
Ergod. Th. & Dynam. Sys. (1984), 4, 527-539
Printed in Great Britain

A criterion for the positivity of the Liapunov
characteristic exponent

ERIC CORNELIS AND MACIEJ WOJTKOWSKI

Department of Mathematics, Facultes Universitaires Notre Dame de la Paix, Rempart
de la Vierge, 8, B-5000 Namur, Belgium; Department of Mathematics, University of

Arizona, Tucson, AZ 84721, USA and University of Warsaw, Poland

{Received 14 October 1983)

Abstract. We formulate sufficient conditions under which, for a finite subset of
SL (2, R), the maximal Liapunov exponent is positive. These conditions are based
on the notion of compatible hyperbolicity. We then give an analytical formulation
of such a condition and we apply this criterion to prove mixing properties of a
particular transformation of the two-dimensional torus.

0. Introduction
Let X be a measure space with a probability measure /J, and let T: X -> X be a
measure preserving transformation. Let A: X -* SL (2, R) be a measurable mapping.
The maximal Liapunov characteristic exponent (m.L.c.e.) is by definition

y+(x)= lim \n\\A(T"-1x)---A(x)\\.
n-*+oo

Oseledec's multiplicative ergodic theorem [2] asserts that y+(x) exists almost
everywhere (at least if A(X) is bounded). The significance of the m.L.c.e. for the
study of mixing properties of dynamical systems is now well established [3]. In this
paper, we consider the case of a finite set A(X) = {AU ..., An}<= SL(2, R) and
formulate sufficient conditions under which the m.L.c.e. is positive. These conditions
actually mean that, in some basis, all matrices from A(X) have positive entries
except for parabolic matrices which have only non-negative entries. We give an
analytic formulation of such a condition. In particular, our criterion depends only
very weakly on properties of T: X -» X. The criterion is an abstraction of methods
used in proving positivity of the m.L.c.e. for some piecewise linear tranformations
of the torus [4], [1], [5]. In § 3, we give another application of the criterion in the
same spirit.

Our discussion is centred on the concept of compatible hyperbolicity of a set of
matrices {//,,..., Hn}^o€ (2, R) which we study thoroughly in §§ 1,2.

In proposition 1, we prove that the inverse of the exponental function in SL (2, R)
is linear up to a multiplicatiop by a scalar. This is a crucial analytic tool in our work.

1. Compatible hyperbolicity
Let us consider the group SL (2, R) of real 2x2 matrices with determinant equal to
1. A e SL (2, R) is called a hyperbolic matrix if it has real eigenvalues different from
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1 and —1, an elliptic matrix if it has a pair of complex conjugate eigenvalues different
from 1 and — 1 and, finally, it is called a parabolic matrix if it has eigenvalues equal
to either 1 or - 1 . Thus, we have that A e SL (2, R) is hyperbolic if |tr A\ > 2, elliptic
if |tr A\ < 2 and parabolic if |tr A\ = 2.

o€ (2, R) denotes the Lie algebra of SL(2, R). It consists of real 2x2 matrices
with zero trace. H e o€ (2, R) is called hyperbolic if e'H e SL (2, Rf is hyperbolic for
all real t ^ 0. Analogously, we define elliptic and parabolic elements of o€ (2, R).

The exponential function exp:<*<? (2, R)-• SL (2, R) maps of (2, R) onto
{A € SL (2, R)|tr A > -2 or A = - / } . Moreover it is 1-1 on the subset of hyperbolic
matrices. The following proposition states that the inverse function is linear up to
multiplication by a scalar.

PROPOSITION 1. Let

and
l(a-d)

2
c (d-a)

\ 2 ,
then there is / > 0 such that e'H = A.
Proof. By straightforward computation, we have that the quadratic form Q(x, y) =
-cx2 + (a — d)xy+by2 on R2 is invariant under the action of A:R2-»R2.

Consider some non-zero quadratic form <f>(x, y) = ex2 + 2fxy + gy2.
We want to determine all one parameter subgroups of SL (2, R) that preserve this

quadratic form. For this purpose, let

C - ;
and let IK be the linear vector field in R2 defined by K. Taking the Lie derivative,
we obtain

0=LH<p(x,y) = 2(ep+fr)x2 + 2(eq + gr)xy + 2(fq-gp)y2.

