predict
any QTL when the effects of both QTLs were dis-
sonant or in opposite directions.

For most simulations with both QTLs on the same
chromosome, the two-part CIM remained more
powerful than the normal CIM (Fig. 3). The two-part
CIM detected at least one QTL in at least 89 % of the
datasets for all but two simulations whereas the nor-
mal CIM detected at least one QTL in fewer than
90 % of the datasets for all but two simulations. The
one simulation scenario for which the two-part CIM
had lower power than the normal CIM was when the
QTLs were located with one interval between them
(i.e. at 30 and 40 cM) and both QTLs had consonant


https://doi.org/10.1017/S0016672310000042

Two-part composite interval mapping

Point-mass = 5%

47

Point-mass = 50%

10% Prop. effect

10% mean effect

20% mean effect

40% mean effect

20% Prop. effect

10% mean effect

20% mean effect

40% mean effect

40% Prop. effect

10% mean effect

20% mean effect

a0% meaneffect |-« - i i i

mean effect

Power

Power

10% Prop. effect

10% mean effect

20% mean effect

40% mean effect

20% Prap. effect

10% mean effect

20% mean effect

40% mean effect

40% Prop. effect

10% mean effect

20% mean effect

40% mean effect

% at least 1 false positive

40
% at least 1 false positive

Fig. 2. Power and percentage of datasets with at least one false positive for simulated datasets for which both the
point-mass proportions and means of the continuous component differed and the differences were dissonant. Power was
calculated as the percentage of datasets for which the 1-5 LOD support interval of at least one predicted QTL covered the

true QTL. Percentage of datasets with at least one false pos

itive was calculated as the percentage of datasets with at least

one QTL whose 1-5 LOD support interval did not cover the true QTL out of the total number of datasets for which at
least one QTL was predicted. Black squares represent the two-part CIM and open triangles show the normal CIM.

Vertical axis shows the simulated effects on the mean and p

oint-mass proportions. Results are shown for simulations for

which the homozygote point-mass proportions were 5 and 50 %.

effects. For these simulations, both methods often
predicted a single QTL between the two true QTLs.
However, the two-part CIM method tended to have a
steeper LOD score profile than the normal CIM
method such that the support intervals were shorter
and did not cover either of the true QTLs.

The percentages of datasets with at least one false
positive were generally similar for the two-part and
normal CIM methods and typically 20-40 % (Fig. 5).
For a few simulations, the two-part CIM had a higher
percentage of datasets with at least one false positive,
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notably simulations when the QTLs were at 30 and
40 cM. As noted above, the two-part CIM tended to
predict a single QTL between these points with a short
LOD support interval that did not cover either QTL
and thus, yielded a false positive. For other simula-
tions, two-part CIM method predicted more datasets
with greater than two QTLs than the normal CIM
method (Fig. 4). These excessive QTLs often corre-
sponded to smaller peaks on the shoulders of main
peaks that were identified as peaks by the automated
process we used to identify QTLs.
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Fig. 3. Power of normal, binary and two-part CIM applied to simulated point-mass mixture datasets for a backcross with
two QTLs. The first QTL was located at 30 cM and the second QTL was located at 69, 53, 40 and 35 cM. Power is the
percentage of datasets for which the 1-5 LOD support interval of at least one predicted QTL covered at least one of the
true QTLs. Results are shown for consonant effects (QTL 1: proportion effect= —0-1, mean effect=1-2, QTL 2:
proportion effect= —0-2, mean effect =2-4), dissonant effects (QTL 1: proportion effect= —0-1, mean effect= —1-2, QTL
2: proportion effect= —0-2, mean effect = —2-4) and opposite effects (QTL 1: proportion effect=0-1, mean effect=—1-2,

QTL 2: proportion effect = —0-2, mean effect =2-4).
(iii)) Comparison with interval mapping

Next, we compared our two-part CIM method to
two-part interval mapping (Broman, 2003). We ap-
plied two-part interval mapping to simulations with
both QTLs on the same chromosome with the second
QTL located at 69, 53, 40 or 35 cM. Effects of the
first QTL were —0-1 on the point-mass proportion
and 1-2 on the mean of the continuous component.
For the second QTL, the effects were —0-2 and 2-4 on
the proportion and mean, respectively.

The two-part CIM vyielded smoother LOD profile
curves with narrower and more well-defined peaks
than the interval mapping method (Fig. 6). When the
second QTL was at 53 or 69 cM, the LOD score
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profile of the two-part CIM method typically pro-
duced two clear peaks at or near the true QTL loca-
tions. In contrast, the LOD score profile of the
interval mapping method usually had one large peak
near the second QTL. Unlike the CIM method, the
LOD score profile from interval mapping tended to
gradually climb to the maximum LOD score but with
much of the profile exceeding the significance thresh-
old. Further, while the LOD score profile for the
CIM method was relatively smooth between the two
peaks, the LOD score profile for the interval mapping
method often had small peaks between markers.
These characteristics obscured the signal of the
smaller effect QTL. When the two QTLs were 10 cM
or closer, neither method was effective at discerning


https://doi.org/10.1017/S0016672310000042

Two-part composite interval mapping

49

o (A
S
o
- Consonant Dissonant Opposite
(=]
S -
w
=]
c 21
] w
g
o
o 3 -
T =
=}
S -
&
o - T T
0 1 2 3 4 0 1
o (B
f=1
=} ) :
= Consonant Dissonant Opposite
(=]
S -
@
deo
C 29
@ w
z
o
0 8-
T
=}
s A
o
o
o
o
=] : P
e Consonant Dissonant Opposite
o
S A
w
5o
c 21
] w
&
@ 3
Lt =<
o
S
o
o