Hence, we must have
ep+fr=0,
eq + gr = 0,

since <£ is preserved. For e2+/2 + g2> 0 (i.e. {e,f, g} # {0}), these equations have an
unique solution up to a multiplicative constant:

P=f, 1 = 8, r=-e.
On the other hahd, each A e SL (2, R) with tr A > -2 can be included in an unique
one parameter subgroup of SL (2, R), except for

/ = o
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Liapunov characteristic exponent 529

Also, for each A e SL (2, R), except for / and - /, there is an invariant quadratic
form (unique up to a constant). So we must have e'H = A for some feR and H
defined above.

We have yet to prove that we can choose t > 0. For elliptic A, t is determined
modulo the period; so clearly we can find t>0. For hyperbolic A, t is uniquely
determined and it is a continuous function of A nowhere equal to zero. Such matrices
form an open connected subset of SL (2, R) (we consider only hyperbolic matrices
with trace >2). So it is enough to check that t is positive for one diagonal matrix,
which is obvious. •

Definition 2. A finite set F = {//,,..., Hn) <= c€ (2, R) is called a compatibly hyperbolic
(compatibly non-elliptic) family if every product

e<kok. . . e«,o, w i t h G ^ F , tt>0,i = l , . . . , k

is a hyperbolic (non-elliptic) matrix. Let

\r -p/
Heo€(2,U).

Pi
We know that H is hyperbolic if - det H =p2+rq>0, elliptic if p2+rq< 0, and
parabolic if p2+rq = 0. Hence, geometrically, elliptic matrices form the interior of
the cone

S = {H e o€ (2, R)| - det H < 0}.

For {//„ ...,Hn} c <j<f (2, R) we put

C ( H l , . . . , H n ) = { H e ^ ( 2 , R ) \ f f = \ l H l + --- + \ n H m A , > 0 , i = l , . . . , « }

i.e. C(HU ..., Hn) is the cone spanned by / / , , . . . , //„. Note that S is centrally
symmetric, 5= - S , and C(Hu...,Hn) is not, except for the cases when it is a
linear subspace (the whole space, a plane or a line).

THEOREM 3. LetF = {H{, ...,//„}<= d<f (2, R). Fis compatibly hyperbolic (non-elliptic)
if and only if

C(Hu...,Hn)nS = {0},

(C(HU ..., Hn) nint S = 0 ) and C(HU . . . , Hn) 15 nor a proper linear subspace (if
C(H{,..., Hn) is a plane then it must be tangent to S).

For the proof, we will need the following lemmas:

LEMMA 4. If F = {Ht,..., Hn} <= <>€ (2, U) is compatibly non-elliptic then

C(H,,...,Hn)nintS = 0.

Proof. We have that A(t) = e'*>"<e'X2H2 • • • ea»H« for all / > 0 and fixed Aj>0 is a
non-elliptic matrix in SL (2, R). Hence dA(t)/dt\,=0 is certainly also non-elliptic i.e.
it is outside int S. But dA(t)/dt\l=0 = A,//,-!-- • - + XnHn. •

In the following lemma, we will interpret the conditions from theorem 3 in terms
of the configuration of stable and unstable lines of e'1"' e'-H", t, > 0. With every

\r -pi
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we associate a quadratic form in R2 invariant for all e'H, teU,

QH (x,y)= - rx2 + 2pxy + qy2.

H is hyperbolic if QH is indefinite, elliptic if QH is definite and parabolic if QH is
degenerate.

First, we must point out that the zero lines of QH are the eigendirections of H.
If H is hyperbolic then one, and the same, of the zero lines of QH is a stable

line for all e'H e SL (2, R), t> 0. To describe which one, consider the space UP1 of
all lines in R2 passing through the origin. e'H defines in a natural way a mapping
of UP1 into itself which we will also denote by e'H. The fixed points of e'H, t>0
in RP1 correspond to the stable and unstable lines of the linear mapping, we will
denote them by s and u respectively. (They are hyperbolic fixed points - * is unstable
and M is stable.)

QH is not defined on RP1 but the sign of QH is well defined on RP1. We choose
the counterclockwise orientation on RP1. We claim that QH changes sign from —
to + on M and from + to — on s, with respect to the chosen orientation.

The pattern must be the same for all hyperbolic matrices in a€ (2, R) since they
form a connected set. So it is enough to check it only for one matrix, for instance
the diagonal matrix

LEMMA 5. Let C(HU H2)nS = {0}. Then \lHl + \2H2 is hyperbolic for all A,, A2,
A2 + A 2 >0, if and only if the fixed points ofe'H', «,, su and of e'"2, u2, s2 in UP1

alternate i.e. their order is uu u2, su s2 oruu s2, su u2 and are all different. \lHl + \2H2

is elliptic for some \ u A2 if and only if the fixed points ofe'H< and e'"2 appear in the
order «,, u2, s2, s{ or u2, uu su s2 and are all different.

Proof. If the fixed points alternate and are in particular all different then the quadratic
form A|QH| + A2QH2 has different signs at w,, s, if A2^0 and at u2, s2 if A, 5*0. Hence
the form is indefinite if A? + A2>0. This is equivalent to the hyperbolicity of
\\H{ + X.2H2. If, on the contrary, the fixed points do not alternate, then without loss
of generality, we can assume that the order of the fixed points is

«,, u2, s2, s, or M,, s2, u2, s,,

where we do not exclude coincidence of some of the points. So when we take
invariant lines of e'H' as coordinate axes then

QHl(x,y)=fxy with/>0,
and

QH2(X, y) = ax2 + bxy + cy2 where ac>0and b(a + c)<0.

The case a > 0 , c>0, b<0 corresponds to the ordering u,, s2, u2, 5, and the case
a < 0, c < 0, b > 0 to the ordering «,, u2, s2, st. If a ̂  0 and c * 0 then all the fixed
points are different.

Clearly, some linear combination A, QH< + X2QHz is not indefinite and hence A,H, +
\2H2 is not hyperbolic.

If a>0, c>0, b<0 then A|H, + A2//2 is elliptic for some A,>0, A2>0. •
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It can also be seen that, with the hypothesis of this lemma, \tHi + \2H2 is parabolic
only if \xHl + \2H2 = Q. Thus «,-, s, are distinct if C(H,, H2) is not a line.

Proof of theorem 3. Let « , , . . . , un and su... ,sn denote the fixed points of
elH>,..., elH» in UP\

Sufficiency. By the condition for all 1 < i, j< n, C(Hh / / , ) n S = {0} and C(Hh H,)
is not a line. Hence, by lemma 5, w, 5̂  Sj and w, # % So

(we do not exclude the possibility that some of the points uu... ,un or su ..., sn

coincide).
Let us consider a continuous deformation of Hu..., Hn in the set of hyperbolic

matrices.

We have C(Ht(t),..., Hn(t))nS = {0} and C(Hi(t),..., Hn(t)) is not a line or a
plane for all 0 < / < 1. Consequently,

where uf(0, •*•(') are the fixed points of e'H< in KP1 corresponding to the unstable
and stable lines respectively; w,(l) = u,, .5,(1) = su i=l,...,n. By continuity we
conclude that there must be an interval / c R P 1 such that t ^ e i m / and st£l,
i = 1, . . . ,«. This interval clearly has the property e'HIc int /, t>0, i = 1 , . . . ,« .
The same holds for any composition of the matrices e'H; r > 0 , i = 1, . . . ,« . But
only hyperbolic matrices in SL (2, U) have the property that they map some cone
(interval in UPX) strictly into itself. This ends the proof of sufficiency in the hyperbolic
version.

In the non elliptic case, we allow C(HU . . . , / / „ ) to be a line, a plane tangent to
S or a cone tangent to S. Both a line and a plane tangent to S are subalgebras of
<i£ (2, U) corresponding to Lie subgroups of SL (2, U). The latter is the subgroup of
matrices which are triangular in a certain basis, i.e. a subgroup of matrices having
a common invariant line. All elements of this subgroup are hyperbolic except for
one parameter subgroups of parabolic matrices. So clearly in these cases we have
compatible non-ellipticity.

The case of the proper cone tangent to S is similar to the hyperbolic case and
we omit the details.

Necessity. In view of lemmas 4 and 5, we have to prove that C(HU ... ,Hn) cannot
be a plane (if it is a plane then it must be tangent to 5 in the non-elliptic case).