0 1 2 3 4 0 1 2 3 4
Number of predicted QTLs

Fig. 4. Number of QTLs predicted by normal and two-part CIM methods for 1000 simulated dataset with two QTLs. The
first QTL was at 30 cM and the second was at 69 ¢cM (A4), 40 cM (B) and 35 cM (C). Results are shown for consonant
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opposite effects (QTL 1: proportion effect =01, mean effect= —1-2, QTL 2: proportion effect = —0-2, mean effect =2-4).

both QTLs. Nevertheless, the two-part CIM method
produced narrower and more well-defined peaks than
the interval mapping method.

5. Discussion

CIM was developed to improve upon interval map-
ping, which can yield biased estimates of the location
and effect of a QTL when there are multiple linked
QTLs. Although CIM accounts for the effects of
multiple QTL, it is a single QTL model, testing for
the presence of a QTL in one interval at a time.
Subsequent methods, such as MIM (Kao et al., 1999)
and Bayesian mapping methods (Satagopan et al.,
1996), were developed to explicitly model and test for
the presence of multiple QTLs. However, both MIM
and Bayesian methods are computationally intensive.
For example, using the R packages qtl and qtlbim,
we compared processing times for CIM, MIM
and Bayesian interval mapping when applied to
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10 simulated traits with three QTLs in a backcross
population of 200 individuals. The processing time for
MIM averaged 20 times longer than for CIM, while
BIM averaged nearly 80 times longer. Many re-
searchers are now conducting QTL mapping studies
using ‘omics data, consisting of thousands of traits
as phenotypes. The computational requirements of
MIM and Bayesian methods limit the broad appli-
cation of these approaches to these very large datasets.

Interval mapping is commonly used to identify
which chromosomes carry QTL, with further studies
focusing on determining the number and location of
QTLs. In our comparison of CIM to interval map-
ping, interval mapping was effective at identifying the
general location of the largest effect QTL on a chro-
mosome but did not clearly indicate the presence of
more than one QTL. CIM was effective at identifying
more than one QTL on a chromosome when the QTLs
were not very close together and yielded narrower and
more well-defined peaks than interval mapping.
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backcross with two QTLs. The first QTL was located at 30 cM and the second QTL was located at 69, 53, 40 and 35 cM.
The percentage with at least 1 false positive is the percentage of datasets with at least one predicted QTL whose 1-5 LOD
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proportion effect = —0-2, mean effect = —2-4) and opposite effects (QTL 1: proportion effect=0-1, mean effect= —1-2,

QTL 2: proportion effect = —0-2, mean effect =2-4).

Many methods are available to researchers for
mapping QTLs, each with advantages and dis-
advantages. CIM offers a computationally tractable
approach to QTL mapping that can play an integral
role in a comprehensive QTL mapping study. Results
of an initial CIM analysis can be used to identify a
small number of traits to further investigate with
multiple QTL methods. Further, in MIM, many dif-
ferent models are evaluated to identify the best fitting
model in terms of number and location of QTLs.
Results from CIM can be used to identify starting
models and thereby reduce the search space for
the MIM procedure (see e.g. Basten et al., 2005).
Bayesian methods take a fundamentally different
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approach than the other QTL mapping methods.
While these methods can be the only method used for
mapping QTL in a dataset, Bayesian methods have
been recommended as a complementary analysis fol-
lowing application of a standard method, such as
CIM (Wang et al., 2007). Thus, CIM remains an im-
portant and commonly used technique in the suite of
methods available for QTL mapping.

Marker density has been increasing, particularly for
intensely studied model organisms. Interval mapping
methods, including CIM, will remain important tools
for organisms with sparse genetic maps. However,
for organisms with very dense marker maps, QTL
mapping can be conducted by analysing the data at
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marker locations using techniques such as Haley &
Knott’s (1992) regression method. For point-mass
mixtures, the likelihood factors into two parts (binary
and continuous components) at markers, and our
two-part CIM method reduces to a two-part statistic
that jointly tests for a difference in means and a dif-
ference in proportions.

Two-part tests are advantageous over conducting
two separate single-part tests, i.c., one for a difference
in means and one for a difference in point-mass pro-
portions. When a QTL affects both the point-mass
proportion and the mean of the continuous compo-
nent, Broman (2003) showed that two-part interval
mapping is more powerful than the single-part meth-
ods, binary and normal likelihood interval mapping
using only the continuous observations. Similarly, our
results showed the two-part CIM method to have
higher power and a lower false positive rate as com-
pared to the binary CIM method and the normal CIM
when 0 values were dropped from the analysis. We
expect a similar result when testing at markers with a
two-part statistic as compared to conducting two
separate single-part tests. Finally, conducting separ-
ate analyses would require analysing the data twice,
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whereas using a two-part test necessitates only one
pass through the data, thus reducing computation
time and avoiding multiple testing issues.