Assume on the contrary that for example C(HU H2, H3) is a plane. If the plane
is tangent to S then e''H', e'2"2 and e'3"3 have a common invariant line which is a
stable line for one of them and unstable for another. It follows easily that one of
their compositions is parabolic. So assume C(HU H2, H3) is not tangent to 5. For
the purpose of performing explicit computations, we will simplify H,, H2, H} by a
change of variables. First of all we can make them all symmetric. This is so because
by lemma 5 the eigenvectors of Hx and H2 alternate and so there is a linear
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transformation making both pairs orthogonal simultaneously. H3 will become sym-
metric automatically and we can take care that it is diagonal. Using proposition 1
we can, without loss of generality, assume that for some t, > 0, t2 > 0

e ' ' =

where v > 0, while

2 /

Ia2-d2 - 1

-1 d2-a2

\

and
\0 -v)

By assumption, there are Ai>0, A2>0, A3>0 such that

Hence a]-dl + a2-d2<0 i.e. a, + a2 < d, + d2. But d, = 2/ah i - 1,2 since det e'/H' = 1.
We conclude that a,a2<2 and dxd2>2. We have

It is straightforward to show that there is a t> 0 for which the trace above is less
than 2 (and positive). Hence {//,, H2, H3} are not even compatibly hyperbolic.

•
From the proof we derive in addition the following:

PROPOSITION 6. A set {//,,..., Hn}<^o€ (2, U) is compatibly hyperbolic (non-elliptic)
if and only if there is a basis in which all e"1', t>0, i=\,...,n have positive
{non-negative) entries.

Proof. If {//,,...,//„} is compatibly hyperbolic then there is a cone in U2 which is
mapped strictly into itself by all e'H>, t>0, i = 1 , . . . , n. If we choose the sides of
the cone as the coordinate axes then all e'"1, t> 0, /' = 1 , . . . , n will become matrices
with positive entries.

The sufficiency of the condition is obvious. •

We will now express the conditions from theorem 3 in an analytic form. It is enough
to do it only for a triple of matrices since {H,, . . . , Hn) is compatibly hyperbolic
(non-elliptic) if every triple is. Let

n -Pi
QHi(x, y)=- r^ + lptxy + qy2, i = 1,2, 3.

Now C(H{, H2, H3) n S = {0} and C(HU H2, H3) is different from a proper subspace
if and only if the quadratic form

is indefinite for all A,>0, A2>0, A3>0, A? + A| + A|>0. For the pair of hyperbolic
matrices {//,, Hj} put ki}f = tr H./^/det //, det Hj.
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PROPOSITION 7. {//,, H2, H3) is a compatibly hyperbolic family if and only if the
quadratic form

A(A,, A2, A3) = \^ + \i+ \i+ kl2\lX.2+ k23\2\3 + kl3\,X3

is positive for all A, s 0, A2 > 0, A3 > 0, A ? + Af + A3 > 0.

Proof. Straightforward computation. •

The condition from proposition 7 can be expressed explicitly in terms of the
coefficients kl2, k23, kl3 but the formulation is so involved that it is of little if any
interest. There are clearly simple numerical methods to determine the compatible
hyperbolicity of {//,, H2, H3}.
For two hyperbolic matrices {//,, H2} the situation is simpler.

PROPOSITION 8. {Hu H2} is a compatibly hyperbolic (non-elliptic) pair if and only if
fc,2>-2(fcl2>-2).

If our family of matrices F contains parabolic matrices then checking compatible
non-ellipticity becomes simpler. First, it follows immediately from theorem 3 that
a compatibly non-elliptic family of matrices can contain at most two non-colinear
(equivalently: non-commuting) parabolic matrices.

PROPOSITION 9. Let F = {//,, ...,//„}<= <s€ (2, R) be a family of hyperbolic matrices
and let P,, P2 be two parabolic, non-commuting matrices. IftTPtP2>0 and tr HjPt > 0,
i = 1, 2, j = 1 , . . . , n, then F is compatibly hyperbolic.

Proof. For a parabolic matrix Pea€ (2, R) consider the set {X e <t€ (2, R)|tr XP > 0}.
Geometrically it is a half-space on one side of the plane tangent to S and containing
P. It is the half-space which does not contain the part of S in which P lies. In
particular tr P, P2 > 0 means that P, and P2 lie in different parts of S. Hence

K = {X e o€ (2, R)|tr XP, > 0 and tr XP2 > 0}

is a 'quarter' of the space that intersects 5 along two half-lines passing through P,
and P2. In particular K is convex and does not contain any plane or line. Hence,
by theorem 3, the conditions are sufficient for hyperbolicity of F. •

The geometric considerations in the proof above and theorem 3 give us the following
criterion:

PROPOSITION 10. {//,,..., Hn}<=af (2, R) is a compatibly hyperbolic family if and
only if there are two parabolic matrices P,, P2 such that t rP |P2>0 and tr HjPi>0,
j=l,...,n, i = l, 2.

We can formulate one more criterion.

PROPOSITION 11. Let F = {//,,..., Hn}cd<f (2, U) be a family of hyperbolic matrices
and let P be a parabolic matrix. If tr HtP > 0, i = 1 , . . . ,« , and ky > -2, 1 < i, j < n,
then F is compatibly hyperbolic.

The proof is very much in the spirit of previous arguments and we omit it.
One can consider a discrete counterpart of compatible hyperbolicity for a finite

set of matrices from SL (2, R). Theorem 3 provides a sufficient condition for such
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a property but not a necessary condition. Indeed the following theorem holds:

THEOREM 12. Let F = {Hu ..., Hn} c d/ (2, U) be a family of hyperbolic matrices
such that no unstable line ofe'H>, t>0, i = 1, . . . ,« , coincides with any of their stable
lines then there is T>0 such that e'<a' • • • e'kGk, G, e F, i = 1 , . . . , k, is hyperbolic if
/ ,>T , i=l,...,k

Proof. Let w,, s, be the fixed points of e'H<, t>0, in UP' corresponding respectively
to the unstable and stable lines. By the assumption there are closed intervals
/ , , . . . , / „ , M; € int /,-, such that Sj ^U"=i 4 So there is T > 0 such that if t > T then
e ' " ^ <= int 4 1 < i, j < n. It follows that if G, = Ht then e''G' • • • e'"°k/; c int 4 •

2. Liapunov exponents
We fix some norm (for instance the euclidian norm) in U2.

THEOREM 13. Let F = {//,,..., Hn}<^o€ (2, U). F is compatibly hyperbolic if and only
if there are O 0, d > 0 a«d a cone V<= R2

 SMC/J that

\\e'-a-- • • e'^v\\s:CeTd\\vl

where Gt€ F, tt>0, i=l,... ,k, T= tt + - • - + tk and veV.

Proof. Sufficiency is obvious. For the proof of necessity we can, by proposition 6,
without loss of generality, assume that all e'H', t>0, i=\,...,n have positive
entries. Hence, by proposition 1,

HAPi q)
with qt > 0, r, > 0, /" = 1 , . . . , n. Let q = min, qh r = min, r,, p = max, \pt\. Consider a
linear system of differential equations

u = M(t)u, ueU2, (1)

where M(t) is piecewise constant

M{t) = Gi if t, + - • • + ti_i<t<tl + - • • + ti_, + ti, i=l,...,n.

The vector on the left hand side of the inequality is equal to u{T) where u(t),
0 < t < T is a solution of (1) with the initial value u(0) = u.

We will find a Liapunov function for (1) in the positive octant (this is the cone
V). Consider a quadratic function

There are choices of a > 0, b > 0 and g > 0 such that

-f(x, y) 2= «/(x, y) for x > 0, y > 0.

Indeed we have for x >: 0, y > 0,

if a, fc, g are sufficiently close to zero. As a consequence, we have
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if x(0)>0, y(0)>0. On the other hand there is a constant y > 0 such that for
v = (x,y),x>0,

7 l\H\

Combining the estimates above we get the desired inequality. •

By similar arguments we can obtain:

THEOREM 14. If F = {//,,..., Hn}c<j<f (2, R) is compatibly hyperbolic and F u
{Pi, ^2} is compatibly non-elliptic where P,, P2 are parabolic matrices then there are
constants C > 0, d > 0 and a cone V c R 2 (V is bounded by invariant lines of P,, P2

if they are different) such that

\\e'-a----e''a'v\\^CeTd\\v\\,

where G,e Fu{Pu P2}, f,->0, i = l , . . . , fc , T = XG.e F t,and ve V.