Increasingly researchers are conducting QTL map-
ping in metabolomics and proteomics studies. These
data are often distributed as a point-mass mixture,
consisting of a spike at zero in combination with
continuous non-negative measurements. Similar dis-
tributions arise in other settings. CIM methods in
commonly used software packages implement Zeng’s
(1994) method, which assumes the data are normally
distributed and is therefore inappropriate with point-
mass mixtures.

In this paper, we presented a new CIM method
based on two-part statistics that accounts for differ-
ences in point-mass proportions as well as differences
in means of the quantitative measurements between
genotypes. Our simulations showed that this novel
two-part CIM method performs better than the nor-
mal CIM and binary CIM methods when data are
distributed as a point-mass mixture. The two-part
CIM has higher power, as well as lower and more
stable false positive rates compared to these methods.
By using information from both the binary and
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continuous components, the two-part CIM is able to
detect smaller differences than are the other methods.
Our approach also has a substantial advantage over
the normal CIM when the difference in the means and
point-mass proportions are in opposite directions, as
dissonant differences act to obscure differences in the
overall means.

Multiple problems arise in applying the normal
CIM method to data distributed as a point-mass
mixture. Because of the spike in the data, even modest
numbers of point-mass observations severely violate
the normal model assumption. Additionally, with
‘omics data, the non-zero observations are often
highly right-skewed, further violating the normality
assumption of the normal CIM model. Commonly, a
log transformation is applied to right-skewed ‘omics
data’. But zero values cannot be log transformed.
Using the normal CIM then requires (1) dropping
the zero values and only analysing the non-zero ob-
servations, (2) employing an ad hoc approach such
as adding a small amount to the zero in order to
log transform the data, or (3) analysing the un-
transformed data including the zero values.

None of these approaches is desirable. With drop-
ping zero values, informative data are eliminated and
the effective sample size is reduced. Further, by not
taking into account the zero values, the results could
be biased or misleading. While the ad hoc approach of
adding a small amount to each zero allows use of a log
transformation, the data could still substantially vio-
late the normality assumption because of the spike in
the distribution. Our simulations showed that normal
CIM performed poorly when the point-mass pro-
portion was large, a condition that would not be im-
proved with this approach. Finally, untransformed
data, retaining the zeros, could severely violate model
assumptions. Our simulations suggest that the normal
CIM has low power and high false positives rates in
this case as well.

Point-mass mixtures with the point-mass values at
zero can be modelled differently depending on whe-
ther the zeros are considered true zeros and/or as-
sumed to result from left-censoring. Zero values
caused by censoring represent values from the left tail
of a continuous distribution and would provide in-
formation about the mean of the continuous distri-
bution if they were not truncated. True zero values not
resulting from truncation do not provide information
about the continuous component of the distribution.

In our two-part CIM method, we modelled the
zero values as true zeros that did not arise as a result
of censoring of the continuous distribution. A more
complicated model could combine ‘true zeros’ re-
flecting the true absence of the metabolite and zeros
resulting from metabolite values below detection
limits (i.e. censored values from a continuous distri-
bution) (Moulton & Halsey, 1995; Moulton et al.,
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2002). This model could be particularly appropriate
for metabolomics data in which some zeros may
reflect the absence of a compound while other zeros
may result from metabolites having concentrations
below the detection limit.

In this work, we jointly considered the binary and
continuous component when selecting covariate
markers, i.e., we assumed that that the covariates af-
fect both the probability of being in the point-mass
and the level of the continuous values. The model
could be generalized by allowing the two components
to have different marker covariates and testing at a
given genome position could assess the effects on both
components or one or the other (see e¢.g. Moulton
et al., 2002). Alternatively or in addition to, as sug-
gested by Moulton et al. (2002), a proportionality
parameter could be introduced to model the relative
contribution of covariates to the probability of being
in the point-mass and the magnitude of the continu-
ous observations. Greater flexibility in model struc-
ture could better reflect the underlying biological
processes. For example, an allele at one QTL could
block a pathway creating a metabolite and result in
true zeros while other QTLs could regulate the
amount of the metabolite produced. More refined
modelling could facilitate elucidating these effects.
Finally, markers selected as covariates could rep-
resent QTL that act epistatically with a QTL at a
testing location. Integrating epistatic effects into CIM
methods, including normal CIM, could be a promis-
ing area for future improvements to the methods.

The two-part CIM method described in this article
has been implemented in R as a companion package,
twopartqtl, to the QTL mapping package R/qtl and is
available for download from www.r-project.org.

The authors are grateful to Dr Daniel Kliebenstein for
providing experimental data and to Dr Kyoungmi Kim for
comments on an earlier version of this manuscript.
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