We are now ready to formulate our criterion for positivity of the maximal Liapunov
characteristic exponent. Let T: X -» X be a measure preserving transformation of
the probability space (X, fi) and let A: X -* SL (2, U) be a measurable mapping. We
assume that the values of A are non-elliptic matrices. Without loss of generality we
can assume that traces of matrices in A(X) are > 2 (multiplication of some of the
matrices by —1 does not affect Liapunov exponents).

Case I (one parabolic matrix). Suppose that A(X) = {Ax,..., An, B\} where A, are
hyperbolic, i = 1, . . . ,«, and B{ is parabolic (i.e. tr B, = 2).

If, for every 1 < i, j < n

2 tr AtAj - tr A, tr A, > - V(tr A,)2 - 4 V(tr A,)2 - 4,

and for every 1 < 1" < n

t r (B , - / )A ,>0 and ( f) ^"(^- '{B,})) =0,
\n=O /

then the m.L.c.e. is positive almost everywhere.

Case II (two parabolic matrices). Suppose that A(X) = { A , , . . . , An, Bu B2} where
Aj are hyperbolic, i=l,...,n, and Bu B2 are parabolic (i.e. tr Bx = t r B2 = 2). If
tr BXB2>2 and for every 1 < i'<n, j= 1, 2,

and ( f] T-"(A-l{Bu B2})) =0,
\n=0 /

then the m.L.c.e. is positive almost everywhere.

Proof We have At = e'H\ t>0, with hyperbolic H,e<j^(2,R), f = l , . . . , n , and
B, = e'pj, f > 0, with parabolic P, e c€ (2, R), j = 1, 2.

Using proposition 1, we express sufficient conditions for compatible hyperbolicity
of {//,,..., Hn} using proposition 9 and proposition 11 and we get the conditions
above. Now we are in a position to use theorem 14 which gives us immediately
positivity of the m.L.c.e. •
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3. Application
In this final section, we will deal with a particular kind of measure-preserving
transformation on the 2-dimensional torus T2,

T(x,, x2) = (x2, - x , + Cx2+/(x2))

where / is a periodic function and C is an integer constant. We will use the square
[-5, 2] x [ - i 2] in U2 as the fundamental domain of T2. Let S(x,, x2) = (x2, x,). T
is S-reversible i.e. S°T°S= T~\

When \C\ is >2 and / is a smooth, C'-small function, we have an Anosov
diffeomorphism. It is also of interest that for \C\ :£ 2 and an appropriate 'perturbation'
f the m.L.c.e. are positive in some part of T2, thus ensuring strong mixing properties
of T (cf. [3], [4]). The case C = 2 corresponds to perturbations of the twist map
and was treated in [4] and [5]. For C = -2, - 1 , 1, one can get results similar to
those of [4] by essentially the same approach (this was done explicitly in [1]). We
will obtain interesting dynamical behaviour for the case C = 0 using the criterion
developed in previous sections (since it was proved in [1] that the criterion of [4]
doesn't work in this case).

Thus, we study T(x,, x2) = (x2, -x ,+/(x2)) with

-at-d on[~2,0],
at + d on[0,2].

So T is linear in B+ and J3_ where

The matrix of T (or DT) in B+ is D, and in B_ is D2 where:

We specify d to be such that (~{, ~£) and (|, 5) are fixed points for T i.e. d =\a + \.
For \a\ <2, our transformation is a rotation about the fixed point (~j, ~£) in B_

and about the fixed point (£, z) in B+. So we have two invariant 'elliptic islands'
7± = P|"=_OO Tk(B±). These domains are ellipses if the rotation is irrational and
polygons if it is rational. We shall prove the following:

THEOREM 15. For a =2 cos ir/n, n=2, 3,..., T has positive m.L.c.e. almost
everywhere in T2\(7+u /_). For the values of a described in this theorem, 1+ and 7_
are polygons with 2M sides symmetric with respect to the diagonal (i.e. S(I±) = 7±) in
view of S-reversibility. Outside of them the interaction of different rotations produces
strong mixing properties.

Proof. We will consider the return map T:B+nC_ ±= where C±=T(B±) =
{(x,, x2)|0< ±x, <j}. Clearly it is enough to prove that T has positive m.L.c.e.

DT is equal to D{D\ where i is the number of times a point from B+ D C_ stays
in B+ before leaving it and j is the number of times it stays in B_ before returning
to B+. The crucial observation is that l < y ' < n - l and 2< f+j< n. The latter is
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FIGURE 3-1. Case n = 4. The domains /, are the periodic elliptic islands, the zones Z, stay only twice
(i.e. Zj and TXZ,)) in the same part of the torus (i.e. where it's always the same differential) B+ or B_
before going to the other half of T2. The X, stay for 3 iterations (Xh T(Xt) and T2(Xj)) in the same
half-part of the torus. So the only allowed products are D2DU D2D

2
U D2D], D\DU D\D\ and D\DS.

messy to prove but can be seen fairly easily geometrically as for example in the
case n =4 shown in figure 3-1.
D\ and DJ

2 can be expressed in the following form (as proved in [5])
i iv+i

sin 77/

1

sin TT/H

1 /sin (1 — 1)TT/« siniV/n \
n\ —siniir/n —sin(i+l)ir/n/

( —sin (j — I)v/n sinjir/n \
-sinjir/n sin (j+ \)ir/n)

and thus

where
smz TT/n \d2x d22)

du = -sin {j-l)ir/n s in ( i - l)7r/n-sin iir/n sinjir/n

dl2= -sin (j-l)ir/n sin iir/n - sin JIT/n sin (i+ l)ir/n
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d2\ = —sin jir/n sin (i — \)ir/ n —sin tir/n sin (j+ \)ir/n

d22 = — sin jir/ n sin iir/ n — sin (y + 1) TT/ « sin (i + 1) TT/ n.

So we have

tr D\D2 = -r-i—7~[sin (j—l)ir/nsin(i — l)ir/n + 2 sin iir/n sin jir/n
sin IT/ n

+ sin (j + 1) TT-/ n sin (i

(-1)'
[(sin iw/n sin ;V/«)(2 + 2 cos2 IT I' n)= 5

sin TT/M

+ 2 cos jir/n cos iV/n sin2 u-/n].

After multiplying the matrices D{D\ by - I when necessary, we see that all the
traces are > 2. The trace is equal to 2 for i = « - I, j = I and i" = I, j = n - I.

We put

(I 4COSSWA _ / I 0\
I / ' ^ " U C O S T T / H l j '

and let {Ar, . . . , An} be the set of all hyperbolic matrices Jy^D\ multiplied by —I
if necessary.

Now we apply the criterion from § 2 to f:B+nC_±> and A:B+nC_^SL(2,R),
A(x) = DTX (normalised to give trace > 2). So we have to check that

trfi,B2>2, (2)

tr(Bk-I)A,>0, (3)

and

(4)
n=0

Since

/ I 4COS7T/1V 1 0\
1 2 \0 1 /\4COS7T/M 1/

( 1 +16 cos2 ir/n 4COSTT/M\

4 cos TT/ n 1 / '

it's obvious that (2) is satisfied.
(3) means in our case that the matrices At have all positives entries. The property

(4) is easily obtained from geometric considerations. Thus the m.L.c.e. are positive
almost everywhere in T2\(/+u /_). •

Acknowledgments. We thank the Fonds National de la Recherche Scientifique of
Belgium which made possible the stay of Maciej Wojtkowski at F.N.D.P. during
which this work was begun, the Facultes Notre Dame de la Paix at Namur which
supported the research of Eric Cornelis for this paper and finally the University of
California, Berkeley, where Maciej Wojtkowski wrote part of this paper on leave
from Warsaw University, Poland. We also want to thank the referees for their helpful
remarks.

https://doi.org/10.1017/S0143385700002625 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002625


Liapunov characteristic exponent 539

E. Cornelis is a Research Assistant of the National Fund for Scientific Research
(Belgium).

REFERENCES

[1] E. Cornelis. Sur les proprietes ergodiques de quelques transformations lineaires par morceaux du
tore. Master's thesis, F.N.D.P. Namur, 1982.

[2] V. I. Oseledec. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical
systems. Trans. Moscow Math. Soc. 19 (1968), 197-231.

[3] Ya. B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math. Surveys
32-4(1977), 55-114.

[4] M. Wojtkowski. A model problem with the coexistence of stochastic and integrable behaviour.
Commun. Math. Phys. 80 (1981), 453-464.

[5] M. Wojtkowski. On the ergodic properties of piecewise linear perturbations of the twist map. Ergod.
Th. & Dynam. Sys. 2 (1982), 525-542.

https://doi.org/10.1017/S0143385700002625 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002625

